
HAL Id: hal-00687640
https://inria.hal.science/hal-00687640v2

Submitted on 16 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simplex-Based Extension of Fourier-Motzkin for
Solving Linear Integer Arithmetic

François Bobot, Sylvain Conchon, Evelyne Contejean, Mohamed Iguernelala,
Assia Mahboubi, Alain Mebsout, Guillaume Melquiond

To cite this version:
François Bobot, Sylvain Conchon, Evelyne Contejean, Mohamed Iguernelala, Assia Mahboubi, et al..
A Simplex-Based Extension of Fourier-Motzkin for Solving Linear Integer Arithmetic. 6th Interna-
tional Joint Conference on Automated Reasoning, Jun 2012, Manchester, United Kingdom. pp.67-81,
�10.1007/978-3-642-31365-3_8�. �hal-00687640v2�

https://inria.hal.science/hal-00687640v2
https://hal.archives-ouvertes.fr

A Simplex-Based Extension of Fourier-Motzkin
for Solving Linear Integer Arithmetic?

François Bobot1, Sylvain Conchon1, Evelyne Contejean1, Mohamed
Iguernelala1, Assia Mahboubi2, Alain Mebsout1, and Guillaume Melquiond2

1 LRI, Université Paris Sud, CNRS, Orsay F-91405
2 INRIA Saclay–Île-de-France, Orsay F-91893

Abstract. This paper describes a novel decision procedure for quantifier-
free linear integer arithmetic. Standard techniques usually relax the ini-
tial problem to the rational domain and then proceed either by projection
(e.g. Omega-Test) or by branching/cutting methods (branch-and-bound,
branch-and-cut, Gomory cuts). Our approach tries to bridge the gap be-
tween the two techniques: it interleaves an exhaustive search for a model
with bounds inference. These bounds are computed provided an oracle
capable of finding constant positive linear combinations of affine forms.
We also show how to design an efficient oracle based on the Simplex pro-
cedure. Our algorithm is proved sound, complete, and terminating and
is implemented in the alt-ergo theorem prover. Experimental results
are promising and show that our approach is competitive with state-of-
the-art SMT solvers.

1 Introduction

Linear arithmetic is ubiquitous in many domains ranging from software and
hardware verification, linear programming, compiler optimization to planning
and scheduling. Decision procedures for the quantifier-free linear fragment over
integers (QF-LIA) are widely studied in Satisfiability Modulo Theories. Most of
the procedures used by state-of-the-art SMT solvers are extensions of either the
Simplex algorithm or the Fourier-Motzkin method. Both techniques first relax
the initial problem to the rational domain and then proceed by branching/cutting
methods or by projection.

Given a conjunction
∧
i

∑
j ai,j xj + bi ≤ 0 of constraints over rationals, the

Simplex algorithm [16] finds an instantiation of the variables xj satisfying these
constraints or a contradiction if they are unsatisfiable. Three well-known exten-
sions of this method to decision procedures over integers are branch-and-bound,
Gomory’s cutting-planes, and branch-and-cut [16]. Intuitively, these extensions
prune non-integer solutions from the search space until they find an integer as-
signment or a contradiction. The Simplex algorithm is exponential in the worst
case but behaves rather well in practice. On the other hand, the complexity of

? Work financially supported by the French ANR project ANR-08-005 DeCert.

QF-LIA is NP-complete [16] and known algorithms are not as efficient in practice
as the Simplex on the rational case.

By contrast, the idea behind the Fourier-Motzkin [16] algorithm is to perform
successive variable eliminations in a breadth-first manner generating additional
constraints with fewer variables. The original system is satisfiable in the ratio-
nals if a fixpoint is reached without deriving a trivially inconsistent inequality
c ≤ 0 where c is a positive rational. In the opposite case we conclude that the
system is unsatisfiable. The Omega-Test [15] extends this algorithm to a decision
procedure over integers by performing additional projection-based checks when
the constraints are satisfiable in the rationals. These methods do not scale in
practice because they introduce a (double) exponential number of inequalities,
which saturates the memory.

In this paper, we present a novel decision procedure for conjunctions of
quantifier-free linear integer arithmetic constraints. Our approach is not an in-
stance of any of the above techniques. Roughly speaking, it interleaves an ex-
haustive search for a model with bounds inference. New bounds are computed by
solving auxiliary linear optimization problems using the Simplex algorithm. Intu-
itively, each auxiliary problem simulates a run of the Fourier-Motzkin algorithm
that would eliminate all the variables at once. In order to facilitate the reading
of this article, we summarize hereafter the main ideas of our contribution.

After recalling some useful notations and mathematical background, we char-
acterize in Section 2 when the solution set described by a conjunction of con-
straints can be effectively bounded along some direction. If there is no such
bound, we prove that the solution set contains infinitely many integer solutions.

This characterization is based on finding constant positive linear combina-
tions of affine forms. In Section 3, we first show that Fourier-Motzkin is a suit-
able algorithm to compute such combinations. Then, we explain how to cast this
problem into a linear optimization problem, which can hence be solved by an
efficient Simplex-based algorithm.

In Section 4, we show how to build a decision procedure for QF-LIA. The
procedure uses the algorithms of Section 3 to find bounds on the solution set. If
there are none, then the procedure stops since there are infinitely many integer
solutions. Otherwise it performs a case-split analysis along the bounded direction
and calls itself recursively to solve the simpler subproblems.

We have implemented our framework in the alt-ergo theorem prover [4]. In
Section 5, we measure its performances on a subset of the QF-LIA benchmark
and compare its performances with some state-of-the-art SMT solvers. Section 6
presents future and related works.

2 Preliminary Results

2.1 Background and notations

In all what follows, if m,n ∈ N, then [|m,n|] denotes the integer interval bounded
by m and n. We denote matrices by upper case letters like A and column vectors

by lower case letters like x. We denote At the transpose of the matrix A, Ax
denotes the matrix product of the matrix A by the vector x and kerA the set of
vectors such that Ax = 0. If A is a m× n matrix, ai,j denotes the element of A
at position (i, j), ai denotes the i-th row vector of A (of size n), and Aj the j-th
column vector of A (of size m). If x is a vector, xi denotes its i-th coordinate.
If x and y are n-vectors of the same ordered vector space, x ≥ y denotes the
conjunction of constraints ∀i ∈ [|1, n|], xi ≥ yi, with similar notations for ≤
and the associated strict orders. For instance, if x is a vector, x > 0 denotes
the conjunction of constraints ∀i ∈ [|1, n|], xi > 0. We equip Qn with the usual
scalar product associated with its canonical basis. We measure distances using
the supremum norm ‖ · ‖∞. B∞(x, r) denotes the closed ball centered in x and
of radius r for that norm.

We recall that affine maps ψ : Qn → Qm are the maps of shape ψ = φ+ tc,
with φ : Qn → Qm a linear map and tc the translation of direction c ∈ Qm. An
affine map ψ : Qn → Q is called an affine form on Qn. For instance, a constant
map ψc : Qn → Qm, with value c, is an affine map since it is the sum of the zero
linear map and of the translation of direction c ∈ Qm.

Definition 1 (Positive linear combination of affine forms). Let (ψi)i∈[|1,k|]
be a family of affine forms on Qn. An affine form ψ on Qn is a positive linear
combination of the (ψi)i∈[|1,k|] if there exists (λi)i∈[|1,k|] a family of nonnegative
scalars such that

ψ =

k∑
i=1

λiψi and

k∑
i=1

λi > 0

We recall the original formulation of Farkas lemma [16, 9] on rationals:

Theorem 1 (Farkas’ lemma). Given a matrix A ∈ Qm×n, and c a vector in
Qn, then

∃x ∈ Qm, x ≥ 0 ∧ Ax = c ⇔ ∀y ∈ Qn, ytA ≥ 0⇒ ytc ≥ 0

In the sequel, we use the following equivalent formulation:

Theorem 2 (Theorem of alternatives). Let A be a matrix in Qm×n and b a
vector in Qm. The system Ax+ b ≤ 0 has no solution if and only if there exists
λ ∈ Qm such that λ ≥ 0 and Atλ = 0 and btλ > 0.

2.2 Convex polytopes with an infinite number of integer points

We consider a closed convex subset K ⊂ Qn defined by a linear system of
constraints:

K := {x ∈ Qn | Ax+ b ≤ 0}

where A ∈ Qm×n, b ∈ Qm. By definition, K is the convex polytope of the
(rational) solutions of the linear system Ax + b ≤ 0. We want to determine

whether K∩Zn is empty or not, or in other words, whether the system Ax+b ≤ 0
has integer solutions. For i ∈ [|1,m|], we denote by Li the following affine forms:

Li : Qn −→ Q
x 7−→ (Ax+ b)i

Theorem 3. If there is no constant positive linear combination of the linear
forms (Li), then for all R ∈ Q+, K contains a ball B∞(w,R) with w ∈ Qn.

Proof. Let R ∈ Q+. We define γ ∈ Qm such that for every i ∈ [|1,m|]:

γi := R‖ai‖1 = R
∑
j

|ai,j |

and we consider the convex K ′ := {x ∈ Qn | Ax + γ + b ≤ 0}. Suppose for
contradiction that K ′ is empty. Hence by Theorem 2, there exists λ ∈ Qm such
that Atλ = 0. So, λt(Ax + b) =

∑
i λiLi is constant, which contradicts the

hypothesis.
Therefore K ′ is not empty and contains a vector w such that Aw+ b+γ ≤ 0.

We now prove that B∞(w,R) ⊆ K. Let u be a vector such that ‖u‖∞ ≤ R. By
triangular inequality we have

∀i ∈ [|1, . . . ,m|] (Au)i ≤ |(Au)i| ≤ ‖ai‖1‖u‖∞ ≤ R‖ai‖1 = γi

hence
A(w + u) + b = Aw + b+Au ≤ Aw + b+ γ ≤ 0

which proves that w + u belongs to the convex K. ut

Corollary 1. If there is no constant positive linear combination of the (Li) then
K ∩ Zn contains infinitely many points, for n > 0.

Proof. For any N ∈ N and any x ∈ Qn, the ball B∞(x,N) contains at least
(2N)n points with integer coordinates. ut

Lemma 1. If
∑
i λiLi is a positive linear combination of the (Li) equal to a

constant c, then

– if c is positive, then K should be empty;
– otherwise for every k such that λk 6= 0, and for any x ∈ K, Lk(x) is bounded

by c
λk
≤ Lk(x) ≤ 0

Proof. For any x ∈ K, we have λiLi(x) ≤ 0 by definition of K and non-
negativeness of λi. Hence

∑
i λiLi(x) ≤ 0, which concludes the first case.

Since
∑
i λiLi = c, then for k such that λk 6= 0 and for any x ∈ K, we have

c− λkLk(x) =
∑
i 6=k λiLi(x) ≤ 0, which concludes the second case. ut

Note that, if the constant c is zero, then all the inequalities Lk ≤ 0 associated
to a nonzero λk are in fact equalities.

2.3 Intersection with an affine subspace

In addition to K, we now consider another convex K ′ ⊂ Qn defined by ` equa-
tions:

K ′ := {x ∈ Qn | A′x+ b′ = 0}

where A′ ∈ Z`×n, b′ ∈ Z`, and study the intersection K ∩K ′ ∩ Zn. We prove a
sufficient condition for this intersection to contain an infinite number of points
when K ∩ Zn is known to be infinite.

Let (e1, . . . , en) be the canonical basis of Qn. We suppose that there exists
i1, . . . , ij such that K is invariant by any translation of direction eik for k ∈
[|1, j|]. Hence if we pose E := 〈ei1 , . . . , eij 〉 the vector space generated by these
vectors, K is invariant by any translation of direction e ∈ E. We denote π : Qn →
Qn−j the orthogonal projection along E (on the orthogonal complement E⊥

of E). Note that since we consider vectors as column matrices of their coordinates
on the canonical basis, computing the projection π(x) of a vector x boils down
to annihilating the coordinates i1, . . . , ij of x.

Theorem 4. Assume that there are no constant positive linear combinations of
the (Li) and that K ′ ∩ Zn contains at least one point. Then if π(K) ⊆ π(K ′),
K ∩K ′ ∩ Zn contains infinitely many points.

Proof. Let us first calculate the Smith normal form of matrix A′. This gives U ,
D, and V , matrices over Z such that UA′V = D, U and V are square matrices
invertible over Z, and D is diagonal (but not necessarily square). Since U and
V are invertible, we have

{x ∈ Qn | A′x = 0} = {x ∈ Qn | UA′V (V −1x) = 0}
= {V x ∈ Qn | Dx = 0}

Similarly, and since V is invertible over Z, we have

{x ∈ Zn | A′x = 0} = {V x | x ∈ Zn ∧Dx = 0}
= {V x | x ∈ kerD ∩ Zn}

By hypothesis, there exists x0 a point of K ′∩Zn. For any point x of K ′, we have
A′(x− x0) = (A′x+ b′)− (A′x0 + b′) = 0. Therefore,

K ′ = {x0 + V x | x ∈ kerD}
K ′ ∩ Zn = {x0 + V x | x ∈ kerD ∩ Zn}

Let R = max(1,maxi(
∑
j |vi,j |)) = max(1,maxi ‖vi‖1) and N an arbitrary large

integer. By Theorem 3, there exists a ball B = B∞(w,R(N + 1)), of diameter
2R(N + 1), contained in K. The projection π(B) contains at least Nn−j points
that are at least at distance 2R from each other and at least at distance R from
its border. Each of these points has at least one antecedent by π in K ′ since
π(B) ⊆ π(K) ⊆ π(K ′). We call T ⊂ K ′ this set of points. The distance between

any two points of T is at least 2R since the coordinates of the vectors in T on
E⊥ coincide with the ones of their respective projections.

For any point y = x0+V x ∈ K ′, there is a point of K ′∩Zn at most at distance
R. Indeed, since D is diagonal and x ∈ kerD, any vector having the same non-
zero coordinates as x remains in kerD. Hence truncating the coordinates of x
gives a vector bxe ∈ kerD ∩ Zn. By definition of R, the distance between y and
x0 + V bxe is at most R.

Hence for each t ∈ T , there exists u ∈ K ′ ∩ Zn such that the distance
between t and u is at most R. But the distance between π(t) and π(u) is also
at most R since the projection only annihilates some coordinates. Therefore we
obtain a family U of Nn−j distinct points of K ′ ∩ Zn that have a projection
inside π(B). For each u ∈ U , u = b + e where b = π(u) ∈ π(B) and e ∈ E.
Now since π(B) ⊂ π(K) there exists e′ ∈ E such that b + e′ ∈ B ⊂ K. Hence
u = b + e′ + (e − e′) belongs to K since K is invariant by the translation of
direction e′ − e ∈ E. Finally the Nn−j points of U are in K ∩K ′ ∩ Zn, which
concludes the proof when j < n.

In the degenerate case where j = n, K is either empty or the whole space. K
cannot be empty since by theorem 2 this would imply the existence of constant
positive linear combination of the (Li), hence a contradiction. Now K cannot be
the whole space if there is no zero combination of the (Li) which again contradicts
the present hypothesis. ut

3 Constant Positive Linear Combinations of Affine Forms

In this section, we are interested in computing constant positive linear combina-
tions of affine forms. More precisely, we intend to build an oracle which takes as
input a set of affine forms (Li) (or equivalently, a matrix A and a vector b) and
meets the following specifications:

1. if there is no constant positive linear combination of the (Li), it says so;

2. otherwise, it returns such a combination
∑
i λiLi.

We first present a method based on the Fourier-Motzkin procedure. Then, we
describe an efficient implementation based on the Simplex algorithm and prove
its soundness, completeness, and termination.

3.1 The Fourier-Motzkin procedure

Let K := {x ∈ Qn | Ax + b ≤ 0} be a closed convex where A ∈ Qm×n and
b ∈ Qm, and C the set of the affine forms Li : x 7→ (Ax + b)i. Fourier-Motzkin
can be seen as an algorithm that attempts to compute constant positive linear
combinations

∑
λiLi in order to decide whether K is empty or not. For that

purpose, it eliminates iteratively all the variables from the set of affine forms.
More precisely, the iteration k of the procedure consists in

1. choosing a variable xk to eliminate,

2. partitioning the current set Ck of affine forms into a set C0
xk

not containing xk
and a set C+

xk
(resp. C−xk

) where xk has positive (resp. negative) coefficients,
3. computing the set Ck+1 of new affine forms:

Ck+1 := C0
xk
∪ Π(C+

xk
× C−xk

)

where Π calculates a positive combination Li,j = αi,jLi + βi,jLj not con-
taining xk for each Li ∈ C+

xk
and Lj ∈ C−xk

.

Notice that if either C+
xk

or C−xk
is empty, then Π returns an empty set. The

iterative process terminates when all the variables are eliminated and it returns
a (possibly empty) set Cf of constant affine forms. We know that K is empty if
there exists c ∈ Cf such that c > 0. Moreover, given a constant c ∈ Cf , it is easy
to retrieve a positive linear combination

∑
i λiLi = c. For that, we recursively

unfold the definitional equalities Li,j = αi,jLi + βi,jLj computed by Π.

Example 1. Consider the following set of affine forms:

C1 :

{
L1 = 2x+ y, L2 = −2x+ 3y − 5, L3 = x+ z + 1,

L4 = x+ 5y + z, L5 = −x− 4y + 3, L6 = 3x− 2y + 2

}
Eliminating z from C1 is immediate since it only appears positively:

C2 :

{
L1 = 2x+ y, L2 = −2x+ 3y − 5, L5 = −x− 4y + 3,

L6 = 3x− 2y + 2

}
We eliminate the variable x and compute the set C3 below using the combina-
tions: L7 = L1 + L2, L8 = L1 + 2L5, L9 = 2L6 + 3L2, L10 = L6 + 3L5

C3 :

{
L7 = 4y − 5, L8 = −7y + 6, L9 = 5y − 11,
L10 = −14y + 11

}
Finally, the variable y is in turn eliminated thanks to the following combinations:
L11 = 7L7 + 4L8, L12 = 7L7 + 2L10, L13 = 7L9 + 5L8, L14 = 14L9 + 5L10

The iterative process terminates and returns the set

C4 : {L11 = −11, L12 = −13, L13 = −47 L14 = −99 }

Moreover, unfolding the equalities introduced by Π yields
−11 = L11 = 7L7 + 4L8 = · · · = 11L1 + 7L2 + 8L5

−13 = L12 = 7L7 + 2L10 = · · · = 7L1 + 7L2 + 6L5 + 2L6

−47 = L13 = 7L9 + 5L8 = · · · = 5L1 + 21L2 + 10L5 + 14L6

−99 = L14 = 14L9 + 5L10 = · · · = 42L2 + 15L5 + 33L6

A constant positive linear combination c =
∑
λi Li can now be used in conjunc-

tion with Lemma 1 to refine the bounds on the initial set of affine forms. Since for
any vector x ∈ K, and for any j, Lj(x) ≤ 0, we have c =

∑
λi Li(x) ≤ λjLj(x),

and we obtain a lower bound c
λj

on Lj as soon as λj 6= 0.

Example 2. Using the linear combination 11L1 + 7L2 + 8L5 = −11, we can
make the deductions −1 ≤ L1, − 11

7 ≤ L2 and − 11
8 ≤ L3 in the rationals.

Furthermore, these deductions are refined as follows in the integers: −1 ≤ L1,⌈
− 11

7

⌉
= −1 ≤ L2 and

⌈
− 11

8

⌉
= −1 ≤ L3.

3.2 Computing the linear combinations using a Simplex

While the Fourier-Motzkin algorithm can be used to compute all the relevant
constant positive linear combinations of affine forms, it does not scale in practice.
In the following, we describe an efficient Simplex-based alternative and show its
soundness, completeness, and termination. As opposed to the Fourier-Motzkin
algorithm, this new approach will only attempt to compute one particular con-
stant positive linear combination.

Let K := {x ∈ Qn | Ax + b ≤ 0} be a closed convex where A ∈ Qm×n
and b ∈ Qm, and C the set of the affine forms Li : x 7→ (Ax + b)i of the form∑n
j=1 ai,j xj + bi. Consider the combination

∑
λi Li of the affine forms. This

sum unfolds as follows:

λ1 (

n∑
j=1

a1,j xj + b1) + · · · + λm (

n∑
j=1

am,j xj + bm)

and factorizing the xi gives:

x1 (

m∑
i=1

ai,1 λi) + · · · + xn (

m∑
i=1

ai,n λi) +

m∑
i=1

bi λi

Since we are only interested in computing constant positive linear combi-
nations, we require that for every k,

∑m
i=1 ai,k λi = 0, which eliminates the

variable xk. Moreover, we look for the combinations that maximize the value of∑m
i=1 bi λi, since this will improve efficiency, as described in Section 4.2. More

precisely, we compute such a constant positive linear combination by solving the
following problem in the rationals:

maximize
∑m
i=1 bi λi

subject to Atλ = 0 ∧
∑m
i=1 λi > 0 ∧

∧m
i=1 λi ≥ 0

This problem reminds of the dual Simplex input, but here we have equalities
Atλ = 0 instead of the usual inequalities and an extra constraint

∑
λi > 0.

In order to solve the above problem, we first introduce a slack variable s
and a positive parameter ε to transform the strict inequality

∑m
i=1 λi > 0 into∑m

i=1 λi− ε = s ∧ s ≥ 0, following Lemma 1 of [8]. Then we solve the system of
equalities in Q modulo the constraints

∧m
i=1 λi ≥ 0 ∧ s ≥ 0. This returns unsat

if this system is inconsistent in Q modulo the non-negativeness constraints, or a

matrix of the form

λ1 λ2 · · · s

λb1 7→ c1.1 c1.2 · · · c1.m+1

λb2 7→ c2.1 c2.2 · · · c2.m+1

...

λbn+1
7→ cn+1.1 cn+1.2 · · · cn+1.m+1

Finally, we initialize the Simplex algorithm with this matrix and try to maximize
the objective function. The Simplex returns either unsat if the given system
has no solution, or unbound if the objective function has no upper bound, or a
maximum m and a valuation ν for the vector λ.

If the Simplex algorithm returns unsat, then the oracle answers that there
is no constant positive linear combination. If it returns unbound, the oracle just
returns a positive constant. Otherwise, the Simplex algorithm necessarily returns
a solution with a non-positive maximum for the objective function. Indeed, if the
maximum were to be positive, one could multiply coordinate-wise any solution λ
by a constant larger than 1 and obtain another solution with a larger objective
value. The oracle then returns the corresponding linear combination. Note that
as soon as the Simplex exploration discovers a positive value for the objective
function, the answer will eventually be unbound so it can exit immediately.

3.3 Soundness, completeness, and termination

On top of the Simplex algorithm we only add some substitutions, so the termi-
nation of this oracle follows directly from the one of the Simplex algorithm.

Let us justify that the introduction of the parameter ε does affect neither the
soundness nor the completeness of the oracle. Let us denote by P>0 the original
problem and by P≥ε the problem we actually send to the Simplex algorithm.
First, remember that for both problems, the answer is either unsat or unbound
or a solution with a non-positive evaluation of the objective function: indeed, if
ν is a solution, so is αν for any scalar α with the constraint α > 0 for P>0, and
α > 1 for P≥ε, and the value of the objective function is multiplied accordingly.
Moreover, any solution of P≥ε is obviously a solution of P>0. Let us now proceed
with the proof by case analysis.

1. If P>0 is unsat, so is P≥ε by inclusion of solutions.
2. If P≥ε is unsat, let us assume by contradiction that P>0 is not unsat, hence

has a solution ν. Then ε∑
νi
ν is a solution of P≥ε, a contradiction.

3. If P≥ε is unbound, so is P>0 by inclusion of solutions.
4. If P>0 is unbound, we show that P≥ε is also unbound. Let M be an arbitrary

large value. By hypothesis on P>0, there is a solution ν of P>0 with an
evaluation of the objective function greater than M . Then, if

∑
νi ≥ ε, ν is

a solution of P≥ε with an evaluation of the objective function greater thanM .

Otherwise, ε∑
νi
ν is a solution of P≥ε, with an evaluation of the objective

function greater than ε∑
νi
M , hence greater that M since ε >

∑
νi.

5. If P>0 (resp. P≥ε) has a solution with a non-positive evaluation of the ob-
jective function, so has P≥ε (resp. P>0), since the other cases are impossible,
as shown above.

4 The Decision Procedure

Let us now build a decision procedure for QF-LIA based upon an oracle that
follows the interface described at the beginning of Section 3 and the theorems
presented in Section 2.

4.1 The algorithm

Let A ∈ Qm×n and b ∈ Qm. The procedure shall decide whether the system
Ax+ b ≤ 0 has a solution x ∈ Zn. Let L = (Li)i∈[|1,m|] be the associated family
of affine forms. Figure 1 sketches the algorithm. It takes as input both the system
L of inequalities and an additional argument Eq representing affine relations
between variables, e.g. a set of equalities, or a substitution, or an echelon matrix,
etc. This last argument is initially empty. The result of the decision procedure is
stored in the sols variable. It is a finite set of integer solutions, possibly empty,
or an indeterminate infinite set of integer solutions.

The check functions at lines 6 and 10 compute the integer solutions of a
system of equations, but the special shape of the systems they deal with allows
important optimizations that will be detailed below.

The algorithm is recursive. Recursive calls are performed on smaller and
smaller systems L until complete resolution. Branching is caused by the loop on
line 15. The results are merged along the various branches at lines 6 and 10. One
can also consider that there are implicit statements sols ← sols ∪∅ at lines 4, 13,
and 17. Notice that the algorithm performs computations only when going from
the root to the leaves of the call tree. For the sake of clarity, we have described a
simple version of the algorithm. An actual implementation would likely be more
complicated. For instance, it would exit as soon as a branch finds an infinity
of solutions or even a single solution if one is interested only in satisfiability. It
could also use splitting on demand [3] at line 15.

From lines 3 to 7, the algorithm deals with degenerate systems that contain
no inequalities or only trivial inequalities. It then calls the oracle on L. If it
answers that no suitable combination of the affine forms exists, Corollary 1
can be applied. There are infinitely many solutions with integer coordinates,
assuming Eq imposes no restriction (hence the call to check∞). The decision
procedure is done in this branch.

Otherwise, the oracle returns a constant positive linear combination
∑
i λiLi

equal to c. In that case, Lemma 1 can be applied. If c is positive, the procedure
is done too: the system has no solution.

1 global sols ← ∅
2 procedure lia(L = (Li),Eq)
3 remove trivial inequalities c ≤ 0 with c constant from L
4 if some c was positive then return
5 if L = ∅ then
6 sols ← sols ∪ check1(Eq)
7 return
8 call oracle(L)
9 if there is no constant positive linear combination then

10 sols ← sols ∪ check∞(Eq)
11 return
12 let

∑
λiLi = c the constant positive linear combination found by the oracle

13 if c > 0 then return
14 choose k such that λk 6= 0, and µ > 0 such that µLk has integer coefficients only
15 for all v from dµ c

λk
e to 0 do

16 create a substitution σ from µLk(x1, . . . , xn) = v
17 if there is no possible substitution then continue to next iteration
18 remove Lk from L
19 apply σ to L
20 call lia(L,Eq ∪ {σ})
21 return

Fig. 1. Algorithm for the decision procedure

Otherwise, we have c
λk
≤ Lk ≤ 0 for all k such that λk 6= 0. The decision

procedure chooses a value for k. Since the coefficients of µLk are in Z, for any
point x ∈ K ∩ Zn, µLk(x) is an integer between µ c

λk
and 0. For each integer

v ∈ [µ c
λk
, 0], the decision procedure considers the equality µLk = v from which

it infers a substitution if possible, applies the result to all the other affine forms
(Li)i 6=k and removes Lk from the system while updating Eq with the substitu-
tion. The decision procedure is then called recursively. If no solution is found
after a complete exploration of all the possible integer values in [µ c

λk
, 0], then

the procedure returns at line 21 without updating sols. This is what happens if
L has rational solutions but no integer solutions.

Note that, if the constant c is zero, then several equalities might appear at
once. An optimized procedure should therefore compute a substitution taking
all of them into account, rather than one after the other, as is done in Figure 1.

We now give more details on the computations performed at the leaves of
the call tree by the check functions. The choice of these functions depends on
the substitution scheme at line 16. We describe here two possible scenarios.

Integer substitution with slack variables. Let us first consider the case where
the substitution introduces slack variables. The variables x1, . . . , xn of Lk are
expressed as affine combinations of new variables xn+1, . . . , xn+`, such that the
integer solutions of Lk(x1, . . . , xn) = v are completely parameterized by these
new variables. Removing Lk from L and applying the substitution produces a

system equisatisfiable to L and solutions to the original system can be trivially
computed thanks to Eq.

A way to obtain the substitution is the Generalized GCD test [2] with the
approach given by Pugh in the Omega-Test [15]. Note that the substitution may
have only one solution, e.g. 2x = 6. The substitution may also not exist, e.g.
5x = 2, in which case, the exit case described line 17 applies.

In that case, functions check are implemented as follows. For check1, the so-
lutions are constrained purely by Eq . More precisely, the set of integer solutions
is parameterized by the set of variables that are never the target of substitution
in Eq . Moreover, the Eq system has been built only from adding successively (cf.
line 20) new substitutions not featuring the variables previously substituted (cf.
line 19), so it is never inconsistent. Therefore, only two situations are possible
when Eq is passed to check1: either Eq involves all the variables of the system, in
which case there is exactly one solution, or it does not (some variables have not
been substituted) and there are infinitely many integer solutions. In this imple-
mentation Eq is always a system with integer coefficients, and function check∞
is trivial for integer substitutions. Indeed, it just returns an indeterminate infi-
nite set, whatever the value of Eq , since some variables have to be unsubstituted
at that point.

In some context, e.g. an SMT solver, one might need more information than
what this indeterminate set seems to carry. If one needs some explicit witnesses,
the proof of Theorem 3 explains how to effectively compute them from L. Wit-
nesses for the original system can then be deduced from Eq. If one needs to know
which equalities are implied by the system, then Eq describes them entirely. In-
deed, the decision procedure will not exit at line 11 if some constant positive
linear combination still exists in L.

Gaussian elimination Let us now consider the case of a substitution performed
by a simple Gaussian elimination on rational numbers; it does not introduce any
slack variables but the coefficients involved in the substitutions are rationals,
possibly non integers. Function check1 now has to test whether the set of equal-
ities Eq admits some solution and to return them. In this scenario, there can be
either zero solution, or one, or an infinite number of them. The implementation
of function check∞ can in that case take benefit of Theorem 4. The hypotheses
of the theorem are actually verified thanks to the Gaussian elimination, and the
vector space E of Theorem 4 is generated by the vectors of the canonical basis
associated with the variables already substituted. Since these variables have been
eliminated from L, the set of solutions of L is obviously invariant by translation
along these coordinates. By construction of Eq the hypothesis of inclusion of the
respective projections also holds. Therefore if the system of equalities Eq admits
at least one integer solution, then there are an infinite number of solutions for
the problem considered in the current branch. Otherwise there is no solution for
this branch.

Note that, whichever of these substitution schemes is used, the solver for
linear integer arithmetic embedded in the check functions has to deal with equa-
tions only and is therefore simple.

Producing explanations. An important feature when developing a decision pro-
cedure for SMT is to provide the most precise explanations that improve the
backtrack level when branching. In our setting, the explaination of each incon-
sistency or lower bound c

λk
inferred by the oracle is the explanations of the

inequalities Li ≤ 0 such that λi 6= 0. The explanations of the inequalities that
have not participated in the inference process are thus discarded.

4.2 Soundness, completeness, and termination

Termination is obvious, assuming the oracle is itself terminating. Indeed, at each
recursive call, one affine form at least is removed from the system. Note that it
has to be effectively removed from the system; otherwise the oracle may just
return the linear combination that bounds this form again, hence causing the
procedure to enter an infinite recursion.

Soundness depends on the completeness of the oracle: if the oracle does not
find any constant positive linear combination, there should be none. Theorems
of Section 2.2 then cover all the possible cases. Completeness of the decision
procedure comes from termination and soundness.

While the oracle can return any constant positive linear combination, for
efficiency reasons, it should strive to find a positive constant if possible, and zero
if not. Indeed, this ensures that the algorithm will not branch too early.

5 Experimental Results

We implemented the decision procedure with the Simplex-based oracle in a mod-
ified version3 of alt-ergo [4]. Equalities are handled using a rewriting system
that relies on substitutions with integer slack variables [14]. Inequalities are
added to a dictionary associating affine forms with integer interval domains. The
case-split analysis is implemented as a recursive function with non-chronological
backtracking and uses a heuristic that privileges affine forms with smaller inter-
vals. In the current implementation, we do not use a traditional Simplex to cut
down the search space.

In this section, we benchmark our implementation and compare its perfor-
mances with some leading state-of-the-art SMT solvers including mathsat5
v5.1.3 [11], z3 v3.2 [5] and yices2 v2.0-prototype [6]. We could not include
the mistral solver of [7] because it was not possible to obtain it. The test suite
contains 1070 instances taken from the QF-LIA category of SMT-LIB4. This
includes the following families:

– cav-2009: randomly-generated instances used in [7]. Most of them are sat-
isfiable. They are reported very hard for modern SMT solvers,

– slacks: reformulation of cav-2009 instances used in [12] that introduces
slack variables to bound all variables,

3 A prototype is available at http://alt-ergo.lri.fr/ijcar2012/
4 The SMT-LIB library: http://www.smtlib.org

– cut-lemmas: crafted instances encoding the validity of cutting planes in Z,
– prime-cone: crafted instances used in [12] that encode a tight n-dimensional

cone around the point whose coordinates are the first n prime numbers.
– pidgeons (sic): crafted instances encoding the pigeonhole principle. They

are reported hard for any solver not using cutting planes [12],
– pb2010: industrial instances coming from the PB competition (2010),
– miplib2003: instances generated from some optimization problems in [1].

We have selected these families because they are known to be well-suited
for stressing the integer-reasoning part of solvers. Moreover, contrarily to some
other families, they do not require solvers to be especially efficient for other
tasks: preprocessing, if-then-else handling, SAT solving, theory propagation. In
fact, a large part of the QF-LIA benchmark, e.g. nec-smt, does not even require
fast LIA solvers [7].

All measures were obtained on a 64-bit machine with a quad-core Intel Xeon
processor at 3.2 GHz and 24 GB of memory. Provers were given a time limit
of 600 seconds and a memory limit of 2 GB for each test. The results of our
experiments are reported in Figure 2. The first two columns show the families
we considered and the number of their instances. For each prover, we report both
the number of solved instances within the required time for every family and the
time needed for solving them (not counting timeouts). The last rows summarize
the total number of solved instances and the accumulated time for each prover.

smt solvers alt-ergo mathsat5 mathsat5+cfp yices 2 z3

families #inst. solved time solved time solved time solved time solved time

cav-2009 591 590 253 588 4857 589 4544 386 11664 590 5195

slacks 233 233 67 166 3551 155 6545 142 6102 187 9897

cut-lemmas 93 93 216 62 3424 59 2775 92 1892 67 3247

prime-cone 37 37 0.4 37 1 37 2.2 37 2.3 37 14

pidgeons 19 19 2 19 0.16 19 0.16 19 0.01 19 0.28

pb2010 81 23 390 38 743 34 1540 25 8.3 64 1831

miplib2003 16 2 34.7 12 432 12 501 11 145.4 12 241

total 1070 997 963.1 922 13008 905 15907 712 19814 976 20425

total qf-lia5 5882 4410 68003 5597 47635 5524 50481 3220 71324 5597 54503

Fig. 2. Experimental results. Underlined values are for tools that have proved the most
instances. Bolded results are for tools that have proved both the most instances and
the fastest.

Although the first two families were reported very hard for modern SMT
solvers, our approach only requires 320 seconds to solve almost all the instances.
Thus, it significantly outperforms the other solvers’ approaches. This observation

5 The time limit is 180 seconds for the tests of the complete benchmark.

also applies for the third and the fourth families. From the results of the sixth
and the seventh families, we notice that our technique does not perform well on
large difference-logic-like problems compared to mathsat5 and z3’s. We think
this is partly due to our naive implementation of the Simplex algorithm which
computes on dense matrices while sparse matrices would be better suited for
these problems. We plan to implement advanced techniques in the very near
future such as the revised Simplex method [16] to overcome this issue.

The last row of Table 2 shows the results for the whole QF-LIA benchmark.
There are two reasons for the poor results. First, alt-ergo has yet to be tuned
for parts other than the LIA solver. Second, some families, e.g. bofill, contain
large intervals that need splitting, and the decision procedure does not deal
efficiently with them. This will possibly require a combination of our approach
with other established techniques for integers.

6 Conclusion and Future Works

We have presented a new decision procedure for quantifier-free linear integer
arithmetic that combines a model search mechanism with bounds inference.
These bounds are discovered thanks to a Simplex-based oracle that computes
constant positive linear combinations of affine forms. We proved the soundness,
the completeness and the termination of our method and implemented it in the
alt-ergo SMT solver.

Designing efficient decision procedures for QF-LIA has been an active re-
search topic in the SMT community over the last decade. An efficient integration
of the Simplex algorithm in the DPLL(T) framework has been proposed in [8].
This integration rests on a preprocessing step that enables fast backtracking and
efficient theory propagation. The contribution of [7] is seen as a generalization
of branch-and-bound. Using the notion of the defining constraints of a vertex, it
derives additional inequalities that prune higher dimensional subspaces not con-
taining integer solutions. In our setting, the Simplex algorithm is instead used
on auxiliary problems to refine the search space by bounds inference.

The approach described in [10] focuses on combining several existing tech-
niques using heuristics and layering to take advantage of each of them. We
believe that the ideas we described in this paper can naturally be used to en-
hance this combination approach. Yet another different contribution described
in [12] consists in extending the inference rules of the cdcl procedure with lin-
ear arithmetic reasoning. This tight integration naturally takes advantage of the
good cdcl properties: model search, dynamic variable reordering, propagation,
conflicts explanation, and backjumping. The extension of our framework with an
efficient conflict learning mechanism as done in [12] or in [13] for the rationals
would greatly improve our decision procedure.

As reflected by our contribution, the Simplex we use does not directly work
on the initial problem nor on its dual. Therefore, fast incrementality and back-
tracking techniques developed for Simplex-based approaches are not suitable for
our setting. To alleviate this issue, we have used memoization techniques to reuse

previously computed results at the expense of a larger memory footprint. In the
near future, we plan to better integrate with DPLL(T) by extending our method
with a conflict resolution technique, a cleverer case-split analysis, and an effi-
cient theory propagation. We also believe that a combination, à la mathsat,
of state-of-the-art techniques with ours would be beneficial. Furthermore, the
use of advanced data-structures and algorithms such as sparse matrices and the
revised Simplex would greatly enhance our implementation.

References

1. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):361–372, 2006.

2. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1988.

3. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand
in SAT modulo theories. In LPAR ’06, volume 4246 of LNCS, pages 512–526.
Springer-Verlag, November 2006. Phnom Penh, Cambodia.

4. F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout.
The Alt-Ergo Automated Theorem Prover. http://alt-ergo.lri.fr.

5. L. de Moura and N. Bjørner. Z3, an efficient SMT solver. http://research.

microsoft.com/projects/z3.
6. L. de Moura and B. Dutertre. Yices: An SMT Solver. http://yices.csl.sri.com.
7. I. Dillig, T. Dillig, and A. Aiken. Cuts from proofs: A complete and practical

technique for solving linear inequalities over integers. In CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings, volume 5643 of LNCS, pages 233–247.
Springer, 2009.

8. B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In
CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of
LNCS, pages 81–94. Springer, 2006.

9. G. Farkas. Über die theorie der einfachen ungleichungen. Journal für die Reine
und Angewandte Mathematik, 124:1–27, 1902.

10. A. Griggio. A practical approach to satisability modulo linear integer arithmetic.
Journal on Satisfiability, Boolean Modeling and Computation, 8:1–27, 2012.

11. A. Griggio, B. Schaafsma, A. Cimatti, and R. Sebastiani. MathSAT 5: An SMT
Solver for Formal Verification. http://mathsat.fbk.eu//.

12. D. Jovanovic and L. de Moura. Cutting to the chase solving linear integer arith-
metic. In CADE-23, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings,
volume 6803 of LNCS, pages 338–353. Springer, 2011.

13. K. Korovin and A. Voronkov. Solving systems of linear inequalities by bound
propagation. In CADE-23, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings,
volume 6803 of LNCS, pages 369–383. Springer, 2011.

14. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of
View. Springer Publishing Company, Incorporated, 1 edition, 2008.

15. W. Pugh. The Omega test: a fast and practical integer programming algorithm for
dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on Super-
computing, Supercomputing ’91, pages 4–13, New York, NY, USA, 1991. ACM.

16. A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series
in discrete mathematics and optimization. John Wiley & sons, 1998.

