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Abstract— Based on physical laws describing the multi-scale
structure of turbulent flows, this article proposes a regularizer for
fluid motion estimation from an image sequence. Regularization
is achieved by imposing some scale invariance property between
histograms of motion increments computed at different scales.
By reformulating this problem from a Bayesian perspective, an
algorithm is proposed to jointly estimate motion, regularization
hyper-parameters, and to select the most likely physical prior
among a set of models. Hyper-parameter and model inference is
conducted by posterior maximization, obtained by marginalizing
out non-Gaussian motion variables. The Bayesian estimator is
assessed on several image sequences depicting synthetic and
real turbulent fluid flows. Results obtained with the proposed
approach exceed the state of the art results in fluid flow
estimation.

Index Terms— optic flow, turbulence, robust estimation, con-
strained optimization, Bayesian model selection.

I. INTRODUCTION

The inverse modeling of turbulent motion in images is an
important issue in various application areas like meteorology,
oceanography, or turbulence studies and experimental fluid
mechanics. Motion characterization from experimental images
is particularly important since a complete physical theory
is still missing for turbulence phenomenology. Optic flow
techniques estimating dense velocity fields are interesting in
this context since they can describe precisely such complex
and continuous flows. For these dense representations, regular-
ization models are commonly used to remove the motion ambi-
guities and achieve inversion. However, the actual regularizers
proposed in the literature are all insufficient since they impose
in a small spatial neighborhood a prior smoothness which
improperly describes the regularity of turbulent flows [2] [8]
[9] [17] [20] [37]. Moreover, going further and assuming a
set of proper models is given, choosing the most appropriate
one and fixing its hyper-parameters is a tricky problem, which
has only been studied for Gaussian models in the optic flow
literature.

In this paper, we propose a novel motion estimation proce-
dure dedicated to turbulent flows dealing with such limitations.
Our work exploits simultaneously two ideas: i) the definition
of physically-consistent priors for fluid flows relying on scale
invariance properties characterizing turbulent flows; ii) the use
of Bayesian modeling for robust optic flow estimation.

Our approach for the definition of physically-consistent
priors has been driven by the important advances made in the
field of statistical modeling of turbulence since the precursor

work of Kolmogorov in 1941 [21]. Kolmogorov hypothesized,
using exact properties followed by the fundamental Navier-
Stokes equations, that one can expect some universal scaling
properties on the empirical variance of motion increments
at different scales. Although limitations to his universality
assumption are now known, his theory agrees up to a good
degree with observations from experiments and numerical
simulations. Therefore, this point of view of turbulence has
been the starting point of many recent studies [10]. In this
paper, we exploit these results to design a family of physically-
sound priors for our motion estimation problem.

We place the problem of model selection within a Bayesian
framework. Bayesian analysis has been intensively studied in
the past for hyper-parameter estimation and for model selec-
tion [19] [28] [30] [33]. However, in optic flow estimation,
state-of-the-art inference techniques remained very limited.
Indeed, neither proper model selection, nor hyper-parameter
estimation [23] with model deviations from Gaussianity, have
been considered, except in the very recent work on Bayesian
inference for optic flow [12]. Such non-Gaussian models are
nevertheless very common in computer vision, for instance to
cope with observation outliers due to noise or varying lighting
conditions. In this paper, we propose a Bayesian methodology
for the selection of proper models in the context of fluid flow
estimation from image sequences. The proposed inference is a
generalization of preliminary work [13], [14] to non-Gaussian
model of unknown hyper-parameters.

The paper is organized as follows. In section III, we
present the problem of fluid motion estimation from an image
sequence and highlight the paper’s contributions. In section
IV, we introduce the scale invariance properties derived from
the physics of fluids. Then, in section V, we define and solve
a constrained motion estimation problem where the motion
estimate is forced to possess these scale invariance properties.
In section VI, by reformulating the constrained estimation
problem from a Bayesian perspective, we show how we
can achieve model selection and hyper-parameter estimation.
Finally, the experimental evaluation of the Bayesian method
is presented in section VIII.

II. NOTATIONS

Except if otherwise specified, the notational conventions
adopted in this paper are as follows. Italic lowercase indicates
a scalar quantity, as in a; boldface lowercase indicates a vector
quantity, as in a; the kth element of vector a is denoted
a(k); capital boldface letters indicate matrices, as in A; the
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element corresponding to the ith row and jth column of A
is denoted as A(i, j); the trace (resp. determinant) of A
writes trA (resp. detA); R(A) is the range of the columns
of A; we will use the notation Λa to define a diagonal
matrix whose elements are those of vector a; calligraphic
letters, e.g., A, represent the set of values that a variable
or a vector can take on; capital normal letters, as A, denote
random variables. The distribution of a random variable A
evaluated at a is denoted pA(a); when clear from the context,
we will usually use the short-hand notation: pA(a) , p(a).
The gradient and the Laplacian operators are respectively
defined by ∇sA(s′, t′) , [ ∂A

∂s(1) (s′, t′) . . . ∂A
∂s(n) (s′, t′)]T and

by ∆sA(s′, t′) , ∂2A
∂s(1)2 (s′, t′) + . . . + ∂2A

∂s(n)2 (s′, t′). The
symbol ∝ will denote equality up to a multiplicative factor.

III. PROBLEM AND CONTRIBUTIONS

A. Problem formulation

Estimating the motion of a physical system from the ob-
servation of a sequence of images is a well-known problem
in the computer vision community. At the heart of state-of-
the-art motion estimation algorithms is the definition of an
observation and a prior model on the sought velocity field. The
observation model relates the motion of the physical system to
the spatial and temporal variations of the image intensity. The
prior model defines the spatio-temporal constraints that the
motion has to satisfy. In a nutshell, state-of-the-art algorithms
intend to find the motion field as the “best” compromise
between these two models. We provide a formal description
of this approach hereafter.

Let I : (s, t) ∈ S × T → I(s, t) ∈ R be an image intensity
function where S ⊆ R2 (resp. T ⊆ R) is the image spatial
(resp. temporal) domain. Let the motion of the physical system
be defined by a function v : (s, t) ∈ S × T → v(s, t) ∈ R2

which associates a two-dimensional motion vector to every
spatio-temporal position. Many motion estimation algorithms
can be regarded as procedures intending to solve a constrained
optimization problem of the form:

v̂ = arg min
v

f(v, I)

subject to h(v) = 0. (1)

For example, one standard way to relate v(s) to I(s, t) is by
means of the well-known ”Optical Flow Constraint” (OFC),

g(v, I, s, t) =
∂I

∂t
(s, t) +∇Ts I(s, t) v(s, t) = 0, ∀ ∈ S × T

(2)

which is valid under intensity conservation along motion tra-
jectories. Quadratic penalization of OFC discrepancies yields
[17]:

f(v, I) =

∫
T

∫
S
g(v, I, s, t)2ds dt. (3)

For other configurations, many other models have been pro-
posed in the literature to relate the image intensity function
to the sought motion fields [8], [26]. h(v) defines a set of
constraints that have to be satisfied by the sought velocity field.
In the standard computer vision literature, dealing with the

motion analysis of natural scenes, these constraints are usually
chosen to enforce some spatial coherence of the solution, see
e.g., [17], [27]. In the problem considered in this paper, we
have the advantage of a perfect knowledge of the equations
governing the fluid motion, i.e., the Navier-Stokes equations.
Hence, a perfect characterization of the velocity field for
incompressible flows should, in principle, solve a problem of
the form of (1) with the following constraints:{

∇Ts v = 0
∂(ρv)
∂t + (vT∇s)v = − 1

ρ∇sp+ ν∆sv + F (4)

where v denotes here an unknown 3-dimensional velocity field,
p and ρ are scalar variables representing the 3-dimensional
pressure and density fields, F and ν represent an external
force acting on the fluid flow and its cinematic viscosity. Un-
fortunately, this choice of constraints leads to an optimization
problem which is computationally very demanding and often
under-determined since p, ρ, F and the motion component
of v perpendicular to the image plane are usually unknown
[16]. Some recent works propose to alleviate this problem by
using simplified constraints of the Navier-Stokes equations for
global [32] or sequential [15] [35] regularization.

Alternatively, in this paper we propose a novel physically-
sound prior model on the velocity field and derive an efficient
algorithm to solve the corresponding optimization problem.
Let us remark that the proposed prior can in principle be
combined with the former simplified dynamical constraints. In
practice, the estimation of the motion field is performed over
a finite set Sr × Tr of S × T . Hereafter, except if otherwise
specified, we will consider the scenario where the subset Tr
only contains one elements and, accordingly, we will drop
the velocity field temporal index. Moreover, we will assume
that Sr collects the spatial samples on a two-dimensional
cartesian grid. We will then use the notation v to denote the
m-dimensional vector made up of the concatenation of v(s)’s
∀ s ∈ Sr, row by row of the cartesian grid. Hence, in the sequel
we will consider an optimization problem with N constraints
of the form:

v̂ = arg min
v

f(v, I)

subject to hi(v) = 0, i ∈ [1, ..., N ]. (5)

The data term, obtained by discretizing (2) on the grid Sr, has
the following quadratic form:

f(v, I) =‖Av + b‖22 (6)

where A and b represent respectively a rectangle matrix and
a vector depending on the image intensity function I .

B. Overview on the proposed solution

Instead of using the original Navier-Stokes equations de-
scribing a fluid flow trajectory, we will rather rely on a simple
set of constraints {hi(v), i ∈ [1, ..., N ]} which only involve
the instantaneous flow v. These constraints rely on theoretical
and experimental results obtained as the continuation of Kol-
mogorov’s works at the beginning of the 20th century. They
describe some scale invariance properties of turbulent flows.
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We will see in section IV, that these constraints can be defined
in the following quadratic form:

hi(v) = vTAiv − ci, i ∈ [1, ..., N ], (7)

where Ai denotes a semi-positive definite matrix and where
ci ∈ R+ denotes a scalar parameter. In the sequel, we will
consider problem (5) where f(v, I) and h(v) are defined in
(6) and (7). This leads to a particular instance of quadratic
programming under quadratic constraints (QPQC) optimiza-
tion problem. In section V, we will then consider a dual
optimization algorithm to solve this problem. Since constraints
(7) are parametric, we address in section VI-C the problem of
estimating parameters ci, i ∈ [1, ..., N ]. We will deal with
this issue by exploiting tools from Bayesian model selection
theory.

IV. DEFINITION OF PHYSICALLY CONSISTENT
CONSTRAINTS

A. Physical model for structure functions

In turbulence, a quantity of interest is the longitudinal
velocity increment function δv‖ : (`, s, θ) ∈ R+ × S ×
[0, 2π]→ δv‖(`, s, θ) ∈ R, which is given by:

δv‖(`, s, θ) , [v(s + `nθ)− v(s)]
T
nθ, (8)

where the scalar ` represents a spatial scale and where nθ
denotes the unitary vector in the direction θ. The increment
function (8) is thus defined as a velocity difference vector
between two points distant of ` in the direction of vector nθ,
which is then projected onto vector nθ. Let us give an example
to illustrate the definition. We denote the two components of
the discrete velocity field by v = (vT1 ,v

T
2 )T , where each com-

ponent is a m-dimensional vector vi = (vi(1), ..., vi(m))T .
Then, if we consider that an angle θ = 0 corresponds to a
vector nθ=0 collinear to the velocity field component v1, we
have:

δv‖(1, s, 0) = v1(s(1) + 1, s(2))− v1(s) (9)
δv‖(1, s, π/2) = v2(s(1), s(2) + 1)− v2(s). (10)

The spatial average of the velocity increment function raised
to some power p, so-called the pth longitudinal structure
function, is given by:

δv‖(`)p =
1

2π|S|

∫
S

∫
[0,2π]

δv‖(`, s, θ)
pdθds, (11)

where |S| represents the surface of spatial domain S. Since
a finite grid Sr with |Sr| nodes is considered, we need to
approach the spatial integral by a sum over the finite subset
Sr, while the integral with respect to θ can be approximated
by a sum over the finite angular subset Ar ⊂ [0, 2π] of |Ar|
elements:

δv‖(`)p ≈
1

|Ar||Sr|
∑
s∈Sr

∑
θ∈Ar

|δv‖(`, s, θ)|p. (12)

For the particular case p=2, the longitudinal structure func-
tion is proportional to the two-point cross-correlation function
of the velocity, and therefore related (through the convolution
theorem) with the power spectrum of the velocity field. Both

the structure functions and the power spectrum are often used
in experimental and numerical studies to quantify scaling
properties of turbulent flows. Moreover, in fluid mechanics,
several exact relations for the third-order longitudinal struc-
ture function (p = 3) have been demonstrated for turbulent
flows [31]. In particular, for three-dimensional isotropic and
homogeneous flows, Kolmogorov [21] demonstrated from the
Navier-Stokes equations that the third-order moment is linear
with respect to scale, i.e., δv‖(`)3 ∝ `. This linear relation
theoretically arises in the so-called inertial scale range of the
flow, that is to say from the smallest scale of turbulence,
also known as Kolmogorov scale, to the scale of the energy-
containing vortices of the flow. Analogously, for bidimensional
turbulence, Kraichnan [22] showed that there exists at small
scales a phenomenology implying that δv‖(`)3 ∝ `3. More
generally, for any turbulent flow, the pth-order structure func-
tion can be described in some scale range I ⊂ R+, so-called
inertial range, by a power-law:

δv‖(`)p = γp`
ζp , ` ∈ I, (13)

where γp and ζp denote the prefactor and the exponent of the
power-law.

B. Constraints definition

We now propose constraints for the motion estimation prob-
lem (5), derived from (13). We choose to consider the second-
order structure function δv‖(`)2, i.e., our set of constraints will
be derived from the relation:

δv‖(`)2 − γ2`
ζ2 = 0, ` ∈ I, (14)

for ` sufficiently small. In practice, only a finite number of
longitudinal velocity increments can be computed from v since
the latter vector collects the values of the velocity field v(s)
on a discrete spatial grid Sr. It can then easily be observed
that (14) can be rewritten in the following matrix form:

vTDT
` D`v − γ2`

ζ2 = 0, ` ∈ I, (15)

for some ` compatible with the considered spatial grid. For
example, in the case of ` = 1, a 2 × 2 spatial grid Sr and
periodic boundary conditions, using the subset Ar = {0, π2 },
i.e., motion increments defined in (9)-(10), we obtain:

δv‖(1)2 − γ21ζ2 ≈ 1

|Ar||Sr|
∑
Sr

∑
θ∈Ar

|δv‖(1, s, θ)|2 (16)

=vTDT
1 D1v − γ2 (17)

with

D1 =
1√
8


−1 1 0 0
0 −1 1 0 0
0 0 −1 1
1 0 0 −1

−1 0 1 0
0 −1 0 1

0 1 0 −1 0
0 1 0 −1

.
For experimental evaluation, in section VIII, we will choose
the following discretization subsets: Ar = {−π,−π2 , 0,

π
2 } for

` ∈ N+ ∩ I and Ar = {− 3π
4 ,−

π
4 ,

π
4 ,

3π
4 } for ` ∈

√
2N+ ∩ I.

Obviously, choosing larger subsets Sr and Ar would result in
more accurate approximations of integral (11).
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Before concluding this section, let us point out that parame-
ters γ2, ζ2 are usually unknown. In practice, these parameters
should therefore be estimated. We will however postpone this
problem to section VI-C. In the next section, we will assume
that γ2, ζ2 are perfectly known and will address the problem
of motion estimation under constraints (15).

V. FLUID FLOW ESTIMATION UNDER PHYSICAL
CONSTRAINTS

A. A dual approach for constrained motion estimation
In this section, we address the constrained motion estimation

problem:
v? = arg min

v
f(v, I) (18)

subject to vTDT
` D`v − γ2`

ζ2 = 0, ∀` ∈ I,

where I denotes the set of constrained scales. In this section,
we will particularize our development to the case of a quadratic
objective function, i.e.,

f(v, I) = ‖Av + b‖22. (19)

Problem (18) thus belong to the general family of QPQC
optimization problems. The extension to the more general case
where f(v, I) has the structure of an “M-estimator” will be
discussed in section V-B.

We consider a dual optimization algorithm, where the
solution of (18) is searched as the minimum of a Lagrangian
function:
L(v,λ) = ‖Av + b‖22 +

∑
`

λ`
(
vTDT

` D`v − γ2`
ζ2
)
.

The equivalence between the points minimizing the La-
grangian, i.e.,

v̂λ = arg min
v

L(v,λ), (20)

and the solution of (18) is not straightforward and requires
additional conditions [5]. In particular, v̂λ? is a solution of
(18) if

v̂Tλ?DT
` D`v̂λ? − γ2`

ζ2 = 0, ∀` ∈ I, (21)
λ? = arg max

λ∈D
q(λ), (22)

where q(λ) , infv L(v,λ) is the dual function of (18) and
D , {λ|q(λ) > −∞} is its domain.

The optimization procedure considered in this paper is then
as follows:

1) Compute λ? as the solution of (22),
2) Evaluate v̂λ? from (20),
3) Check that v̂λ? satisfies conditions (21).

We discuss hereafter each step of the procedure:

1) Resolution of the dual problem (22): The dual function
q(λ) is concave and its domain is convex [5]. Moreover, it can
readily be shown that q(λ) is differentiable in the interior of
its domain. We can thus access the global maximum of q(λ)
with a gradient ascent method1:

λ(n+1) = λ(n) + α(n)∇λq(λ
(n)), (23)

1When λ(n) is a boundary point of D, the subgradient of q(λ) should in
principle be considered. However, we avoid such details hereafter for the sake
of keeping the discussion as simple as possible.

where α(n) is a “properly-chosen” step factor and the compo-
nents of the gradient write

∂q(λ)

∂λ`
= −v̂TλDT

` D`v̂λ + γ2`
ζ2 . (24)

Note that a global maximizer of q(λ) may not exist, i.e.,
there may be no λ? such that

q(λ?) = sup
λ
q(λ). (25)

This scenario may for example occur when D is an open
or unbounded set2. We have therefore to distinguish between
several cases.

If a global maximizer λ? exists and is an interior point of
D, the (unique) fixed point of the gradient-ascent procedure
corresponds to the global maximizer λ? and satisfies

∇λq(λ
?) = 0. (26)

If λ? exists but is not an interior point of D, a gradient
procedure can still access the maximum but the latter does
not necessarily satisfy (26).

Finally, if a global maximizer does not exist, the dual
optimization procedure (20) fails in solving problem (18)
since (22) can not be satisfied. We can however find an
approximation of the solution. To do so, we proceed exactly
in the same way as if a global maximizer exists but return
instead the value of λ(n) achieved when ∇λq(λ

(n)) drops
below a given threshold. With a slight abuse of notation, we
also denote the latter value as λ? in the sequel. We will discuss
the quality of the resulting approximation below.

Note that resorting to an approximation of the global
maximizer does not lead to any particular problem for the
rest of the optimization procedure. In particular, as will be
shown shortly, a solution to (20) exists for any λ(n) provided
that λ(0) ∈ D.

2) Resolution of the dual problem (20): First, let us em-
phasize that any feasible λ (i.e., λ ∈ D) has to satisfy{

ATA +
∑
` λ`D

T
` D` � 0,

Ab ∈ R(ATA +
∑
` λ`D

T
` D`),

(27)

where � denotes the fact the matrix is semi-positive definite.
Indeed, if (27) does not hold for some λ, it can be seen that

q(λ) , inf
v
L(v,λ) = −∞, (28)

so that λ /∈ D.
From this observation, it follows that ∀λ ∈ D, problem (20)

has an analytic solution, namely:

v̂λ = −

(
ATA +

∑
`

λ`D
T
` D`

)†
Ab, (29)

where † denotes the Moore-Penrose pseudo inverse of the
matrix.

Coming back to the gradient procedure (23), we can note
that, if λ(0) ∈ D, then λ(n) ∈ D ∀n since the gradient
algorithm (23) can only increase the value of q(λ) throughout

2It is however not possible to predict the existence of a solution for general
QPCP optimization problems.
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the iterations. The solution of (20) is therefore well-defined
for any value of λ generated by the gradient algorithm (23).

3) Constraint satisfaction (21): Let us first consider the
case where a global maximizer of q(λ) exists and is an interior
point of D. Then, the unique fixed point of the gradient
algorithm must satisfy (26). Hence, taking the expression of
the gradient elements (24) into account, we have that (21) is
necessarily satisfied.

In the general case (i.e., if a global maximizer of q(λ) does
not exist or is not an interior point), vλ? is not necessarily
ensured to satisfy constraints (21). If needed, it is possible to
compute a feasible solution and assess its quality as follows.
We first project vλ? onto the set of feasible points and obtain
a feasible solution v⊥λ? . We then obtain the following bounds
on the optimal solution f(v?),

f(v⊥λ?)
(a)

≥ f(v?)
(b)

≥ sup
λ
q(λ)

(c)

≥ q(λ?), (30)

by using the following observations:

(a) follows from the fact that v? is a global minimizer of f
over all feasible points,

(b) is a consequence of the Weak Duality Theorem [5],
(c) follows from the definition of the supremum.

The left-hand (resp. right-hand) side of (30) provides an upper
(resp. lower) bound on the value of f(v?). In other words,
knowing v⊥λ? and λ?, we can derive an objective measure of
the quality of the proposed solution. Note, in particular, that if
λ? is an interior point of D, all the inequalities in (30) become
equalities.

B. Extension to “M-estimators”

We now extend the procedure described in section V-A to
the case where the objective function f is an “M-estimator”:

f(v, I) = ρ(Av + b). (31)

This type of function is broadly used in the computer vision
literature and enjoys several desirable properties. In particular,
it can be shown [11] that any M-estimator ρ can be expressed
as the solution of a convex optimization problem, i.e.,

ρ(y) = min
z

yTΛzy + ψ(z), (32)

where ψ(z) is the Fenchel-Legendre dual function of ρ.
Thus, problem (18) can be rewritten as

(v?, z?) = arg min
v,z

{
(Av + b)TΛz(Av + b) + ψ(z)

}
(33)

subject to vTDT
` D`v − γ2`

ζ2 = 0, ∀` ∈ I,

and a block-coordinate minimization procedure can be used to
access to the solution, i.e.,

z(n+1) = arg min
z

{
(Av(n) + b)TΛz(Av(n) + b) + ψ(z)

}
(34)

v(n+1) = arg min
v

{
(Av + b)TΛz(n)(Av + b)

}
(35)

subject to vTDT
` D`v − γ2`

ζ2 = 0, ∀` ∈ I,

Problem (34) has the following analytic solution [11]

From an initial point z(i=0), iterate until convergence:
• Reach the fixed point λ? solution of (22) by gradient ascent; i.e.,

from an intitial point λ(n=0) ∈ D, iterate until convergence:

– gradient computation (24) with v
(i)

λ(n) given by (29) at z(i)

– gradient ascent step (23): λ(n+1) = λ(n) + α(n)∇λq(λ
(n))

• Compute v
(i)
λ? using (29)

• Compute z(i+1) using v
(i)
λ? in (36)

TABLE I
FLOW CHART OF THE OPTIMIZATION ALGORITHM

z(n+1) =
1

2
Λ−1
Av(n)+b

∇ρ(Av(n) + b), (36)

which is typically easy to evaluate. Problem (35) is a quadratic
optimization problem with quadratic equality constraints.
Hence, a solution can be searched by applying the procedure
described in section V-A.

A flow chart of the overall optimization procedure is sum-
marized in Table I

VI. A BAYESIAN FRAMEWORK FOR SELECTING PHYSICAL
CONSTRAINTS

In this section, we address the problem of estimating the
parameters γ2, ζ2 of model (14). Estimation will be addressed
by exploiting Bayesian model selection theory.

A. Bayesian estimation theory

Let us first recall the basics of Bayesian estimation theory
[33]. The latter provides nice answers to the general prob-
lematic of inference of the value of some vector θ0 from
some observations b, which may be noisy and incomplete. To
that aim, this theory makes the fundamental assumption that
the observations, but also the unknown parameter θ0, have
a probabilistic nature, i.e., are described by inter-dependent
random variables. The Bayesian approach then builds an
estimator exploiting the knowledge of the conditional law
p(θ0|b), so-called a posteriori probability distribution. The
estimator noted θ̂0 is designed according to the optimization
of some criteria. Common Bayesian estimators are for example
the conditional-mean estimator: θ̂0 =

∫
θ0 p(θ0|b)dθ0; or

the well-known Maximum A Posteriori (MAP) estimator:
θ̂0 = arg max

θ0

p(θ0|b). However, in practice, the observations

b rarely only depend on θ0 but often also on a set of other
variables {θ1,θ2, ...}. Let us restrict ourselves to the set of
extra variables {θ1,θ2}. By making analogous assumptions
on their probabilistic nature, it is possible to design the joint
posterior probability distribution p(θ0,θ1,θ2|b). Thus, the
construction of the posterior p(θ0|b) now requires to integrate
the joint probability over θ1 and θ2:

p(θ0|b) =

∫ ∫
p(θ0,θ1,θ2|b)dθ1 dθ2. (37)

The random variables θ1 and θ2 often live in high dimensional
spaces. Consequently, the computation of the latter integral
may be quite cumbersome. Trackable alternatives consist in
relying on:

1) the joint MAP solution of the problem:

arg max
θ0,θ1,θ2

p(θ0,θ1,θ2|b), (38)
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2) the evidence framework [28] which solves the following
maximization problem:

arg max
θ0

p(θ0|θmap
1 ,θmap

2 ,b), (39)

where θmap
1 = arg max

θ1

p(θ1|θmap
2 ,b)

θmap
2 = arg max

θ2

p(θ2|b).
(40)

It is well known that the joint MAP criterion (38) yields an
estimate of θ0 overfitting the observations [33]. The evidence
framework usually provides a better approximation of the
marginalized MAP estimate of θ0, i.e., the maximizer of (37).
In particular, for Gaussian variables, solving (39) provides the
exact marginalized MAP estimate [33]. However, the two max-
imization problems in (40) may remain potentially difficult due
to high-dimensional non-Gaussian integrals. Nevertheless, as
we shall see, there exist trackable algorithms yielding relevant
approximated solutions for the evidence framework. Thus, in
the following, we will stick to this estimation framework.

B. Probabilistic model and inference problem

Now, coming back to our specific problem, we consider a
joint probability distribution on the following random vari-
ables: image observations b, the motion field variable v and
parameters z, β, γ2 and ζ2. The purpose of the introduction
of a new parameter β will be clarified latter. We propose to
use the evidence framework (39) in order to solve a problem
of the form:

arg max
v,z

p(v, z|βmap, γmap
2 , ζmap

2 ,b), (41)

where βmap, γmap
2 and ζmap

2 are the marginalized MAP esti-
mates given by:

βmap = arg max
β

∫∫
p(v, z, β|γmap

2 , ζmap
2 ,b)dvdz,

(42)

(γmap
2 , ζmap

2 ) = arg max
γ2,ζ2

∫∫∫
p(v, z, β, γ2, ζ2|b)dvdzdβ.

(43)

Clearly, system (41)-(43) corresponds to the evidence frame-
work defined in (39)-(40) with θ0 = {v, z}, θ1 = {β} and
θ2 = {γ2, ζ2}. The practical implementation (41)-(43) re-
quires the definition of an explicit joint probability distribution.
To this aim, we propose the following factorization:

p(b,v, z, β, γ2, ζ2) = p(b|v, z, β)p(v|γ2, ζ2)p(z|β)p(γ2, ζ2, β)
(44)

and we define the following probabilistic models:

p(b|z,v, β) ∝ exp

{
− (b + Av)TΛz(b + Av)

2β−1

}
, (45)

p(z|β) ∝ exp

{
− ψ(z)

2β−1

}√
det(βΛz)−1, (46)

p(v|γ2, ζ2) ∝ exp

{
−vTΓ(γ2, ζ2)−1 v

2

}
, (47)

p(β, γ2, ζ2) = p(β)p(γ2)p(ζ2). (48)

In order to obtain factorization (44), we have exploited obvious
conditional independences: p(b|v, z, β) = p(b|v, z, β, γ2, ζ2),
p(v|γ2, ζ2) = p(v|z, β, γ2, ζ2) and p(z|β) = p(z|β, γ2, ζ2).
We consider non-informative probability distributions for
p(β), p(γ2) and p(ζ2) in (48). Models (45) and (47) are Gaus-
sian, with β denoting a positive parameter and the covariance
matrix:

Γ(γ2, ζ2) , (β
∑
`

λ?` (γ2, ζ2)DT
` D`)

−1, (49)

where λ?` (γ2, ζ2) denotes the solution of (22) when the value
of the parameters appearing in the constraints in (18) are equal
to γ2, ζ2. To alleviate notations, we will omit in the following
the dependence of the covariance to γ2, ζ2. Now, we need
to clarify the choice of models (44)-(48). To this aim, let us
emphasize the equivalence between the dual formulation (20)
of optimization problem (18) and the MAP problem (41). We
consider the general case, where the cost function f is an M-
estimator. The Lagrangian function corresponding to (33) then
writes:

L(v, z,λ?) =(Av + b)TΛz(Av + b) + ψ(z)

+
∑
`

λ?` (v
TDT

` D`v − γ2`
ζ2). (50)

Then, using the probabilistic models (45)-(47), it is easy to
see (by direct substitution) that

(v̂λ? , ẑλ?) , arg min
v,z

L(v, z,λ?), (51)

= arg max
v,z

log p(b,v, z|β, γ2, ζ2). (52)

Hence, relying on model (45)-(47), we obtain that the solution
of the Lagrangian optimization problem (51) and of problem
(52), i.e., of the MAP estimation problem (41), are identical.
The MAP estimation problem is conditioned by the parameters
β, γ2, ζ2. Note however that the variable β does not affect
the equivalence between (51) and (52) since it represents a
multiplicative constant. Therefore, the problem of estimating
(v̂λ? , ẑλ?) does not depend on β. However, we will see in the
following that this variable is important for model selection.

C. Estimation method
Considering the MAP interpretation of the Lagrangian op-

timization problem, we now propose to infer γ2 and ζ2 by
solving the marginalized MAP problem (43). Nevertheless, we
avoid the complex calculation of the non-Gaussian integral
with respect to z by substituting (43) with the following
problem:

(γmap
2 , ζmap

2 ) = arg max
γ2,ζ2

log p(γ2, ζ2|ẑλ? ,b) (53)

conditioned from (36) by:

ẑλ? ,
1

2
Λ−1
Av̂λ?+b∇ρ(Av̂λ? + b). (54)

The probability to be maximized in (53) is defined through
two successive marginalizations of the joint distribution:

p(γ2, ζ2|ẑλ? ,b),
∫
p(β, γ2, ζ2|ẑλ? ,b)dβ, (55)

p(β, γ2, ζ2|ẑλ? ,b) ,
∫
p(β, γ2, ζ2,v|ẑλ? ,b)dv. (56)
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One can provide an exact analytical expression of the integral
(56) over v since the integrand is a m-dimensional Gaussian.
The Laplace’s method yields an approximation to the mono-
dimensional integral (55) over variable β. The Laplace’s
method approximates the integral of a function by fitting a
Gaussian at its maximum and computing the volume under
the Gaussian. For a uni-dimensional variable x and a function
f(x), the Laplace’s approximation reads:∫

f(x)dx ' f(x̂)
√

2π

(
− ∂2

∂x2
log f(x)

)−1/2

|x̂
, (57)

where x̂ = arg maxx f(x). Hence, in order to evaluate (55)
we consider the marginal approximation:

p(γ2, ζ2|ẑλ? ,b) =

∫
p(b|ẑλ? , β, γ2, ζ2) p(β, γ2, ζ2) dβ,

' p(b|ẑλ? , β̂λ? , γ2, ζ2)
√

2πσβ(β̂λ?)p(β̂λ? , γ2, ζ2), (58)

where

β̂λ? = arg max
β

log p(b|ẑλ? , β, γ2, ζ2). (59)

σβ(β̂λ?) =

(
− ∂2

∂β2
log p(b|ẑλ? , β, γ2, ζ2)

)−1/2

|β̂λ?

(60)

Note that, contrarily to problem (52), estimate β̂λ? is no longer
a multiplicative constant and appears in the evaluation of the
marginal probabilities.

In summary, in order to solve problem (53), we search the
element of a finite set Υ ⊂ R2 of parameters (γ2, ζ2) maxi-
mizing model probability p(γ2, ζ2|ẑλ? ,b), using the following
procedure:

(γmap
2 , ζmap

2 ) = arg max
(γ2,ζ2)∈Υ

log p(b|ẑλ? , γ2, ζ2)p(γ2, ζ2) (61)

where, in order to evaluate p(b|ẑλ? , γ2, ζ2) for some
(γ2, ζ2) ∈ Υ, we solve:

(v̂λ? , ẑλ?) = arg max
v,z

log p(b,v, z|β, γ2, ζ2), (62)

β̂λ? = arg max
β

log p(b|ẑλ? , β, γ2, ζ2). (63)

We detail hereafter the strategy we considered to implement
each step of the proposed algorithm:

1) Robust constraint motion estimation (62): Given some
power-law parameters (γ2, ζ2), the problem is equivalent to
the constraint optic flow estimation problem (18) discussed
and solved in section V. It can be solved by the proposed
dual optimization algorithm, which uses iterative conditional
maximizations to estimate (v̂λ, ẑλ), and a gradient algorithm
to converge towards λ? related to (γ2, ζ2).

2) Parameter estimation (63): Given the power-law pa-
rameters (γ2, ζ2), the estimate β̂λ? is obtained by canceling
out the gradient of the marginalized logarithm likelihood
log p(b|ẑλ? , β, γ2, ζ2). Let 〈·〉 to denote the expectation with
respect to p(v|b, ẑλ? , β, γ2, ζ2). By noticing that:

∇β log p(b|ẑλ? , β, γ2, ζ2) = ∇β〈log p(b,v|ẑλ? , β, γ2, ζ2)〉∫
p(v|b, ẑλ? , β, γ2, ζ2)∇β log p(b,v|ẑλ? , β, γ2, ζ2)dv

(64)

and using the definition of the joint distribution in (45)-
(47), the gradient of the marginalized log likelihood can be
efficiently computed as:

∇β log p(b|ẑλ? , β, γ2, ζ2) =

1

2

〈
β−1|Sr| − (b−Av)TΛẑλ? (b−Av)

〉
. (65)

Then, after some manipulation of (65) described in Appendix
I, one can show that the gradient vanishes for:

β̂λ? =
|Sr| − tr(

(
ATΛẑλ? A +

∑
` λ

?
`D

T
` D`

)−1
ATΛẑλ? A)

(b−Av̂λ?)TΛẑλ? (b−Av̂λ?)
.

(66)

β̂λ? is the unique global maximum since it can be shown
that the function log p(b|ẑλ? , β, γ2, ζ2) is concave. The
computation of (66) only requires tractable linear operations
and the MAP estimates (v̂λ? , ẑλ?), which are the solutions
of (62). Details are given in section VII.

3) Prior model inference (61): The decision on the
prior model parameter (γ2, ζ2) is made by maximizing
log p(b|ẑλ? , γ2, ζ2). Since we assume that (γ2, ζ2) takes its
values in a finite set Υ, solving (61) only requires the evalua-
tion of log p(b|ẑλ? , γ2, ζ2) for these values. Since p(γ2) and
p(ζ2) are assumed to be non-informative priors, the logarithm
of the Laplace approximation of this probability (58) reads:

log p(b|ẑλ? , γ2, ζ2) ∝ log σβ(β̂λ?)+log p(b|ẑλ? , β̂λ? , γ2, ζ2),
(67)

where, after some calculations detailed in appendix II, the
logarithm of the marginalized likelihood can be rewritten as:

log p(b|ẑλ? , β̂λ? , γ2, ζ2) =
1

2
log det

(∑
`

λ?`D
T
` D`

)
1

2
log det β̂λ?Λẑλ? −

1

2
(b−Av̂λ?)T β̂λ?Λẑλ? (b−Av̂λ?)

− 1

2
log det

(
ATΛẑλ? A +

∑
`

λ?`D
T
` D`

)
,

and the logarithm of its Hessian evaluated at β̂λ? can be
expressed as:

log σβ(β̂λ?) =
1

2
log

(
2β̂λ?

(b−Av̂λ?)TΛẑλ? (b−Av̂λ?)

)
.

(68)

VII. ALGORITHM COMPLEXITY

The flow chart of the algorithm for the selection of the
power-law prior and the estimation of the instantaneous ve-
locity field from an image couple is presented in Table II.

Let κ denote the conditioning number of the posterior
Hessian matrices, which have been preconditioned by an
incomplete LU decomposition. The complexity of the overall
algorithm presented in Table II is of O(κm), where we recall
that m denotes the dimension of the motion vector.

More precisely, the complexity of two computation steps
dominates the algorithm. First, the complexity of calculating
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• For all power-laws (γ2, ζ2) ∈ Υ:
– Compute MAP estimate (v̂λ? , ẑλ? ) using algorithm of Table I
– Access β̂λ? with (66)
– Evaluate the probability p(b|ẑλ? , γ2, ζ2) of the power-law

(γ2, ζ2) with (67)
• Find among the elements of Υ the MAP estimate (γ

map
2 , ζ

map
2 )

satisfying (61)

TABLE II
FLOW CHART OF THE OVERALL ESTIMATION ALGORITHM

(29), i.e. solving a linear system using for instance a con-
jugate gradient squared (CGS) algorithm, is of O(κm). The
additional use of the incomplete LU preconditioner enables: 1)
to lower the conditioning number κ and therefore to reduce the
complexity of (29), 2) to access with a negligeable complexity
to the determinants appearing in (67). Indeed the determinant
is given by the product of the diagonal elements uii of the
upper triangular matrix U:

det(LU) =
∏
i

uii, (69)

where the incomplete LU decomposition is performed on the
posterior and prior Hessian matrix. Second, a straightforward
calculation of the trace appearing in (66) can be very demand-
ing. Instead, we rely on a trace randomization technique [36]
which is efficiently achieved using the CGS algorithm. Details
are given in Appendix I. The method complexity for the
calculation of the trace is also O(κm)

VIII. EXPERIMENTAL EVALUATION

A. Simulated 2D turbulence

The Bayesian method is first assessed on a synthetic image
sequence database of numerically generated 2D homogeneous,
isotropic and incompressible turbulent flow fields [7]. This
database has proven its relevance in previous studies in the
field of fluid flow estimation [13], [15], [32], [37]. It relies
on a Direct Numerical Simulation (DNS) of Navier-Stokes
equations at Reynolds number Re = 3000. The output of this
simulation is then used to compute the Lagrangian trajectories
of particle tracers transported by the flow or, in the case of
scalar images, to solve an advection-diffusion equation. The
latter equation reads:

∂I

∂t
(s, t) +∇Ts I(s, t) v(s) = κ∆sI(s, t), ∀s ∈ Sr,∀ t ∈ Tr,

(70)

where κ ∈ R+ denotes a diffusion coefficient. Motion and
scalar transport equations are solved in Fourier space using
dealiased Fourier expansions in two directions with periodic
boundary conditions. In order to sustain turbulence, the flow
was stirred by an external random force in Fourier space acting
at low wavenumbers. The time integration is done using a
third-order Runge-Kutta scheme. The simulation resulted in
two synthetic sequences of 100 images of 256 × 256 pixels
depicting scalar or particles, together with the true underlying
motion fields. A precise description of the simulation can be
found in [7]. Fig. 1 presents three samples of the synthetic
scalar or particle image sequences and a color representation
of the underlying velocity fields. In these visualizations color

Synthetic data set:

Motion estimates:

t = 30∆t t = 60∆t t = 90∆t

Fig. 1. 2D turbulence: synthetic data set and motion estimates. From top
to bottom at time t = 30∆t (left), t = 60∆t (middle) and t = 90∆t (right):
simulated velocity fields visualized using the color system of [1], scalar and
particle images, motion estimates in the case of scalar and particle images .

and intensity code vector orientations and magnitudes [1].
In the case of scalar images (resp. particle images), the
observation model was the advection-diffusion equation (70)
(resp. the optic flow constraint equation (2)) penalized by
the robust M-estimators approaching the L1 norm (see e.g.,
[18]). A multi-resolution approach was used to cope with
large displacements [3]. We chose to perform model inference
relying on motion field increment estimated at the last level
of this pyramidal approach.

The inference of the prior power-law model (γmap
2 , ζmap

2 ) is
performed for the two experiences, in the scale range of 1 to
4 pixels and at the arbitrary chosen time of t = 20∆t. Fig. 6
shows, for both experiments, the shape (up to an irrelevant
constant) of the a posteriori probability distribution of the
power-law model with respect to its parameters (γ2, ζ2), that
is p(γ2, ζ2|b, ẑλ?). The global maximum of the probability is



9

 0.01

 0.1

 1

 1  10  100

st
ru

ct
ur

e 
fu

nc
tio

n

scale (pixel)

 0.01

 0.1

 1

 1  10  100

st
ru

ct
ur

e 
fu

nc
tio

n

scale (pixel)
Fig. 2. 2D turbulence: second order structure function estimation δv‖(`)2
at t=20∆t. Above: inferred power-law model (straight line), true (continuous
curves) and estimated (stars and crosses) structure function in horizontal-
vertical and diagonal direction for particle images. Below: identical legend
for scalar imagery.

located for both the cases of scalar or particle imagery, at the
coordinates (γmap

2 , ζmap
2 ) =(2.5e-3,1.9). It is important to note

that, as shown in Fig. 6, these coordinates also correspond to
an “optimal” choice of parameters in the sense of the minimum
of MBA error. Moreover, we can observe in Fig. 2 that
the inferred power-law describes perfectly the true structure
function computed with the ground truth motion field. Finally,
the inferred scaling exponent is consistent with the theoretical
value of 2 predicted for 2D turbulence in the inertial or
dissipative range [22].

Assuming constant second order statistics along time, the
selected power-law model (γmap

2 , ζmap
2 ) is used to process the

entire image sequence. The evolutions of the resulting mean
barron angular (MBA) error and root mean square (RMS)
error are plotted in Fig. 7 and compared to recent state of
the art approaches3. Note that MBA and RMS errors were
computed with divergence-free motion components obtained
by Helmoltz decomposition [20]. Indeed, this decomposition
was used here since a subset of state-of-the-art methods
code implicitly an additional divergence-free constraint [20]
[37], leading possibly to a bias in the regularization scheme
evaluation.

The proposed estimation method reaches the level of the
best state-of-the-art algorithms in the case of the particle image
sequence, while for scalar imagery it outperforms them all. In

3Let us mention that, for consistency of the evaluation, we have compared
the proposed method to algorithms implying neither temporal regularization
schemes (see e.g., [15] [35] [32]) nor specific configurations of fluid flows
(see e.g., [34] for the particular case of stokes flows). Note that, if necessary,
the proposed Bayesian method could in principle be extended without any
major difficulties to include an additional temporal regularization term.

particular, although second order regularizations [37] [20] or
higher-order regularization schemes [9] yield some improve-
ments in comparison to standard first order regularization [17],
there is a significant gap in accuracy with the proposed method
in the case of scalar imagery. This gap is due to the weak
spatial gradients of scalar images (i.e., poorly conditioned
data terms), which make crucial the information brought by
an appropriate prior. For particle imagery, the data term is
better conditioned and penalization of high-order derivatives
is sufficient to obtain relevant turbulent flow approximations.
Let us also mention that classical correlation-based techniques
or the adaptive correlation method proposed by [2] perform
reasonably well in the case of particle images, while such
local schemes usually fail in the case of scalar imagery.

B. Plane components of simulated 3D turbulence
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Fig. 3. 3D turbulence: second order structure function estimation δv‖(`)2.
Above: inferred power-law model (straight line), true (continuous curves)
and estimated (stars and crosses) structure function in horizontal-vertical and
diagonal direction for particle images. Below: identical legend for scalar
imagery.

The method is then evaluated on two synthetic image
couples obtained by deformation of instances of the scalar
and particle image sequences presented in the last section. The
velocity field used for deformation is the plane components of
3D motion fields computed by numerical simulation of 3D
homogeneous, isotropic and incompressible turbulence [29]
at Reynolds number Re = 667. On the contrary to the
incompressible 2D case, the apparent motion field is here
characterized by divergence-free and irrotational components
of comparable magnitude. Fig. 8 presents the scalar or particle
synthetic image couples and a color representation of the
underlying velocity field. For both the scalar and particle cases,
the data model used in these experiments is the optic flow
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constraint equation (2) penalized by the robust M-estimators
approaching the L1 norm (see e.g., [18]). A multi-resolution
approach is also used to cope with large displacements [3].

The inference of the prior power-law model (γmap
2 , ζmap

2 )
is performed for the two experiences, in the scale range
of 1 to 4 pixels. Fig. 9 depicts, for both experiments, the
shape of the a posteriori probability distribution of the power-
law model parameters (γ2, ζ2). The global maximum of the
probability is located for the case of particle imagery at
(γmap

2 , ζmap
2 ) =(1.5e-3,2.0) and for the case of scalar imagery

at (γmap
2 , ζmap

2 ) =(1.5e-3,1.9). It is important to note that, as
shown in this figure, these coordinates also correspond to a
nearly “optimal” choice of parameters in the sense of the
minimum of MBA error for both experiments. Moreover, we
can observe in Fig. 3 that the inferred power-law describes
almost perfectly the true structure function computed with the
ground truth motion field.

A comparison with recent state of the art approaches in
terms of MBA and RMS errors is given in the table of Fig. 10.
The proposed estimation method reaches the level of the best
state of the art algorithms in the scalar case or outperforms
them in the case of particle images. Let us mention that,
conversely to the case of 2D incompressible turbulence, the
adaptive correlation method of [2] performs relatively well in
the case of particle images.

C. Experimental 3D turbulence

The Bayesian approach is also assessed on a real image
sequence recorded in a wind tunnel4 by particle image ve-
locimetry. This image sequence shows three-dimensional ho-
mogeneous and isotropic turbulent motion at Reynolds number
Re = 2300 in the wake of a biplane grid (see [24]). The size
of images is 512× 512 pixels corresponding to 34× 34mm2.
A spatial subset of an image couple is depicted in Fig. 4. A
tiny time delay between frames was chosen in order to limit
the loss of particles due to the “out of plane” component.

The data model used in these experiments was the OFC
equation (2) penalized by the robust M-estimators approaching
the L1 norm (see e.g., [18]). The inference of the power-law
parameters (γmap

2 , ζmap
2 ) was performed on an image couple

of the sequence in the scale range of 1 to 4 pixels. The
global maximum of the model probability is located near
the coordinates (γmap

2 , ζmap
2 ) =(1e-3,2.0). The inferred scaling

exponent seems to be consistent with physics: the scales of
the power-law mainly belongs to the dissipative range which
is known to be ruled theoretically by the exponent γ2 = 2.0.
Indeed, the dissipative scales was estimated below 3.3 pixels
with hot wire anemometry measurements.

The selected prior power-law yielded highly structured
motion fields as shown in the zoom in Fig. 4. The strength of
multi-scale regularization is particularly striking in this case:
tiny turbulent structures are revealed. Some vortex structures
are smaller than 10 pixels diameter. It can be noted that for this
flow with energy level sustained across the small scales, classi-
cal optical flow methods and correlation approaches estimated
only inaccurate vector fields. At larger scales, differences are

4Irstea research institute, center of Rennes, France

Fig. 4. 3D experimental turbulence. From top to bottom, spatial subset of the
two input images, estimated velocity in color representation and divergence-
free component obtained by a Helmoltz decomposition [20] for the proposed
method, divergence-free component given by a first-order regularizer [6]
(below). The inferred power-laws parameters are (γ

map
2 , ζ

map
2 ) =(1e-3,2.0).

less prominent and the proposed regularization seems coherent
with a first-order scheme [6].

D. Atmospheric turbulence

We finally test the proposed modeling on a satellite image
sequence. The analysis was done using METEOSAT Second
Generation meteorological images acquired above the north
Atlantic Ocean at a rate of an image every 15 min. The spatial
resolution is 3× 3 km2 at the center of the Earth image disk.
Following the methodology in [15], a set of sparse pressure
difference images of 256 × 256 pixels associated to a stack
of layers at various altitude was derived. As detailed in the
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latter work, each image of the stack corresponds to a given
altitude and can be related to a vertically averaged horizontal
wind field via an observation model relying on layer mass
conservation ∀s ∈ Sr,∀ t ∈ Tr:

∂I

∂t
(s, t) +∇Ts I(s, t) v(s) + I(s, t)∇s · v(s) = 0. (71)

A spatial subset of the very sparse image observations used
in these experiments is displayed in Fig. 5. These images rep-
resent incomplete pressure difference maps of an atmospheric
layer at intermediate altitude. We used in this case the data
model proposed in [15], which describes discrepancies from
the mass conservation equation (71) only in observed areas.
Discrepancies are given by the Leclerc’s robust M-estimators
[8].

The inference of the power-law parameters (γmap
2 , ζmap

2 )
was performed in the scale range of 1 to 4 pixels. A multi-
resolution approach was used again to cope with large dis-
placements. A clear maximum is located at (γmap

2 , ζmap
2 )=(2.5e-

5,2.0). According to physical consideration, the inferred scal-
ing law exponent suggests two-dimensional turbulence, i.e.,
scaling exponent γ2 = 2.0. Although some controversy remain
on the spectrum of atmospheric turbulence at intermediate
scales [25], this result seems reasonable since the atmosphere
can be modeled as a quasi two-dimensional flow in a wide
range of scales.

As illustrated in a zoom displayed in Fig. 5, the proposed
modeling produced motion fields visually consistent with the
sparse observations and realistic in non-observed regions. The
velocity field at this resolution appears to be very smooth and
structured with vortices of only a few pixels size. Improve-
ments brought by the method is in this case particular striking
when compared to the second order regularization scheme
proposed in [15].

IX. CONCLUSION

We have presented a method for fluid flow estimation
exploiting physical prior knowledge on the scale invariant
properties of turbulent flows. Multi-scale regularization is
achieved by imposing some power-law behavior to the sec-
ond order structure function of motion. Bayesian modeling
treating motion fields, prior power-law models together with
their hyper-parameters as interdependent random variables
allows us to simultaneously provide solutions for three prob-
lems: robust motion estimation, hyper-parameter estimation,
and power-law model selection. Optimal model and hyper-
parameter estimates are derived in analytical forms in a
marginalized a posteriori sense. Consequently, motion esti-
mation does not involve neither tuning regularization hyper-
parameter nor choosing an arbitrary power-law model. Ex-
periments on synthetic and real image sequences prove that
the proposed Bayesian inference scheme succeeds to select
adapted model and hyper-parameters and enhances state of the
art in fluid flow estimation. Extending the Bayesian method
to the modeling of non-homogeneous motion fields constitutes
a promising research direction. Nevertheless, this extension is
likely to face complexity bottlenecks, necessitating probably
the introduction of variational Bayesian inference schemes [4].

Fig. 5. Horizontal wind at intermediate altitude. From top to bottom,
spatial subset of the two input incomplete images, estimated wind field
in color representation and divergent-free component obtained by Helmoltz
decomposition [20] for the proposed method, divergence-free component
given by a second-order regularizer [15] (below). The inferred power-laws
parameters are (γ

map
2 , ζ

map
2 ) =(2.5e-5,2.0).
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Fig. 8. 3D turbulence: synthetic data set and motion estimates. From left to right, scalar (above) and particle (below) image couple, simulated velocity
field (above) and motion estimates for scalar (above) and particle (below) images visualized using the color system of [1].
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APPENDIX I
GRADIENT OF THE MARGINALIZED LIKELIHOOD

We want to compute the gradient given in (65) which writes
∇β log p(b|ẑλ? , β, γ2, ζ2):

=
1

2

〈
β−1|Sr| − (b−Av)TΛẑλ? (b−Av)

〉
, (72)

where we recall that 〈·〉 is the expectation with respect to
p(v|b, ẑλ? , β, γ2, ζ2). Note that in this expression, v only
appears in linear and quadratic forms. As a consequence,
the latter derivative is only a function of the mean and
covariance of p(v|b, ẑλ? , β, γ2, ζ2). Now, it is easy to see
that this distribution is a Gaussian distribution with mean and
covariance defined respectively as:

v̂λ? , 〈v〉 = Γ (βATΛẑλ? b), (73)

Γ , 〈(v − v̂λ?)(v − v̂λ?)T 〉

=

(
βATΛẑλ? A + β

∑
`

λ?`D
T
` D`

)−1

. (74)

Let us write the second term of (72) as follows:〈
(b−Av)TΛẑλ? (b−Av)

〉
=〈

vTATΛẑλ? Av
〉
− 2bTΛẑλ? Av̂λ? + bTΛẑλ? b. (75)

The first term on the right hand side of (75) can be rewritten
as: 〈

vTATΛẑλ? Av
〉

= tr(Ω1/2UT
〈
vvT

〉
UΩ1/2), (76)

where U and Ω are defined by the eigen-value decomposition
of ATΛẑλ? A, i.e.,

ATΛẑλ? A = UΩUT . (77)

Now, 〈
vvT

〉
= Γ + v̂λ? v̂Tλ? . (78)

Plugging this expression in (76), we obtain

tr(Ω1/2UT
〈
vvT

〉
UΩ1/2)

=tr(Ω1/2UTΓUΩ1/2) + tr(Ω1/2UT v̂λ? v̂Tλ?UΩ1/2) (79)

=tr(ΓUΩ1/2Ω1/2UT ) + v̂Tλ?UΩUT v̂λ? (80)

=tr(ΓATΛẑλ? A) + v̂Tλ?ATΛẑλ? Av̂λ? (81)

where we use the fact that tr(AB) = tr(BA) for square
invertible matrices. Combining (65), (75) and (81), we finally
get:

2∇β log p(b|ẑλ? , β, γ2, ζ2) = β−1|Sr|
− tr(ΓATΛẑλ? A)− (b−Av̂λ?)TΛẑλ? (b−Av̂λ?). (82)

The trace operator in (82) applies on a large and sparse ma-
trix. However, it can easily be evaluated by randomization. Let
In represent a n-dimensional identity matrix. More precisely,
for J � 1 random samples of a n-dimensional normalized and
centered Gaussian distribution rj ∼ N (0, In), by the weak
law of large numbers one gets the the approximation that:

tr{ΓATΛẑλ? A} = tr〈ΓrjrTj ATΛẑλ? A〉
=〈(Γrj)TATΛẑλ? Arj〉

' 1

J

J∑
j=1

(Γrj)
TATΛẑλ? Arj , (83)

where 〈·〉 denotes here the expectation with respect to the n-
dimensional Gaussian and where the vector Γrj is the solution
provided by the CGS algorithm of the problem Γ−1X = rj ,
where X is the unknown.

APPENDIX II
EXPRESSION OF THE MARGINALIZED LIKELIHOOD

Introducing the definitions (45)-(47) in the integral (56), we
obtain:

p(b|ẑλ? , β, γ2, ζ2) =∫
p(b|v, ẑλ? , β, γ2, ζ2) p(v|ẑλ? , β, γ2, ζ2)dv (84)

=Z−1
b Z−1

v

∫
exp

{
− (b + Av)TβΛẑλ? (b + Av)

2

}
exp

{
−
βvT (

∑
` λ

?
`D

T
` D`)v − γ2`

ζ2

2

}
dv. (85)

Let us rewrite the integrant as

exp

{
−1

2
(v − v̂λ?)TΓ−1(v − v̂λ?)

}
exp

{
1

2
v̂Tλ?Γ−1v̂λ?

}
exp

{
−1

2
(βbTΛẑλ? b− γ2`

ζ2)

}
,

(86)

where the posterior covariance Γ has been defined in (74).
Now, the last two factors in (86) do not depend on v, and the
integration of the first term alone gives:∫

exp

{
−1

2
(v − v̂λ?)TΓ−1(v − v̂λ?)

}
dv =

√
det Γ.

(87)

Therefore, we have:
log p(b|ẑλ? , β,θ) =

1

2
log detβΛẑλ? +

1

2
log det(β

∑
`

λ?`D
T
` D`)

− 1

2
log det Γ−1 +

1

2
v̂Tλ?Γ−1v̂λ?

− 1

2
(βbTΛẑλ? b− γ2`

ζ2). (88)

Since we have (21), using the definition (73)-(74), this can
also be rewritten as:

log p(b|ẑλ? , β, γ2, ζ2) =

1

2
log det(β

∑
`

λ?`D
T
` D`)−

1

2
log det Γ−1

+
1

2
log detβΛẑλ? −

1

2
(b−Av̂λ?)TβΛẑλ? (b−Av̂λ?).

(89)

The prior used here is a degenerated distribution and its
Hessian is not a full rank matrix i.e., its determinant is
equal to zero. We need to impose some Dirichlet boundary
conditions before evaluating the logarithm of its determinant
appearing in the first term on the right hand side of (89).
Note that the precise value on the boundaries do not need
to be specified. Indeed, considering some Dirichlet boundary
conditions results in slightly modifying the form of the Hessian
matrix but its content remains independent of the boundary
function.
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