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GENERIC ORBITS AND TYPE ISOLATION IN THE GURARIJ SPACE

ITAÏ BEN YAACOV AND C. WARD HENSON

Abstract. We study model-theoretic aspects of the separable Gurarij space G, in particular type
isolation and the existence of prime models, without use of formal logic.

(i) If E is a finite-dimensional Banach space, then the set of isolated types over E is dense, and there
exists a prime Gurarij over E. This is the unique separable Gurarij space G extending E with
the unique Hahn-Banach extension property (property U), and the orbit of id : E →֒ G under the
action of Aut(G) is a dense Gδ in the space of all linear isometric embeddings E →֒ G.

(ii) If E is infinite-dimensional then there are no non realised isolated types, and therefore no prime
model over E (unless G ∼= E), and all orbits of embeddings E →֒ G are meagre. On the other
hand, there are Gurarij spaces extending E with property U .

We also point out that the class of Gurarij space is the class of models of an ℵ0-categorical theory with
quantifier elimination, and calculate the density character of the space of types over E, answering a
question of Avilés et al.
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Introduction

In 1966, Gurarij [Gur66] defined what came to be known as the (separable) Gurarij space, and proved
that it almost isometrically unique. The isometric uniqueness of the Gurarij space was only proved in
1976 by Lusky [Lus76]. In the same paper, Lusky points out that the arguments could be modified to
prove also the isometric uniqueness of the separable Gurarij space equipped with a distinguished smooth
unit vector. In other words, if G denotes the separable Gurarij space, then the set of smooth unit vectors
in G forms an orbit under the action of the linear isometry group Aut(G). By Mazur [Maz33], this orbit
is moreover a dense Gδ subset of the unit sphere.

These facts are strongly reminiscent of model theoretic phenomena, and indeed turn out to be special
cases of such. It was observed some time ago by the second author that the uniqueness of the Gurarij
space can be accounted for as it being the unique separable model of an ℵ0-categorical theory, which
moreover eliminates quantifiers. Similarly, the Gurarij space is atomic over a vector if and only if the
latter is smooth, so Lusky’s second uniqueness result is a special case of the uniqueness of the prime
model (namely, separable atomic model) over a vector of norm one (by quantifier elimination, the type
of a single vector is entirely determined by its norm).

These observations serve as a starting point for the present paper, whose goals are threefold:

2010 Mathematics Subject Classification. 46B04 ; 03C30 ; 03C50 ; 03C98.
Key words and phrases. Gurarij space ; Banach space ; isolated type ; atomic model ; prime model ; unique Hahn-Banach

extension ; group action ; generic orbit.
The first author is supported by the Institut Universitaire de France and by ANR project GruPoLoCo (ANR-11-JS01-

008).
Revision 1452 of 20th November 2012.

1



2 ITAÏ BEN YAACOV AND C. WARD HENSON

• Our primary goal is to make the observations above precise, and generalise them to uniqueness
results over a subset other than the empty set or a singleton – in other words, we study unique-
ness and primeness of the Gurarij space over a subspace E of dimension possibly greater than
one. We prove that if dimE < ∞ then essentially the same holds as when dimE = 1, that is
to say that, first, there exists a linear isometric embedding of E in G over whose image G is
atomic, and second, that the set of such embeddings forms a dense Gδ orbit among all linear
isometric embeddings of E in G. Moreover, G is atomic over (a copy of) E if and only if E is
“smooth” in G, that is to say that the Hahn-Banach extension of linear functionals from E to
G is unique (we shall say that E has property U in G). When dimE = ∞, we show that the
only infinite-dimensional subspace of G over which G is atomic is G itself, and all orbits are
meagre. On the other hand, any separable E admits an isometric linear embedding in G with
property U (just that if dimE = ∞, these embeddings need not form an orbit).

• A secondary goal is to present a subset of the toolbox of model theory in a manner accessible
non logicians. Starting with a definition of types and type spaces which does not make any use
of formal logic, we discuss general topics such as type isolation, the Tarski-Vaught Criterion,
the Omitting Types Theorem, and the primeness and uniqueness of atomic models. While
we do this in a fairly specific context, we attempt to present arguments which would be valid
in the general case (possibly with separate follow-up results which improve the general ones
in a manner specific to the context of the Gurarij space). There are few results which make
explicit use of formal logic (essentially, Proposition 1.19 and Theorem 2.3), which serve mostly
as parenthetical remarks required for completeness, and are not used in any way in other parts
of the paper.

• A minor tertiary goal is to present to model theorists, who are familiar with the tools mentioned
in the previous item in the context of classical logic, how these tools adapt to the metric setting.

In Section 1 we define (quantifier-free) types and type spaces over a Banach space E, and study their
properties. The topometric structure of the type space, a fundamental notion of metric model theory, is
defined there, as well as (topometrically) isolated types, which are one of the main objects of study of
this paper.

In Section 2 we start studying Gurarij spaces. At the technical level, we define and study Gurarij (and
other) spaces which are atomic over a fixed separable parameter space E, and prove the Omitting Types
Theorem (Theorem 2.11). We prove appropriate generalisations of the homogeneity and universality
properties of the Gurarij space to homogeneity and universality over E. In particular, we show that the
prime Gurarij spaces over E (see Corollary 2.12) are those Gurarij space which are separable and atomic
over E, and that they are all isometrically isomorphic over E, denoted G[E]. We also give the standard
model theoretic criterion for the existence of G[E].

At this point we move on to the question of when the isolated types over E are dense, and how to
characterise them in a more Banach theoretic fashion. In Section 3 we consider the particularly easy case
where dimE = 1, which serves as a good indication for where to look later on. Before considering the
general case, we introduce an essential tool in Section 4, namely the presentation of 1-types as convex
Katětov functions (as per [Benb]), and the Legendre-Fenchel transformation of these. This tool allows
us to prove in Section 5 that if dimE < ∞ then G[E] exists, and that a type is isolated if and only if
it (generates an extension which) has property U . The same tool is used in Section 6 to show that if
dimE = ∞ then the situation is quite different: there are no isolated types other than the realised ones,
and yet the types with property U are dense. The description of generic orbits alluded to above follows.

We conclude in Section 7 with a “counting types” result, showing that the space of types over E is
metrically separable if and only if E is finite-dimensional and polyhedral. This allows us to answer a
question of Avilés et al. [ACC+11].

All Banach spaces under consideration are over the real numbers, denoted E, F , and so on. An
embedding (or isomorphism, automorphism) of Banach spaces is always isometric. Linear maps will
simply be referred to as such, even when they are homeomorphic.

The topological dual of a Banach space E will be denoted E∗. We shall often use the notation E≤1

for the closed unit ball of E, E=1 for the unit sphere, and so on.

1. Quantifier-free types in Banach spaces

Before we start, let us state the following basic amalgamation result which we shall use many times,
quite often implicitly.
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Fact 1.1. For any three Banach spaces E, F0 and F1, and isometric embeddings fi : E → Fi, there is a
third Banach space G and isometric embeddings gi : Fi → G such that g0f0 = g1f1.

Proof. Equip the direct sum F0 ⊕F1 with the semi-norm ‖v+ u‖ = infw∈E ‖v+w‖+ ‖u−w‖, divide by
the kernel and complete. �1.1

We can now define the fundamental objects of study of this section, and, to a large extent, the entire
paper.

Definition 1.2. Let E be a Banach space and X a sequence of symbols which we call variables. We
let E(X) = E ⊕

⊕

x∈X Rx, and define SX(E) to consist of all semi-norms on E(X) which extend the
norm on E, calling it the space of types in X over E. We shall denote members of SX(E) by ξ, ζ and
so on, and the corresponding semi-norms by ‖·‖ξ, ‖·‖ζ and so on (model-theoretic tradition would have
us denote types by p, q and so on, but an expression such as ‖·‖p may be disastrously suggestive of a
meaning other than the intended one).

Quite often X will be of the form {xi}i∈I for some index set I, in which case we write E(I) =
E ⊕

⊕

i∈I Rxi instead of E(X), and similarly SI(E), whose members are called I-types.

Definition 1.3. Given a Banach space extension E ⊆ F and an I-sequence ā = {ai}i∈I ⊆ F , we define

its type over E, in symbols ξ = tp(ā/E) ∈ SI(E), to be the semi-norm ‖b+
∑

λixi‖
ξ
= ‖b+

∑

λiai‖,
and say that ā realises ξ. When a sequence b̄ generates E, we may also write tp(ā/b̄) for tp(ā/E).

Conversely, given a type ξ ∈ SI(E), we define the Banach space generated by ξ, in symbols E[ξ],
as the space obtained from

(

E(I), ‖·‖ξ
)

by dividing by the kernel and completing, together with the
distinguished generators {xi}i∈I ⊆ E[ξ].

Definition 1.4. We equip SI(E) with a topological structure as well as with a metric structure which
are often distinct. The topology on SI(E) is the least one in which, for every member x ∈ E(I), the map
x̂ : ξ 7→ ‖x‖ξ is continuous. Given ξ, ζ ∈ SI(E), we define the distance d(ξ, ζ) to be the infimum, over all
F extending E and over all realisations ā and b̄ of ξ and ζ, respectively, of supi ‖ai − bi‖.

Remark 1.5. A model-theorist will recognise types as we define them here as quantifier-free types, which
do not, in general, capture “all the pertinent information”. However, by Fact 1.1, they do capture a
maximal existential type. Moreover, it follows from Lemma 1.14 below (and more specifically, from
the assertion that πx̄ : Sx̄,y(0) → Sx̄(0) is open) that being an existentially closed Banach space is an
elementary property, so the theory of Banach spaces admits a model companion. Then Fact 1.1 can be
understood to say that the model companion eliminates quantifiers, so quantifier-free types and types
are in practice the same. As we shall see later, the model companion is separably categorical, and its
unique separable model is G, the separable Gurarij space.

It is fairly clear that the distance refines the topology, and we shall see that unless the parameter
space E is trivial and I is finite, they are in fact distinct. In a sense, the distance as defined on SI(E)
is “incorrect” when I is infinite (for more reasons than the mere fact that this distance can be infinite),
and we should never have defined it for such I if not for Proposition 1.7 below holding for infinite I as
well.

Lemma 1.6. Let E,F be Banach spaces, I an index set, and consider tuples ā = (ai)i∈I ∈ EI , b̄ ∈ F I

and ε̄ ∈ R
I. Let also R

(I) denote the set of all I-tuples in which all but finitely many positions are zero.
The following conditions are equivalent.

(i) There exists a semi-norm ‖·‖ on E ⊕ F extending the respective norms of E and F , such that
for each i ∈ I one has ‖ai − bi‖ ≤ εi.

(ii) For all r̄ ∈ R
(I), one has

∣

∣

∣

∣

∣

∥

∥

∥

∑

riai

∥

∥

∥
−
∥

∥

∥

∑

ribi

∥

∥

∥

∣

∣

∣

∣

∣

≤
∑

|ri|εi.

Proof. One direction being trivial, we prove the other. For c+ d ∈ E ⊕ F define

‖c+ d‖′ = inf
r̄∈R(I)

∥

∥

∥
c−

∑

riai

∥

∥

∥
+
∥

∥

∥
d+

∑

ribi

∥

∥

∥
+
∑

|ri|εi.

This is easily checked to be a semi-norm, with ‖c‖′ ≤ ‖c‖ for c ∈ E. Now, for c ∈ E and r̄ ∈ R
(I) we

have
∥

∥

∥
c−

∑

riai

∥

∥

∥
+
∥

∥

∥

∑

ribi

∥

∥

∥
+
∑

|ri|εi ≥
∥

∥

∥
c−

∑

riai

∥

∥

∥
+
∥

∥

∥

∑

riai

∥

∥

∥
≥ ‖c‖.
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Therefore ‖c‖′ = ‖c‖, and similarly ‖d‖′ = ‖d‖ for d ∈ F , concluding the proof. �1.6

Proposition 1.7. Let ξ, ζ ∈ SI(E), and let E(I)1 consist of all a +
∑

λixi ∈ E(I) (so a ∈ E and all
but finitely many of the λi vanish) such that

∑

|λi| = 1. Then

d(ξ, ζ) = sup
x∈E(I)1

∣

∣‖x‖ξ − ‖x‖ζ
∣

∣ .

Moreover, the infimum in the definition of distance between types is attained.

Proof. Immediate from Lemma 1.6. �1.7

Convention 1.8. When referring to the topological or metric structure of SI(E), we shall follow the
convention that unqualified terms taken from the vocabulary of general topology (open, compact and so
on) apply to the topological structure, while terms specific to metric spaces (bounded, complete and so
on) refer to the metric structure.

Excluded from this convention is the notion of isolation which will be defined in a manner which takes
into account both the topology and the metric.

While this convention may seem confusing at first, it is quite convenient, as in the following.

Lemma 1.9. (i) The space SI(E) is Hausdorff, and every closed and bounded set thereof is com-
pact.

(ii) The distance on SI(E) is lower semi-continuous. In particular, the closure of a bounded set is
bounded.

(iii) Assume that I is finite, say I = n = {0, 1, . . . , n− 1} ∈ N. Then every bounded set is contained
in an open bounded set. It follows that the space Sn(E) is locally compact, and that a compact
subset of Sn(E) is necessarily (closed and) bounded.

(iv) A subset X ⊆ Sn(E) is closed if and only if its intersection with every compact set is compact.
(v) Let m ≤ n, and let π : Sn(E) → Sm(E) denote the obvious variable restriction map. Then for

every ξ ∈ Sn(E) and ζ ∈ Sm(E) we have d(πξ, ζ) = d(ξ, π−1ζ). Moreover there exists ρ ∈ π−1ζ
such that d(πξ, ζ) = d(ξ, ρ) and ‖xi‖

ρ = ‖xi‖
ξ for all m ≤ i < n.

In particular, the map π is metrically open.

Proof. For the first item, clearly SI(E) is Hausdorff. If X ⊆ SI(E) is bounded, then for every x ∈ E(I)
there exists Mx such that ‖x‖ξ ≤ Mx for all ξ ∈ X . We can therefore identify X with a subset of
Y =

∏

x[0,Mx], and if X is closed in SI(E) then it is closed in Y and therefore compact.
The second item follows from Proposition 1.7, and the third is immediate.
For the fourth item, assume that X ⊆ Sn(E) is not closed, let ξ ∈ X rX and let U be a bounded

neighbourhood of ξ, in which case U ∩X is not compact.
For the fifth item, the inequality ≤ is immediate. For the opposite inequality, there exists an extension

F ⊇ E and realisations ā of ξ and b̄ of ζ in F such that ‖ai − bi‖ < r for i < m. Letting ci = bi for
i < m, ci = ai for m ≤ i < n, we see that ρ = tp(c̄/E) is as desired for both the main assertion and the
moreover part. It follows that πB(ξ, r) ⊇ B(πξ, r), so π is metrically open. �1.9

This double structure makes SI(E) a topometric space, in the sense of [Ben08b].

Definition 1.10. We say that a type ξ ∈ Sn(E) is isolated if the distance and the topology agree at ξ,
i.e., if every metric neighbourhood of ξ is also a topological one.

This is the definition of isolation in a topometric space, taking into account both the metric and the
topological structure. Ordinary topological spaces can be viewed as topometric spaces by equipping
them with the discrete 0/1 distance, in which case the notion of isolation as defined here coincides with
the usual one.

Many results regarding ordinary topological spaces still hold, when translated correctly, with the
topometric definitions. For example, the fact that a dense set must contain all isolated points becomes
the following. Notice that in Lemma 1.16 below we prove that the set of isolated types it itself metrically
closed.

Lemma 1.11. Let E be a Banach space, D ⊆ Sn(E) a dense, metrically closed set. Then D contains
all isolated types.

Proof. If ξ is isolated then all metric neighbourhoods of ξ, which are also topological neighbourhoods,
must intersect D. �1.11
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One of our aims in this paper is to characterise isolated types. We start with the easiest situation.

Proposition 1.12. Let 0 denote the trivial Banach space. Then every type in Sn(0) is isolated. In other
words, the distance on Sn(0) is compatible with the topology.

Proof. Given N ∈ N, let XN ⊆ 0(n)1 be the finite set consisting of all
∑

λixi where
∑

|λi| = 1 and
each λi is of the form k

N
. For ξ ∈ Sn(0), let Uξ,N be its neighbourhood consisting of all ζ such that

∀x ∈ XN ‖x‖ξ − 1/N < ‖x‖ζ < ‖x‖ξ + 1/N.

This means in particular that ‖xi‖
ζ < ‖xi‖

ξ +1 for all i < n, and now an easy calculation together with
Proposition 1.7 yields that there exists a constant C(ξ) such that for all N , Uξ,N is contained in the ball
of radius C(ξ)/N around ξ, which is what we had to show. �1.12

This already allows us to construct the following useful tool of variable change in a type.

Definition 1.13. Given a linear map ϕ : E(ȳ) → E(x̄) extending idE , we define a pull-back map
ϕ∗ : Sx̄(E) → Sȳ(E) by ‖z‖ϕ

∗ξ = ‖ϕz‖ξ (for z ∈ E(ȳ)). For A ⊆ Sȳ(E), we define ϕ∗A = (ϕ∗)−1(A) ⊆
Sx̄(E) (this will be particularly convenient in the proof of Lemma 2.10).

Of course, ϕ is entirely determined by the image ϕȳ. Thus, when the variables ȳ are known from the
context, we may write ξ↾ϕȳ for ϕ∗ξ, so

∥

∥

∥
a+

∑

λiyi

∥

∥

∥

ξ↾z̄
=

∥

∥

∥
a+

∑

λizi

∥

∥

∥

ξ

.

In fact, we shall often use this latter notation with z̄ = ȳ.

Lemma 1.14. For a fixed tuple ȳ ∈ E(x̄)m, the map ξ 7→ ξ↾ȳ is continuous and Lipschitz. If ȳ are
linearly independent over E then this map is also topologically and metrically open. Moreover, the metric
openness is “Lipschitz” as well, in the sense that there exists a constant C = C(ȳ) such that for all ξ and
all r > 0 we have

B(ξ, r)↾ȳ ⊇ B(ξ↾ȳ, Cr).

Proof. Continuity and the Lipschitz condition are easy. We therefore assume that ȳ are linearly inde-
pendent over E, and we first prove the moreover part. In the special case where ȳ generate E(x̄) over
E, this is since (·↾ȳ)

−1 = ·↾x̄ : Sȳ(E) → Sx̄(E) is Lipschitz. In the general case, we may complete ȳ into
a basis for E(x̄) over E, and using the special case above we reduce to the case where yi = xi for i < m,
which is just Lemma 1.9(v).

For topological openness, we proceed as follows. In the case where E = 0, this follows from metric
openness and Proposition 1.12. Let us consider now the case where E is finite-dimensional. We fix a
basis b̄ for E and a corresponding tuple of variables w̄. We may then identify E(x̄) with 0(w̄, x̄), and
thus ȳ with its image in 0(w̄, x̄). We already know that ·↾w̄,ȳ : Sw̄,x̄(0) → Sw̄,ȳ(0) is open. In addition,
we have a commutative diagram

Sw̄,x̄(0) Sw̄,ȳ(0)

Sw̄(0)

·↾w̄,ȳ
//

·↾w̄

��
??

??
??

??
??

??

·↾w̄

����
��
��
��
��
��

and the map ·↾ȳ : Sx̄(E) → Sȳ(E) is homeomorphic to the fibre of the horizontal arrow over tp(b̄) ∈ Sw̄(0),
so it is open as well. The infinite-dimensional case follows from the finite-dimensional one, since any
basic open set in Sx̄(E) can be defined using finitely many parameters in E. �1.14

We leave it to the reader to check that if ȳ are not linearly independent over E then ·↾ȳ is not metrically
open, and a fortiori not topologically so (consider for example ·↾x,x : S1(0) → S2(0)).

Lemma 1.15. Let U ⊆ Sn(E) be open and r > 0. Then B(U, r) is open as well.

Proof. Let x̄ and ȳ be two n-tuples of variables. Let us identify Sn(E) with Sx̄(E), and let W ⊆ Sx̄,ȳ(E)
consist of all ξ such that ‖xi − yi‖

ξ < r for i < n. Then W is open, and by Lemma 1.14 so is
V =

(

W ∩ (·↾x̄)
−1(U)

)

↾ȳ ⊆ Sȳ(E). Identifying Sȳ(E) with Sn(E) as well, V = B(U, r). �1.15

Lemma 1.16. Let E be a Banach space.
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(i) A type in Sn(E) is isolated if and only if all its metric neighbourhoods have non empty interior.
(ii) The set of isolated types in Sn(E) is metrically closed.

Proof. The first assertion follows easily from Lemma 1.15, and the second from the first. �1.16

Another basic operation one can consider on types is the restriction of parameters Sn(F ) → Sn(E)
when E ⊆ F .

Lemma 1.17. Let E ⊆ F be an isometric inclusion of Banach spaces. Then the natural type restriction
map π : Sn(F ) → Sn(E) is continuous, closed, and satisfies πB(ξ, r) = B(πξ, r).

In particular, π is both topologically and metrically a quotient map.

Proof. It is clear that π is continuous. To see that it is closed we use Lemma 1.9. Indeed, since closed
sets are exactly those which intersect compact sets on compact sets, it will be enough to show that
if K ⊆ Sn(E) is compact then so is π−1K, which follows from the characterisation of compact sets
as closed and bounded. Finally, it is clear that d(ξ, ζ) ≥ d(πξ, πζ) for ξ, ζ ∈ Sn(F ). Conversely, if
ζ0 ∈ Sn(E) then using Fact 1.1, there exists ζ ∈ π−1ζ0 with d(ξ, ζ) ≥ d(πξ, ζ0), which proves that
πB(ξ, r) = B(πξ, r). �1.17

We also obtain the following result, which is somewhat of an aside with respect to he rest of this paper.
We shall therefore allow ourselves to be brief, and assume that the reader is familiar with continuous
first order logic (see [BU10, BBHU08]), and, for the part regarding Banach spaces as unbounded metric
structures, also with unbounded continuous logic (see [Ben08a]).

Lemma 1.18. Let T be an inductive theory, and for n ∈ N let Sqfn (T ) denote the space of quantifier-free
types consistent with T , equipped with the natural logic topology. Assume that, first, every two models
of T amalgamate over a common substructure, and, second, for every n, the variable restriction map

Sqfn+1(T ) → Sqfn (T ) is open. Then T admits a model completion, namely a companion which eliminates
quantifiers.

(In fact, an approximate amalgamation property for models of T over a common finitely generated
substructure suffices.)

Proof. Let ϕ(x̄, y) be a quantifier-free formula, inducing a continuous function ϕ̂ : Sqfn+1(T ) → R (which

has compact range, by compactness of Sqfn+1(T )). Let π : Sqfn+1(T ) → Sqfn (T ) denote the variable restric-

tion map, and define ρ : Sqfn (T ) → R as the infimum over the fibre:

ρ(q) = inf
{

ϕ̂(p) : πp = q
}

.

Since π is continuous (automatically) and open (by hypothesis), ρ is continuous as well, and can therefore

be expressed as a uniform limit of ψ̂n : Sqfn (T ) → R, where ψn(x̄) are quantifier-free formulae, say

‖ρ − ψ̂n‖ ≤ 2−n. One can now express that supx̄ |ψn(x̄) − infy ϕ(x̄, y)| ≤ 2−n for all n by a set of
sentences.

Let T ∗ consist of T together with all sentences constructed as above, for all possible quantifier-free
formulae ϕ(x̄, y). Then, first, every existentially closed model of T is easily checked to be a model of
T ∗ (using our amalgamation hypothesis), so T and T ∗ are companions. Moreover, by induction on
quantifiers, every formula is equivalent modulo T ∗ to a uniform limit of quantifier-free formulae, so T ∗

eliminates quantifiers. �1.18

Proposition 1.19. Consider Banach spaces either as metric structures in unbounded continuous logic,
or as bounded metric structures via their closed unit balls, as explained, say, in [Ben09]. Then (in either
approach) the theory of the class of Banach spaces is inductive, and admits a model completion T ∗ which
is moreover complete and ℵ0-categorical.

When the entire Banach space is viewed as a structure then the types over a subspace are as per
Definition 1.2 and Definition 1.3, and if one only considers the unit ball then the space of I-types over

E≤1 is S≤1
I (E) =

{

ξ ∈ SI(E) : ‖xi‖
ξ ≤ 1 for all i ∈ I

}

.

Proof. Let us consider the theory T of unit balls of Banach spaces. It is clearly inductive, and it is fairly

easy to check that the space of quantifier-free I-types over a unit ball E≤1 is the space S≤1
I (E) defined

in the statement. By the moreover part of Lemma 1.9(v), variable restriction S≤1
n+1(E) → S≤1

n (E) is

metrically open. For E = 0 this implies in particular that S≤1
n+1(0) → S≤1

n (0) is topologically open, but

this latter is just Sqfn+1(T ) → Sqf
n (T ). This, together with Fact 1.1, fulfils the hypotheses of Lemma 1.18.
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By quantifier elimination, Sn(T
∗) = Sqfn (T ) = S≤1

n (0), so in particular, S0(T
∗) is a singleton, whereby T ∗

is complete. Finally, T ∗ is ℵ0-categorical by the Ryll-Nardzewski Theorem (see [BU07]).
The case of Banach spaces as unbounded structures follows via the bi-interpretability of the whole

Banach space with its unit ball. �1.19

2. The Gurarij space

Definition 2.1. We recall from, say, Lusky [Lus76] that a Gurarij space is a Banach space G having
the property that for any ε > 0, finite-dimensional Banach space E ⊆ F , and isometric embedding
ϕ : E → G, there is a linear map ψ : F → G extending ϕ such that in addition, for all x ∈ F , (1−ε)‖x‖ ≤
‖ψx‖ ≤ (1 + ε)‖x‖.

Some authors add the requirement that a Gurarij space be separable, bur from our point of view it
seems more elegant to consider separability as a separate property.

Lemma 2.2. Let F be a Banach space. Then the following are equivalent:

(i) The space F is a Gurarij space.
(ii) For every n, the set of realised types tp(ā/F ), as ā varies over Fn, is dense in Sn(F ).
(iii) Same for n = 1.

Proof. (i) =⇒ (iii). Let U ⊆ S1(F ) be open and ξ ∈ U . We may assume that U is defined by a
finite set of conditions of the form

∣

∣‖ai + rix‖ − 1
∣

∣ < ε, where ‖ai + rix‖
ξ = 1. Let E ⊆ F be the

subspace generated by the ai, and let E′ = E +Rx be the extension of E generated by the restriction
of ξ to E. By hypothesis, there is a linear embedding ψ : E′ → F extending the identity such that
(1− ε)‖y‖ < ‖ψy‖ < (1 + ε)‖y‖ for all y ∈ E′, and in particular for y = ai + rix, so tp(ψx/F ) ∈ U .

(iii) =⇒ (ii). We prove by induction on n, the case n = 0 being tautologically true. For the induction
step, let ∅ 6= U ⊆ Sx̄,y(F ) be open, and let V = U↾x̄ ⊆ Sx̄(F ). By Lemma 1.14, V is open, and by
the induction hypothesis there are b̄ ∈ Fn such that tp(b̄/F ) ∈ V . Now, consider the map θ : Sy(F ) →
Sx̄,y(F ), sending tp(a/F ) 7→ tp(b̄, a/F ). It is continuous (in fact, it is a topological embedding), so
∅ 6= θ−1U ⊆ S1(F ) is open. By hypothesis, there is c ∈ F such that tp(c/F ) ∈ θ−1U , i.e., such that
tp(b̄, c/F ) ∈ U , as desired.

(ii) =⇒ (i). Let E ⊆ E′ be finite-dimensional, with E ⊆ F , and let ε > 0. Let ā be a basis for E, and
let ā, b̄ be a basis for E′, say |ā| = n and |b̄| = m. For N ∈ N, let UN ⊆ Sm(F ) be defined by the (finitely
many) conditions of the form ‖

∑

siai +
∑

rjxj‖ ∈ (1− ε, 1+ ε), where si and rj are of the form k
N

and
‖
∑

siai +
∑

rjbj‖ ∈ (1− ε, 1 + ε). By hypothesis there is a tuple c̄ ∈ Fm such that tp(c̄/F ) ∈ UN , and
we may define ψ : E′ → F being the identity on E and sending b̄ 7→ c̄. For N big enough, it follows from
the construction that if y ∈ E′, ‖y‖ = 1 then

∣

∣‖ψy‖ − 1
∣

∣ < 2ε, which is good enough. �2.2

Model theorists may find the second and third conditions of Lemma 2.2 reminiscent of a topological
formulation of the Tarski-Vaught Criterion: a metrically closed subset A of a structure is an elementary
substructure if and only if the set of types over A realised in A is dense. Indeed,

Theorem 2.3. Let T ∗ be the model completion of the theory of Banach spaces, as per Proposition 1.19.
Then its models are exactly the Gurarij spaces. In particular, since T ∗ is ℵ0-categorical, there exists a
unique separable Gurarij space (up to isometric isomorphism).

Proof. Let E be a Banach space, and embed it in a model F � T ∗. Then, first, by quantifier elimination,
E is a model of T ∗ if and only if E � F . Second, by the topological Tarski-Vaught Criterion evoked
above, E � F if and only if the set of types over E, in the sense of Th(F ) = T ∗, realised in E, is dense.

By Proposition 1.19 the space of types over E (in the sense of T ∗ = Th(E)) is S≤1
n (E) as defined

there. By a dilation argument, the set of types realised in E is dense in S1(E) if and only if the set

of types realised in E≤1 is dense in S≤1
1 (E), and we conclude by Lemma 2.2 (or, if one works with the

whole space as an unbounded structure, the same holds without the dilation argument). �2.3

As mentioned in the introduction, the isometric uniqueness of the separable Gurarij space was origin-
ally proved by Lusky [Lus76] using the Lazar-Lindenstrauss matrix representation of L1 pre-duals. The
same was recently re-proved by Kubiś and Solecki [KS] using more elementary methods. Upon careful
reading, their argument essentially consist of showing that the separable Gurarij space is the Fraïssé
limit of the class of finite-dimensional Banach spaces, as is pointed out, alongside a general development
of Fraïssé theory for metric structures (yielding yet another proof of the same result) by the first au-
thor [Bena]. From this point onward we shall leave continuous logic aside, and work entirely within the
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formalism of type spaces as introduced in Section 1. As we shall see, the uniqueness and existence also
follow as easy corollaries from later results which do not depend explicitly on any form of formal logic
(Corollary 2.7 and Lemma 2.10).

Definition 2.4. Let E be a Banach space. We say that a Banach space F is atomic over E if E ⊆ F
and the type over E of every finite tuple in F is isolated.

By Proposition 1.12, every Banach space is atomic over 0.

Theorem 2.5. Let E ⊆ F0 ⊆ F1 be Banach spaces with dimF0/E finite and F1 separable and atomic
over E, let G ⊇ E be a Gurarij space, and let ϕ : F0 → G be an isometric embedding extending idE.
Then there exist isometric embeddings ψ : F1 → G extending idE with ‖ψ↾F0

− ϕ‖ arbitrarily small.
In particular, any separable Banach space atomic over E embeds isometrically over E in any Gurarij

space containing E.

Proof. It is enough to prove this in the case where dimF1/F0 = 1. We may then choose a basis ā ∈ Fn+1
1

for F1 over E, such that in addition a0, . . . , an−1 generate F0. By hypothesis, ξ = tp(ā/E) ∈ Sn+1(E) is
isolated. Let ρ : Sn+1(G) → Sn+1(E) be the parameter restriction map, and let K = ρ−1(ξ), observing
that for any ε > 0, B(K, ε) = ρ−1B(ξ, ε) is a neighbourhood of K. We construct a sequence of tuples
c̄k ∈ G

n+1, each of which realising a type in B(ξ, 2−kr), as follows.
For k = 0, we let V ⊆ Sn+1(G) be the set defined by ‖xi − ϕai‖ < r for i < n, which is open and

intersects K. Then V ∩B(K, r)◦ 6= ∅ (where ·◦ denotes topological interior), and we choose c̄0 to realise
some type there. Given c̄k, we let Uk ⊆ Sn+1(G) be the set defined by ‖xi − ck,i‖ < 2−kr for i ≤ n,
which is again open intersecting K, and we choose c̄k+1 to realise a type in Uk ∩B(K, 2−n−1r)◦.

We obtain a Cauchy sequence (c̄k) converging to some c̄ ∈ G
n+1, whose type tp(c̄/E), being the

metric limit of tp(c̄k/E), must be ξ. Then the linear map ψ : F1 → G which extends idE by ai 7→ ci is
an isometric embedding.

Finally, reading through our construction, we have ‖ϕai− ci‖ < 3r for all i < n, and choosing r small
enough, ‖ψ↾F0

− ϕ‖ is as small as desired. �2.5

In particular, any two separable Gurarij spaces atomic over E embed in one another, but we can do
better.

Theorem 2.6. Let Gi be separable Gurarij spaces atomic over E for i = 0, 1, let E ⊆ F ⊆ G0 with
dimF/E finite, and let ϕ : F → G1 be an isometric embedding extending idE. Then there exist isometric
isomorphisms ψ : G0

∼= G1 extending idE with ‖ψ↾F − ϕ‖ arbitrarily small.
In particular, any two separable Gurarij spaces atomic over E are isometrically isomorphic over E.

Proof. Follows from Theorem 2.5 by a back-and-forth argument. �2.6

Since every Banach space is atomic over 0, we obtain the uniqueness and universality of the separable
Gurarij space.

Corollary 2.7. Every two separable Gurarij spaces are isometrically isomorphic, and every separable
Banach space embeds isometrically in any Gurarij space (separable or not).

Similarly, the Gurarij space is approximately homogeneous:

Corollary 2.8. Let G be a separable Gurarij space, let F ⊆ G be finite-dimensional, and let ϕ : F → G

is an isometric embedding. Then there exist isometric automorphisms ψ ∈ Aut(G) such that ‖ψ↾F − ϕ‖
is arbitrarily small.

Moreover, if E ⊆ F is such that G is atomic over E, and ϕ↾E = id, then we may require that ψ↾E = id
as well.

Notation 2.9. We shall denote by G the unique separable Gurarij space. Similarly, for a separable
Banach space E, we let G[E] denote the unique atomic separable Gurarij space over E, if such exists,
observing that since all types over 0 are isolated, G = G[0].

We now turn to a criterion for the existence of G[E].

Lemma 2.10. Let E be a separable Banach space, and say that a type ξ ∈ SN(E) is a Gurarij type if
it generates a Gurarij space. Then the set of Gurarij types over E is co-meagre in SN(E). Moreover,
there exists a dense Gδ set Z ⊆ SN(E) such that if some ξ ∈ Z generates F then F is Gurarij and
{xi}i∈N ⊆ F is dense.

In particular, the separable Gurarij space G exists.
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Proof. Let X = {xi}i∈N, so SX(E) = SN(E). Let y be a new variable symbol. For k ∈ N, let
[∅ → y] : E(X) → E(X, y) denote idE(X), let [xk → y] : E(X) → E(X, y) be defined as idE(Xr{xk})

together with xk 7→ y, and let [y → xk] : E(X, y) → E(X) be defined as idE(X) together with y 7→ xk.
The space SX,y(E) has a countable base of open sets {Un}n∈N, and we may assume furthermore that

each Un 6= ∅ can be defined using only variables from among {x0, . . . , xn−1, y}, so [y → xn]∗Un = [xn →
y]∗Un 6= ∅. For each n we define Zn ⊆ SX(E) = SN(E) to consist of all types ξ such that either

• ξ /∈ [∅ → y]∗Un, which defines a closed set, since [∅ → y]∗ is open, or
• there exists some k such that ξ ∈ [y → xk]∗Un, which defines an open set.

Then Zn is a Gδ set, and we claim that it is dense. Indeed, let ∅ 6= W ⊆ SX(E) be open. We
may assume that Un ∩ [∅ → y]∗W 6= ∅, since otherwise W ∩ Zn 6= ∅. Then there exist k such that
Uk ⊆ Un ∩ [∅ → y]∗W , so

∅ 6= [y → xk]∗Uk ⊆ [y → xk]∗Un ∩ [y → xk]∗[∅ → y]∗W

= [y → xk]∗Un ∩W

⊆ Zn ∩W,

proving our claim.
Now let Z =

⋂

Zn, a dense Gδ set, and we claim that every ξ ∈ Z is Gurarij. Indeed, let ξ generate
F , and let ∅ 6= U ⊆ S1(F ) be open. We define θ : S1(F ) → SX,y(E) as in the proof of Lemma 1.14
(working over E, whereas there we worked over 0), and there exists n such that U ⊇ θ−1(Un) 6= ∅. Since
θ−1(Un) 6= ∅, we have ξ ∈ [∅ → y]∗Un ∩ Zn, and so for some k we have [y → xk]

∗ξ ∈ Un. This means
exactly that tp(xk/F ) ∈ θ−1(Un) ⊆ U , showing that ξ is indeed Gurarij. Moreover, we have shown that
every open set ∅ 6= U ⊆ S1(F ) is realised in F by some xi, from which it follows that {xi}i∈N is dense
in F . �2.10

Notice that since a Banach space has no isolated points, if a sequence is dense there then every tail
of the sequence is dense there as well.

Theorem 2.11 (Omitting Types Theorem for Gurarij spaces). Let E be a separable Banach space, and
for each n, let Xn ⊆ Sn(E) be metrically open and topologically meagre. Then there exists a separable
Gurarij space G ⊇ E such that in addition, for every n, no type in Xn is realised in G (we then say that
G omits all Xn). Moreover, the set of Gurarij types which generate such spaces is co-meagre.

Proof. Let Z ⊆ SN(E) be the set produced by Lemma 2.10. For each n, let [N]n = {s ⊆ N : |s| = n}.
For s ∈ [N]n can be enumerated uniquely as an increasing sequence {k0, . . . , kn−1}, and we then define
[s] : E(n) → E(N) by xi 7→ xki

for i < n. Then [s]∗ : SN(E) → Sn(E) is continuous and open, so
[s]∗Xn ⊆ SN(E) is meagre. Since everything is countable,

Z1 = Z r
⋂

n,s∈[N]n

[s]∗Xn

is co-meagre as well. All we need to show is that if ξ ∈ Z1 generates G then G omits Xn. Indeed, assume
that some ξ ∈ Xn is realised in G, say by ā. Since Xn is metrically open, there exists r > 0 such that
B(ξ, r) ⊆ Xn. Since the sequence {xi} is dense in G, there is an increasing sequence k0 < . . . < kn−1

such that ‖xkj
− aj‖ < r. But then tp(xk̄/E) ∈ Xn, so ξ ∈ [k̄]∗Xn, contradicting the choice of ξ and

completing the proof. �2.11

Corollary 2.12 (Criterion for primeness over E). Let G be a Gurarij space, and let E ⊆ G be a separable
subspace. Then the following are equivalent:

(i) The space G is prime over E, that is to say that it embeds isometrically over E in every Gurarij
space containing an isometric copy of E.

(ii) The space G is separable and atomic over E, namely, G = G[E].

Proof. It is immediate from Theorem 2.5 that G[E] is prime over E. For the other direction, assume
that G is prime over E. Since E is separable, it embeds (by Theorem 2.5) in a separable Gurarij space,
so G must be separable as well. Finally, assume toward a contradiction that G realises some non isolated
type ξ. By Lemma 1.16 there exists r > 0 such that the closed metric ball B(ξ, r) has empty interior.
Since the metric is lower semi-continuous, the closed metric ball is topologically closed, and is therefore
meagre, as is the open ball B(ξ, r). By Theorem 2.11, there exists a separable Gurarij space G ⊇ E
which omits B(ξ, r). Thus G cannot embed over E in G, a contradiction. �2.12
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Proposition 2.13. Let E be a separable Banach space. Then G[E] exists if and only if, for each n, the
set of isolated types in Sn(E) is dense.

Proof. Assume first that the sets of isolated types are dense. For a given n, let In be the set of
isolated types in Sn(E), and assume that it is dense. Then B(In, r) contains a dense open set, and
⋂

r>0B(In, r) = I n is co-meagre. By Lemma 1.16 we have In = I n, so Sn(E) r In is meagre and
metrically open. By Theorem 2.11, if In is dense for all n then an atomic separable Gurarij space over
E exists.

Conversely, assume that G[E] exists. Then the set of n-types over E realised in G[E] is dense (by
Lemma 2.2), and they are all isolated. �2.13

Model theorists will recognise Proposition 2.13 as the usual criterion for the existence of an atomic
model, and as such it is in no way particular to Banach spaces. In the specific context of Banach spaces,
however, it can be improves as follows.

Lemma 2.14. For a type ξ ∈ Sx̄(E) the following are equivalent

(i) The type ξ is isolated.
(ii) The type ξ↾ȳ is isolated for ȳ ∈ E(x̄)m (and every m).
(iii) The type ξ↾y is isolated for every y ∈ E(x̄).

Proof. (i) =⇒ (ii). When ȳ are linearly independent over E, this follows from Lemma 1.14. For the
general case, it will now be enough to consider the case where ȳ, of length m, extends the original tuple
of variables x̄, and for j < m let us write yj = aj +

∑

λijxi. Given r > 0, there exists by hypothesis
an open set U such that ξ ∈ U ⊆ B(ξ, r), and let V = (·↾x̄)

−1U ⊆ Sȳ(E). Intersecting V with the open
sets defined by ‖yj −

∑

i<m λijyi‖ < r we obtain an open set V ′ with ξ↾ȳ → V ′ ⊆ B(ξ↾ȳ, r
′) for some

r′ = r′(r, ȳ) which goes to zero with r.
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). We repeat the proof of Proposition 1.12 (in fact, that result is merely a special case of

the present, alongside the fact that types in S1(0) are trivially isolated). Indeed, for each N there exists
by hypothesis a neighbourhood UN ∋ ξ consisting of ζ such that

∀y ∈ XN d(ζ↾y, ξ↾y) < 1/N.

Using Proposition 1.7 we conclude as for Proposition 1.12. �2.14

Theorem 2.15. The following are equivalent for a separable Banach space E:

(i) The space G[E] exists.
(ii) For each n, the set of isolated types in Sn(E) is dense.
(iii) The set of isolated types in S1(E) is dense.

Proof. We only need to show that if the set of isolated 1-types is dense then G[E] exists. Indeed,
proceeding as in the proof of Proposition 2.13 there exists a separable Gurarij space G ⊇ E which only
realises isolated 1-types over E. By Lemma 2.14, G is atomic over E. �2.15

Corollary 2.16. Let E be a separable Banach space, and let H = Aut(G) act by composition on the
space of linear isometric embeddings X = Emb(E,G), where both are equipped with the topology of
point-wise convergence (the strong operator topology).

(i) The space X is Polish, the action H y X is continuous and all its orbits are dense.
(ii) If G[E] exists, then the set of ϕ ∈ X such that G is atomic over ϕE (call these atomic embed-

dings) is a dense Gδ orbit under this action.
(iii) If G[E] does not exist then there are no atomic embeddings and all orbits are meagre.

Proof. The first item is easy and left to the reader (density is by Corollary 2.8).
It follows from Theorem 2.6 that the set Z ⊆ Emb(E,G) of atomic embeddings forms a single orbit

under Aut(G). By definition, Z 6= ∅ if and only if G[E] exists. Let In ⊆ Sn(E) denote the set of isolated
types. For r > 0, we know that B(In, r) is a neighbourhood of In, so there exists an open set Un,r such
that In ⊆ Un,r ⊆ B(In, r) (in fact one can show that B(In, r) is open, but we shall not require this).
For each b̄ ∈ G

n, we define Vb̄,r ⊆ Emb(E,G) to consist of all ϕ such that tp(b̄/ϕE) ∈ ϕUn,r. It is easy
to see that since Un,r is open, so is Vb̄,r. Since the set of isolated types is metrically closed, we have

Z =
⋂

n,b̄∈Gn,r>0

Vb̄,r =
⋂

n,b̄∈Gn
0 ,k

Vb̄,2−k ,
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where G0 ⊆ G is any countable dense subset. Thus, if Z 6= ∅ it is a dense Gδ orbit.
Assume now that G[E] does not exist, namely, that isolated types are not dense, and let ψ ∈ X .

Then G necessarily realises some type ψξ ∈ Sn(ψE) where ξ ∈ Sn(E) is non isolated. By Lemma 1.16,
for r > 0 small enough, the closed metric ball B(ξ, r) is (topologically) closed of empty interior. For
b̄ ∈ G

n, let Vb̄ ⊆ Emb(E,G) consist of all ϕ such that tp(b̄/ϕE) /∈ B(ϕξ, r). Reasoning as above, each
Vb̄ is a dense open set, and the set of ϕ ∈ X such that G omits ϕξ is co-meagre. Since this set is also
disjoint from the orbit of ψ, we are done. �2.16

3. Isolated types over one-dimensional spaces

In this section we shall attempt to characterise isolated types over arbitrary finite-dimensional E. We
start with the next-easiest case after E = 0, namely when dimE = 1. Even though this case will be fully
subsumed in the general finite-dimensional case, it is technically significantly simpler and deserves some
specific comments, so we chose to treat it separately.

Definition 3.1. A norming linear functional for v ∈ E r {0} is a continuous linear functional λ ∈ E∗
=1

such that λv = ‖v‖.
By the Hahn-Banach Theorem, a norming linear functional always exists. We say that v is smooth in

E if the norming linear functional is unique.

Proposition 3.2. Let E be a Banach space, and let v ∈ E r {0}. Then E is atomic over v if and only
if v is smooth in E.

Proof. By Lemma 2.14, we may assume that E = 〈v, u〉 and show that tp(u/v) is isolated if and only if
v is smooth in E. Assume first that for some s, ε > 0 and D ∈ R we have

‖v ± su‖ < ‖v‖ ± sD + sε.

It follows by the triangle inequality that

‖v‖ ± tD − tε ≤ ‖v ± tu‖ < ‖v‖ ± tD + tε, 0 < t ≤ s,

or equivalently,
∣

∣‖ ± rv + u‖ − r‖v‖ ∓D
∣

∣ < ε, r ≥ s−1.

If v is smooth, let λ be the unique norming functional, and let D = λu. Then for any ε > 0 there
exists s as above. Then ξ = tp(u/v) satisfies the open condition ‖v ± sx‖ < ‖v‖ ± sD + sε, which in
turn implies that

∣

∣‖rv − u‖ − ‖rv − x‖
∣

∣ ≤ 2ε for all |r| ≥ s−1. Finitely many additional open condition
can ensure that that the same holds for all r yielding an open set ξ ∈ U ⊆ B(ξ, 3ε), showing that ξ is
isolated.

Conversely, if v is not smooth then there are norming functionals λ±, where D− = λ−u < D+ =
λ+u. Any neighbourhood of ξ contains one U which is defined by finitely many conditions of the form
∣

∣‖riv + x‖ − ‖riv + u‖
∣

∣ < ε. We can construct a Banach space E′ generated by {v, w}, with ‖v‖ as in
E, such that ζ = tp(w/v) ∈ U and v is smooth in E′, with unique norming functional being defined by
µw = D−. This means that for r big enough we have

‖rv + w‖ ≈ r‖v‖ +D− ≤ ‖rv + u‖+D− −D+,

so d(ξ, ζ) ≥ D+ −D−. Therefore B(ξ,D+ −D−) is not a topological neighbourhood of ξ, and ξ is not
isolated. �3.2

We provided a fairly elementary argument to the “only if” part of Proposition 3.2. The machinery
developed above provides us with a conceptually different argument, which in a sense we find preferable.
First, let us recall that by Mazur [Maz33, Satz 2], the set of smooth points in the unit sphere of a separable
Banach space is a dense Gδ. Assume now that E is atomic over v, and without loss of generality, say that
‖v‖ = 1, and let u ∈ G be smooth of norm one. By Theorem 2.5 there exists an isometric embedding of
E in G sending v to u, so v must be smooth.

Yet a third way to prove that if E is atomic over v then v is smooth in E is via Lemma 1.11. We
follow this path in a more general case below, see Theorem 5.7.

It follows from Lemma 1.17 that if E ⊆ F , and the topology and metric coincided on Sn(F ), then
they would also coincide on Sn(E), which would mean that every type in Sn(E) is isolated. Given
Proposition 3.2, it follows that the metric strictly refines the topology on Sn(E) for every E 6= 0.

We obtain the following result, stated by Lusky [Lus76] (the proof is not spelled out explicitly, but
given as “apply the following modifications to the proof of the uniqueness of the Gurarij space”).
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Corollary 3.3. The smooth points in the unit sphere of G form a single dense Gδ orbit under isometric
automorphisms.

Proof. Immediate from Proposition 3.2 and Theorem 2.6. �3.3

4. The Legendre-Fenchel transformation of 1-types

We shall eventually extend Proposition 3.2 to types over an arbitrary finite-dimensional space E. We
start with a few technical preliminaries, which hold whether dimE is finite or infinite. The notion of
smoothness of a single vector, or of the one-dimensional vector space it generates, will be replaced in
dimension higher than one with the following generalisation (see Phelps [Phe60]).

Definition 4.1. We say that an extension of Banach space E ⊆ F has property U , or that E has property
U in F , if every continuous linear functional on E has a unique extension to F of the same norm.

We say that a type ξ ∈ SI(E) has property U if E has property U in E[ξ].
We say that a 1-type ξ ∈ S1(E) has property Uε, for some ε > 0, if for every λ ∈ E∗

=1 and two
norm-preserving extensions λ′, λ′′ to E[ξ], we have |λ′x− λ′′x| < ε.

If E ⊆ F and dimE = 1 then E has property U in F if and only if one (every) non trivial vector in
E is smooth in F . Also, a 1-type has property U if and only if it has property Uε for every ε > 0.

Lemma 4.2. Let E be a Banach space. Then the set of types in Sn(E) with property U is metrically
closed.

Proof. Assume that ξk → ξ in d, where each ξk has property U . Possibly passing to a sub-sequence we
may assume that d(ξk, ξk+1) < 2−k, and using our basic amalgamation result Fact 1.1 we can construct
an extension F ⊇ E containing realisations v̄k of ξk, such that in addition d(v̄k, v̄k+1) < 2−k, and which
is moreover generated as a Banach space by these realisations. Then v̄ = lim v̄k realises ξ and E has
property U in F , so a fortiori in E[ξ]. �4.2

Lemma 4.3. An arbitrary extension E ⊆ F has property U if and only if tp(x/E) has it for every
x ∈ F . In other words, Lemma 2.14 holds with isolation replaced with property U .

Proof. Immediate. �4.3

We have thus reduced both isolated and property U to 1-types. This will be most useful in conjunction
with the following alternative characterisation of 1-types over a normed space E, introduced in [Benb]
(see also Uspenskij [Usp08]).

Definition 4.4. Let X be an arbitrary metric space. A Katětov function on X is a function f : X → R

satisfying f(x) ≤ f(y)+d(x, y) and d(x, y) ≤ f(x)+f(y) for all x, y ∈ X . The space of Katětov functions
on X is denoted K(X). As with type spaces, we equip K(X) with a double structure, the topology of
point-wise convergence and the metric of uniform convergence (i.e., the supremum metric).

If X is a normed space, or a convex subset thereof, we let KC(X) denote the space of convex Katětov
functions on X , with the induced topometric structure.

Fact 4.5. Let ξ be a 1-type over E, and let fξ(a) = ‖x− a‖ξ for a ∈ E. Then

(i) The map ξ 7→ fξ defines a bijection between S1(E) and KC(E), whose inverse is given by

‖αx− a‖ξ =

{

‖a‖ α = 0

|α|ξ(a/α) α 6= 0.

(ii) This bijection is a topological homeomorphism and a metric isometry.

Proof. The first item is [Benb, Lemma 1.2]. For the second, that the bijection is homeomorphic (in the
respective topologies of point-wise convergence) follows easily from the characterisation of the inverse,
while the isometry is exactly Proposition 1.7 for 1-types. �4.5

Consequently, from now on we shall identify KC(E) with S1(E).

Fact 4.6. Let X ⊆ Y be metric spaces, and for f ∈ K(X) and y ∈ Y define

f̃(y) = inf
x∈X

f(x) + d(x, y).

Then f̃ ∈ K(Y ) extends f , and the induced embedding K(X) ⊆ K(Y ) is isometric. When Y = E is a

normed space, X ⊆ E is convex and f ∈ KC(X), the extension f̃ is convex as well, inducing an isometric
embedding KC(X) ⊆ KC(E).
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Proof. The first assertion goes back to Katětov [Kat88], and the second is [Benb, Lemma 1.3(i)]. �4.6

Question 4.7. If X ⊆ E is convex and compact (or totally bounded) then the topology and metric
agree on KC(X), and it follows that the inclusion KC(X) ⊆ KC(E) is also continuous, and therefore
homeomorphic (since the restriction map is always continuous). At the other extremity, if X = E then
the inclusion is homeomorphic as well. What about the general case?

A useful tool in analysing convex Katětov functions (or convex functions in general) is convex conjug-
ation, or the Legendre-Fenchel transformation. In the infinite-dimensional case we consider E and E∗

with their norm typologies, unless explicitly said otherwise.

Fact 4.8. Let f : E → R∪{∞} be convex and lower semi-continuous, not identically ∞ (what Rockafellar
calls a closed proper convex function). Call dom f = {v ∈ E : f(v) <∞}, the domain of f , itself a non
empty convex set, and define the conjugate f∗ : E∗ → R ∪ {∞} by

f∗(λ) = sup
v∈E

λv − f(v) = sup
v∈dom f

λv − f(v) ∈ R ∪ {∞}.

Then f∗ is again convex, lower semi-continuous in the weak∗ topology, and a fortiori in the norm topology,
not identically ∞, and f = f∗∗↾E under the canonical identification E ⊆ E∗∗. In particular, f is lower
semi-continuous in the weak topology.

Moreover, if g is another such function, then ‖f − g‖ = ‖f∗ − g∗‖, where ‖ · ‖ denotes the supremum
norm, possibly infinite, and we agree that |∞ −∞| = 0.

Proof. For the finite-dimensional case, see Rockafellar [Roc70, Section 12]. The general case is proved
essentially in the same fashion, using the version of the Hahn-Banach Theorem stating that a closed
convex set is the intersection of the closed half-spaces which contain it.

The moreover part is easy to check directly. �4.8

Clearly, λv ≤ f(v) + f∗(λ) for any v, λ. The following is an easy criterion which would allow us to
obtain equality.

Corollary 4.9. Let f be as in Fact 4.8, let R ≥ 0, and let v ∈ dom f be such that f is (finite and)
R-Lipschitz in some neighbourhood of v. Then there exists λ ∈ E∗ such that λv = f(v)+ f∗(λ), and any
such λ satisfies ‖λ‖ ≤ R.

Proof. Let r be such that f is R-Lipschitz on B(v, r), and for t > 0 let St ⊆ E∗ be the set of λ such that
λv ≥ f(v) + f∗(λ) − t. This set is non empty (since f∗∗(v) = f(v) is finite) and weak∗-closed (since f∗

is lower semi-weak∗-continuous). Let λ ∈ St, and let u ∈ E=1 norm λ. Then

f(v) + rR ≥ f(v + ru) ≥ λ(v + ru)− f∗(λ) ≥ f(v) + r‖λ‖ − t.

Thus ‖λ‖ ≤ R + t
r
, so St is moreover bounded. It follows that

⋂

t>0 St is non empty and contained in
E∗

≤R, as desired. �4.9

Lemma 4.10. Let f, g : E → R be lower semi-continuous and convex, let X ⊆ E be convex and open,
and let Y ⊆ E∗ be the set of λ for which there exists v ∈ X with f(v) + f∗(λ) = λv. If g agrees with f
on X, then g∗ agrees with f∗ on Y .

Proof. Let λ ∈ Y , and let v ∈ X be such that f(v)+ f∗(λ) = λv. Then f ≥ λ−λv+ f(v), and therefore
g↾X ≥ λ − λv + g(v). Since X is open and g convex, this implies g ≥ λ − λv + g(v) throughout. Then
g∗(λ) = λv − g(v) = λv − f(v) = f∗(v), as desired. �4.10

A convex lower semi-continuous function f : E → R ∪ {∞} is essentially the same thing as a convex
lower semi-continuous function f : X → R, with convex domain X , such that lim infv→u f(v) = ∞ for all
u ∈ XrX . Indeed, we can get one from the other by restricting to the finite domain in one direction, or
by extending by ∞ in the other. A special case of the second form is when X ⊆ E is closed and convex
and f ∈ KC(X). If X is merely convex, every f ∈ KC(X), being 1-Lipschitz, admits a unique extension
to f ∈ KC(X), so requiring X to be closed is not truly a constraint.

Lemma 4.11. Let X ⊆ E be closed and convex and let f ∈ KC(X). Then

(i) The domain dom f∗ contains the closed unit ball of E∗, and if λ ∈ dom f∗, ‖λ‖ > 1, then
f∗(λ) = supv∈∂X λv − f(v). In particular, if X = E (and ∂X = ∅) then dom f∗ is exactly the
closed unit ball.

(ii) If X is and ‖λ‖ = 1 then f∗(λ) = supv∈∂X λv − f(v).
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(iii) Let f̃ ∈ KC(E) be as per Fact 4.6. Then

f̃∗(λ) =

{

f∗(λ) ‖λ‖ ≤ 1

∞ ‖λ‖ > 1,

and conversely,

f̃(v) = sup
‖λ‖≤1

λv − f∗(λ).

In addition, for v /∈ X, this is the same as sup‖λ‖=1 λv − f∗(λ).

(iv) For f ∈ KC(E) and λ ∈ E∗
=1, the least possible value of a norm-preserving extension of λ at a

realisation of f ∈ S1(E) is f∗(λ).
(v) Let now f : E → R∪{∞} be any convex and lower semi-continuous function not identically ∞.

Then f ∈ KC(E) if and only if dom f∗ = E∗
≤1 and f∗(λ) + f∗(−λ) ≤ 0 for all λ ∈ E∗

≤1, or,
equivalently, for all λ ∈ E∗

=1.

Proof. For the first item, let first ‖λ‖ ≤ 1, and let u ∈ X be fixed. Then for all v ∈ X we have
f(u) ≥ ‖v−u‖−f(v) ≥ λv−f(v)−‖u‖, whereby f∗(λ) ≤ f(u)+‖u‖ <∞. Now let ‖λ‖ > 1 and assume
that λ ∈ dom f∗. Choose u ∈ E which is normed by λ. Then for each v ∈ dom f , the set {v+αu : α ≥ 0}
cannot be contained in X and therefore intersects the boundary, so the supremum is attained on ∂X . A
similar consideration also yields the second item.

For the third item, we already know that dom f̃∗ is exactly the closed unit ball. In addition, it is clear
that f̃∗ ≥ f∗, and if ‖λ‖ ≤ 1 then, for every v ∈ E and u ∈ X :

λv − f̃(v) = λv − inf
u∈X

[

f(u) + ‖v − u‖
]

≤ sup
u∈X

λu− f(u) = f∗(λ),

whereby f̃∗(λ) = f∗(λ). This gives us the first identity, and then Fact 4.8 gives the second one. Now
assume that v /∈ X , so by the Hahn-Banach Theorem there exists µ ∈ E∗

=1 such that µ↾X < µv. For any
λ ∈ E∗

≤1 there exists α ≥ 0 such that ‖λ + αµ‖ = 1. Then f∗(λ + αµ) ≤ f∗(λ) + αµv, or equivalently,

λv − f∗(λ) ≤ (λ+ αµ)v − f∗(λ+ αµ), whence it follows that f̃(v) = sup‖λ‖=1 λv − f∗(λ).

The fourth item is immediate. For the fifth, we have already seen that if f ∈ KC(E) then dom f∗ =
E∗

≤1, and the previous item implies that f∗(λ) + f∗(−λ) ≤ 0 for λ ∈ E∗
=1, and therefore, by convexity,

for λ ∈ E∗
≤1. Conversely, assume that dom f∗ = E∗

≤1. Then f = f∗∗ is necessarily 1-Lipschitz, and in
particular never ∞. Finally, for distinct v, u ∈ E, let λ ∈ E∗

=1 norm v − u. Then

f(v) + f(u) ≥ λv − f∗(λ) − λu− f∗(−λ) ≥ λ(v − u) = ‖v − u‖,

as desired. �4.11

Given a closed convex X ⊆ E, we shall say that f ∈ KC(X) has property Uε if f̃ does, as a 1-type.
By Lemma 4.11, f has property Uε if and only if f∗(λ) + f∗(−λ) > −ε for all λ ∈ E∗

=1.

Lemma 4.12. Let X ⊆ E be closed and convex, and let f ∈ KC(X), g ∈ KC(E) be such that f has

property Uε and g ≤ f (i.e., g ≤ f̃ , or equivalently, g↾X ≤ f). Then outside X we have g ≥ f̃ − ε.

Proof. Let v ∈ E r X , and assume that g(v) + ε < f̃(v). Then there exists λ ∈ E∗
=1 such that

0 < λv − f∗(λ) − g(v) − ε. By property Uε, we get 0 < λv − g(v) + f∗(−λ) ≤ g∗(λ) + g∗(−λ), which is
impossible. �4.12

5. Isolated types over finite-dimensional spaces

From this point onward, we need to introduce the extra hypothesis that dimE <∞.

Lemma 5.1. Let E be a finite-dimensional normed space and let f ∈ KC(E) have property Uε. Then f
has property Uε′ for some ε′ < ε, and it admits an open neighbourhood f ∈W ⊆ KC(E) such that every
member of W has property Uε, and diam(W ) < ε.

In particular, if f has property U then it is isolated.

Proof. For λ ∈ E∗
=1 choose δλ > 0 such that f∗(λ)+f∗(−λ)+ε > 4δλ (ensuring that δλ = δ−λ), as well as

aλ ∈ E such that λaλ − f(aλ)+ δλ > f∗(λ). Let Vλ be the open ball of radius δλ
‖aλ−a−λ‖

around λ. Since

the dimension is finite, E∗
=1 is compact, and for some finite set {λi}i<n ⊆ E∗

=1 we have E∗
=1 ⊆

⋃

i Vλi
.

Let δ = mini δλi
, so f has property Uε−3δ, proving our first assertion.

Let X ⊆ E be the convex hull of {aλi
}i, a compact set. Then there exists an open neighbourhood

f ∈ W such that for every g ∈ W and a ∈ X we have |f(a) − g(a)| < δ, and we claim that this W is
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as desired. Indeed, it is clear from the construction that every g ∈ W has property Uε, so all we have
left to show is the statement regarding the diameter. Let h = f↾X + δ ∈ KC(X), and let g ∈ W . Then

h̃ has property Uε, by construction, and g ≤ h̃. By Lemma 4.12 (and since our construction forces that

4δ < ε) we get h̃− (ε− δ) ≤ g. Thus diam(W ) ≤ ε− δ < ε, concluding the proof. �5.1

We now seek to show that types with property U are dense. The strategy is, first, characterise those
f ∈ KC(E) for which f∗ is continuous, and second, given such f modify it slightly to give it property
U . For the first step, recall the following definition.

Definition 5.2. We say that a function f ∈ KC(E) is local if there are fk ∈ KC(Xk), where each

Xk ⊆ E is convex and compact, such that f̃k → f uniformly. The set of local functions in KC(E) was
denoted in [Benb] by KC,0(E).

Lemma 5.3. Let E be a finite-dimensional normed space, and let f ∈ KC(E). Then f is local if and
only if f∗ is continuous on E∗

≤1. Also, if f is isolated (so in particular, if it has property U) then it is
local.

Proof. Let first X ⊆ E be compact, and in particular bounded, say X ⊆ E≤R, and let g ∈ KC(X). Then
g∗ is easily verified to be R-Lipschitz on its domain, and in particular continuous. Since a uniform limit
of continuous functions is continuous, if f is local then f∗ is continuous on E∗

≤1.

Conversely, assume that f∗ is continuous on E∗
≤1. For each k let fk = f↾E≤k

. Then f̃k ց f point-wise,

and for λ ∈ E∗≤ 1 we have

f∗(λ) = sup
v
λv − f(v) = sup

v,k

λv − fk(v) = sup
k

f∗
k (λ),

i.e., f∗
k ր f∗ point-wise on E≤1. Since each f∗

k is lower semi-continuous, f∗ is continuous, and E≤1 is

compact, this implies that f∗
k → f∗ uniformly on E∗

≤1, whereby f̃k → f uniformly, and f is local.
Finally, assume that f is isolated, and let fk be as above. Then for each ε > 0 there exists a

neighbourhood f ∈W of diameter ≤ ε. On the other hand, for every neighbourhood W of f there exists
k such that f̃ℓ ∈ W for all ℓ ≥ k. It follows that f̃k → f uniformly, and f is local. �5.3

The converse of the last assertion fails. Indeed, take any local f ∈ KC(E) (isolated or not). Then for
any r > 0, f + r is still local, but cannot have property U , and by what we shall show later on, it follows
that it is not isolated.

In fact, we shall only require the easy direction of Lemma 5.3, but given the crucial role played by
local functions in [Benb] it seemed appropriate to give the full characterisation. The next sequence of
technical lemmas will allow us to construct types with property U .

Lemma 5.4. Let f : E≤1 → R be convex, continuous, satisfying f(v)+f(−v) < 0 for all v ∈ E=1. Then
f(v) + f(−v) < 0 for all v ∈ E≤1, and for any v ∈ E=1 there exists g : E≤1 → R convex, continuous,
satisfying

g(v) =
2

3
f(v)−

1

3
f(−v), f(u) ≤ g(u) <

1

2
f(u)−

1

2
f(−u) for u ∈ E≤1.

Moreover, given any r < 1, we may have g agree with f on E≤r.

Proof. The first assertion is immediate, so we prove the second. Let β = f(v) + f(−v) < 0. Since f
is convex and lower semi-continuous, there exist functionals µ± ∈ E∗ such that f(±u) > µ±(u − v) +

f(±v) + β
7 for all u. Let also λ norm v, and for α > 0 define

hα(u) = α(λu − 1) +
1

2
µ+(u − v) +

2

3
f(v)−

1

2
µ−(u − v)−

1

3
f(−v).

Then, first, hα(v) =
2
3f(v) −

1
3f(−v) > f(v). Second, for u ∈ E≤1 we have hα(u) ≤

1
2f(u)−

1
2f(−u) +

β
6 − β

7 <
1
2f(u)−

1
2f(−u). Third, taking α big enough, we also have hα ≤ f on E≤r. Then g = hα ∨ f

is as desired. �5.4

Lemma 5.5. Let E be a finite-dimensional normed space, and let f : E≤1 → R be convex, continuous,
satisfying f(v) + f(−v) < 0 for all v ∈ E=1. Then there exists g : E≤1 → R convex, lower semi-
continuous, satisfying g(v) + g(−v) = 0 for v ∈ E=1, and in addition g ≥ f .

Moreover, given any r < 1, we may have g agree with f on E≤r.
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Proof. First, for each v ∈ E=1 apply Lemma 5.4, obtaining gv. By continuity, there exists an open
neighbourhood v ∈ Vv such that gv(u) >

3
4f(u) −

1
4f(u) for all u ∈ Vv ∩ E=1. By compactness of the

unit sphere in finite dimension we have E=1 ⊆
⋃

i<n Vvi for some finite family, and then let us define
f ′ =

∨

i gvi . Then f ′ is convex, continuous, and for v ∈ E=1 it satisfies

3

4
f(v)−

1

4
f(−v) < f ′(v) <

1

2
f(v)−

1

2
f(−v),

and therefore
1

2

[

f(v) + f(−v)
]

< f ′(v) + f ′(−v) < 0.

We may therefore construct an increasing sequence in this fashion: f0 = f , fk+1 = f ′
k, and define

g =
∨

fk.
Then g is convex and lower semi-continuous, as supremum of such, and by construction g(v)+g(−v) =

0 on E=1. Finally, we can do the entire construction so that each fk, and therefore g, agree with f on
E≤r. �5.5

Notice that by the last assertion of Lemma 5.3, and upon passing to the dual, such g is in fact
continuous on E≤1.

Lemma 5.6. Let E be a finite-dimensional normed space. Then the set of f ∈ KC(E) with property U
is dense.

Proof. Let V ⊆ KC(E) be open and let f ∈ V . We may assume that V is basic, namely of the form
{

g ∈ KC(E) : g(vi) ∈ Ii for all i < n
}

for some vi ∈ E and open intervals Ii. Let R = max ‖vi‖ + 1,
f0 = f↾E≤R

and M = 2 sup f0 +1, and for ε > 0 let fε = (1− 2ε)f0 + εM . Then fε ∈ KC(E≤R), and for

ε small enough, which we now fix, we also have f̃ε ∈ V . We observe that fε is (1 − 2ε)-Lipschitz, f∗
ε is

continuous on E≤1, and f∗
ε (λ) + f∗

ε (−λ) < −ε for all λ ∈ E∗
=1.

By Lemma 5.5 (and Lemma 4.11) there exists g ∈ KC(E) with property U , such that g∗ ≥ f∗
ε

and the two agree on E∗
≤1−ε. By Corollary 4.9 for every v ∈ E<R there exists λ ∈ E∗

<1−ε such that

f(v) + f∗(λ) = λv. By Lemma 4.10, applied to X = E∗
<1−ε, we have g↾E<R

= fε↾E<R
, so g ∈ V as well,

and we are done. �5.6

Theorem 5.7. Let E be a finite-dimensional normed space. Then for every I, the isolated I-types over
E are exactly the ones with property U , and they are topologically dense among all types. In particular,
G[E] exists, and atomic extensions are exactly those with property U .

Proof. First, let us consider 1-types. By Lemma 5.1, every 1-type with property U is isolated. On the
other hand, by Lemma 5.6, the set of 1-types with property U is topologically dense in S1(E), and by
Lemma 4.2 it is metrically closed. Therefore, by Lemma 1.11, every isolated 1-type has property U . By
Lemma 2.14 and Lemma 4.3, the same is true for types in arbitrarily many variables. We conclude using
Theorem 2.15. �5.7

6. Isolated types over infinite-dimensional spaces

Let us observe, first, that the hypothesis that dimE <∞ is not superfluous in Theorem 5.7. Indeed,
let E ⊆ F be Hilbert spaces with dimE = ∞, and let v ∈ F rE. Then, on the one hand, the extension
has property U , while on the other hand, it is not difficult to check that tp(v/E) is not isolated. If
tp(v/E) ∈ U ⊆ S1(E), we may replace U with a basic open set which only uses parameters in some
finite-dimensional E0 ⊆ E, and then U also contains tp(u/E) for some u ∈ E1 where E1 ⊆ E is any
proper extension of E0. This suggests that over infinite-dimensional spaces the situation is quite different,
and that there may be “few” isolated types. In fact, we shall show that there are none, except for the
ones realised in E (which are always isolated). For this, we start by analysing the finite-dimensional case
a little further. We shall use the following easy fact regarding the convex function “generated” by an
arbitrary function.

Fact 6.1. Let X0 ⊆ E be any set and let X = Conv(X0) be its closed convex hull. Let f0 : X0 → R be
an arbitrary function such that f ≥ λ + α for some linear functional λ and α ∈ R (namely, such that
f∗
0 is not identically +∞). Then f∗∗

0 (the double convex conjugate) is the greatest lower semi-continuous
convex function lying below f0, and it can be recovered explicitly as

f(x) = inf

{

lim inf
∑

i

αn,if0(xi) :
∑

i

αn,ixi → x

}

,
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the infimum being taken over all possible expressions of x as a limit of finite convex combinations of
members of X0 (so f(x) = inf ∅ = ∞ if x /∈ X).

If f0 is such that for every x ∈ X0, and for every sequence
∑

i αn,ixi of finite convex combinations
in X0 which converges to x, we have f0(x) ≤ lim infn

∑

i αif0(xi), then f extends f0. If f0 is lower
semi-continuous then this last condition holds automatically for every x ∈ X0 which is an extreme point
of X.

Lemma 6.2. Let E be finite-dimensional and let f ∈ KC(E) have property U . Then for every F ⊇ E
there exists g ∈ KC(F ) extending f which has property U as well, and such that inf g = inf f .

Proof. Before we start, let us remark that since E ⊆ F , f can also be viewed as a convex function on
F (extended by ∞ outside E), so the symbol f∗ can represent two functions, one on E∗ and one on F ∗.
In order to avoid confusion, we shall only use f∗ to denote the former. Then the latter is merely the
composition f∗π, where π : F ∗ → E∗ is the restriction map.

Let X ⊆ F ∗
≤1 denote the set of extreme points, so F ∗

≤1 = Conv(X), and let Y ⊆ F ∗
≤1 denote the set

of λ such that ‖λ‖ = ‖πλ‖. Define h0 : X ∪ Y → R by

h0(λ) =

{

f∗(πλ)−f∗(−πλ)
2 λ ∈ X,

f∗(πλ) λ ∈ Y,

observing that since f has property U , the two cases agree on X∩Y , and both f∗ and h0 are continuous.
Let also g = h∗0 and h = g∗ = h∗∗0 . Then h is lower semi-continuous, and domh = F ∗

≤1. Assume

now that λ ∈ Y is the limit as n → ∞ of finite convex combinations
∑

αn,iλi, where λi ∈ X ∪ Y .
Then

∑

αn,ih0(λi) ≥
∑

αn,if
∗(πλi) ≥ f∗ (

∑

αn,iλi) → f∗(λ) = h0(λ). By Fact 6.1, it follows that
h↾X∪Y = h0. By Lemma 4.11, g ∈ KC(F ) and has property U .

Now let v ∈ E. On the one hand, h0 ≥ f∗π implies g(v) ≤ f(v). On the other hand, for every
λ ∈ E∗

≤1 there exists µ ∈ Y extending λ. Then g(v) ≥ µv − h0(µ) = λv − f∗(λ) for all such λ, whereby

g(v) ≥ f(v), so g↾E = f .
Finally, since 0 ∈ Y we have inf g = −g∗(0) = −f∗(π0) = inf f . �6.2

It follows that over infinite-dimensional E is as far as possible from the situation described in The-
orem 5.7.

Theorem 6.3. Let E be a Banach space (of arbitrary dimension).

(i) The set of types in Sn(E) with property U is dense. Moreover, the set of non realised types with
property U is dense.

(ii) If dimE = ∞ then the only isolated types over E are the realised ones.

Proof. By Theorem 5.7, we may assume for both items that dimE = ∞. Let us first prove this for
1-types. In fact, we shall prove that if W ⊆ KC(E) is open and f ∈W is not realised, namely inf f > 0,
then W contains a non realised type with property U and diam(W ) ≥ inf f .

We may assume that W is basic, and therefore defined using finitely many parameters in E. Let
E0 ⊆ E be the subspace generated by these parameters, so W is the pull-back of some open V ⊆ KC(E),
and f↾E ∈ V . If r < inf f , then possibly shrinking V , for every g ∈ V we have r < inf g. By Theorem 5.7
there exists g ∈ V with property U . By Lemma 6.2, there exists g1 ∈ W extending g with property
U , such that inf g1 = inf g > r, so g1 is not realised, concluding the proof of the first part. Let also
g2 = g̃ ∈ W be the trivial extension of g.

Since dimE = ∞, there exist a linear functional λ ∈ E∗ such that E0 ⊆ kerλ and ‖λ‖ = 1. Then
on the one hand we have g∗1(λ) + g∗1(−λ) = 0, so we may assume that g∗1(λ) ≥ 0. On the other hand, if
π : E∗ → E∗

0 is the projection map,

g∗2(λ) = g∗(πλ) = g∗(0) = − inf g < −r.

Thus diam(W ) ≥ ‖g1 − g2‖ = ‖g∗1 − g∗2‖ > r, and this for every r < inf f , proving the second part.
For n-types, the second item follows immediately from the case n = 1. As for the first item, we

proceed by induction, the case n = 1 having been proved. Let W ⊆ Sn+1(E) be open and non empty,
and let V ⊆ Sn(E) be its projection on the first n variables. By Lemma 1.14, V is open as well, so by
the induction hypothesis it contains a non realised type ξ with property U . Let Wξ be the fibre of W
over ξ. Then it is open and non empty as well, and can be identified with an open set W ′ ⊆ S1(E[ξ]).
By the case n = 1, there exists ζ ∈ W ′ with property U . Let v̄ and u be the respective realisations of
ξ and ζ in E[ξ][ζ]. Then ρ = tp(v̄, u) ∈ Wξ is the point corresponding to ζ ∈ W ′, and it is clear that
ρ ∈W is non realised and has property U . �6.3
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Corollary 6.4. Let E be a separable Banach space. Then G[E] exists if and only if dimE < ∞ or
E = G.

Proof. For one direction, if E is a Gurarij space then E is G[E], and if dimE <∞ apply Theorem 5.7.
Conversely, assume that G[E] exists and dimE = ∞. Then the isolated types over E are dense, but by
Theorem 6.3 these types are all realised. By Lemma 2.2, E is a Gurarij space. �6.4

This, together with Corollary 2.16, gives a full characterisation of generic orbits of the action
Aut(G) y Emb(E,G).

Corollary 6.5. Let E be a separable Banach space, and let the Polish group H = Aut(G) act continu-
ously by composition on the Polish space of linear isometric embeddings X = Emb(E,G).

(i) All orbits are dense.
(ii) If dimE ≤ ∞ or E ∼= G then E y X admits a unique dense Gδ orbit. If E = G, this orbit is

H ⊆ X.
(iii) Otherwise, all orbits are meagre.

Corollary 6.6. Let E be a Banach space, and let κ be an infinite cardinal, greater or equal to the density
character of E. Then there exists a Gurarij space G such that E ( G is a proper extension with property
U , and the density character of G is κ.

Proof. By transfinite induction on α ≤ κ we construct an increasing sequence Eα, where E0 = E and
for limit ordinals, Eα is the completion of

⋃

β<αEβ . At successor steps we choose some non empty open

set Uα ⊆ S1(Eα), and let Eα+1 = Eα[ξ] where ξ ∈ Uα is not realised in Eα and has property U . We can
do this in such a fashion that every non empty open set V ⊆ S1(Eκ) contains the pull-back of some Uα,
so by Lemma 2.2 G = Eκ is a Gurarij space. The extension E ⊆ G has property U by an easy induction
argument, and it clearly has the desired density character. �6.6

Question 6.7. Is the set of types with property U over a separable E a Gδ set? It is when dimE < ∞
or when E ∼= G.

Notice that for separable E for which this is true, we can give an alternative proof for Corollary 6.6
using the Omitting Types Theorem (and the fact that the types with property U are metrically closed).

Question 6.8. Let E be separable and consider all the separable Gurarij space extensions of E which
have property U . If dimE <∞, we know that all these extensions are isometrically isomorphic over E,
and that every Gurarij extension of E contains, as a sub-extension, one with property U . What of this,
if any, survives when dimE = ∞?

We saw that such extension at least exist, and since G admits a proper Gurarij space extension with
property U , such extensions are not, in general, unique. Can one show that they are never unique?
(If every Gurarij space extension of E contains a sub-extension with property U , then non uniqueness
follows via a type omission argument). Are the Gurarij extensions with property U almost unique for
some reasonable notion of “almost uniqueness” (e.g., almost isometrically unique)?

7. Counting types

We conclude with a calculation of the size of the type-space over a separable Banach space E. By
“size” we mean here its metric density character (the cardinal | Sn(E)| is the continuum as soon as n > 0
and E 6= 0).

Theorem 7.1. Let E be a separable Banach space.

(i) If E is finite-dimensional and polyhedral then Sn(E) is metrically separable.
(ii) Otherwise, Sn(E) has metric density character equal to the continuum for every n ≥ 1.

Proof. Assume first that E is finite-dimensional and polyhedral. Then by Melleray [Mel07, Remarks
following Corollary 4.6], the space K(E) is separable, and a fortiori so is S1(E) = KC(E). The passage
from 1-types to n-types is done as in the proof of Lemma 2.14, and is left to the reader.

Now assume that E is not so. Then by Lindenstrauss [Lin64, Theorem 7.7] there exists a sequence
{vn} ⊆ E such that for any n 6= m and choice of signs:

‖vn ± vm‖ ≤ ‖vn‖+ ‖vm‖ − 1.

Embed E (isometrically) in ℓ∞, and for a sequence ε̄ ∈ {±1}N, consider the family of closed balls
B(εnvn, ‖vn‖−

1
2 ). By hypothesis every two such balls intersect at a non empty set, and therefore there
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exists v ∈ ℓ∞ which belongs to them all. In other words, there exists ξε̄ = tp(v/E) ∈ S1(E) such that
‖x − εnvn‖

ξε̄ ≤ ‖vn‖ −
1
2 . If ε̄ 6= ε̄′ then d(ξx̄, ε̄

′) ≥ 1, so the density character of S1(E) is at least the
continuum. The same holds a fortiori for Sn(E), n ≥ 1. �7.1

Remark 7.2. Lindenstrauss’s argument is quite elementary and yields a quick proof for Theorem 7.1(ii)
which does not depend on the machinery developed in earlier sections. Arguments closer to the spirit of
the present paper can also be given.

First, let X0 be the set of extreme points in E∗
≤1, and let Ξ be the set of lower semi-continuous

functions f0 : X0 → R which satisfy in addition f0(λ) + f0(−λ) ≤ 0. Then E is not a finite-dimensional
polyhedral space if and only if X0 is infinite, in which case Ξ has density character continuum. If f0 ∈ Ξ
and f = f∗∗

0 as in Fact 6.1 then f↾X0
= f0 and f(λ)+f(−λ) ≤ 0 throughout E∗

≤1, so f∗ ∈ KC(E) and we
are done. Notice that this argument has the advantage of treating the two cases of “finite-dimensional,
non polyhedral” and “infinite-dimensional” in the same manner, while the proof of [Lin64, Theorem 7.7]
treats them separately, with the second one being significantly more involved.

Second, in the case where E is infinite-dimensional, Theorem 7.1(ii) is a special case of a general
principle which may be worth a mention as well. This principle, akin to the fact that the cardinal of a
perfect set is at least the continuum, says that if isolated types are not dense in Sn(E) (as is the case per
Theorem 6.3) then the metric density character of Sn(E) must be at least the continuum. The general
argument is as follows. First, for r > 0, let Xr ⊆ Sn(E) be the union of all open sets of diameter ≤ r.
If Xr is dense for every r then in every open set U one can find a sequence ξn ∈ X2−n which converges
metrically to some ξ ∈ U , and by Lemma 1.16 ξ is isolated, so the isolated types are dense after all.
Therefore, for some r > 0, which we now fix, Xr is not dense (in our case, Xr is not dense for any r > 0;
notice also that Sn(E) need not be metrisable, so we cannot use the Baire Category Theorem). We also
fix an open set U disjoint from Xr. Since every open subset of U has diameter > r, and since the metric
on Sn(E) is lower semi-continuous, one can build a binary tree of open subsets Us, s ∈ 2<ω, such that
U∅ = U , Us⌢i ⊆ Us for i = 0, 1, and d(Us⌢0, Us⌢1) > r. Then for σ ∈ 2N we have

⋂

n Uσ↾n 6= ∅, and
these intersections all have distance > r from one another, as desired.

This answers a Problem 2 of Avilés et al. [ACC+11, Section 4] in the negative (and we thank Wiesław
Kubiś for having pointed this out to us). They say that a Banach space G is of universal disposition for
finite-dimensional spaces if it satisfies a strengthening of Definition 2.1 with ψ being an isometry.

Corollary 7.3. The density character of any space of universal disposition for finite-dimensional spaces
is at least the continuum. In other words, the answer to Problem 2 of [ACC+11, Section 4] is negative.

Proof. Assume that G is of universal disposition for finite-dimensional spaces. Then the Euclidean plane
E embeds isometrically in G, and all types over E are realised in G, so the density character of G must
be at least the metric density character of S1(E), namely the continuum. �7.3

On the other hand, say that a Gurarij space G is strongly ℵ1-homogeneous if the following stronger
version of Corollary 2.8 holds in G:

For every separable F ⊆ G and isometric embedding ϕ : F → G there exists an isometric
automorphism ψ ∈ Aut(G) extending ϕ.

Clearly, a strongly ℵ1-homogeneous Gurarij space is of universal disposition for finite-dimensional (and
even separable) spaces. Moreover, there does exist such a space of density character the continuum.
This is merely a special case of a general model theoretic result: for any cardinal κ and structure M of
density character ≤ 2κ, in a language of cardinal ≤ κ, there exists an elementary extension M

′ � M of
density character still ≤ 2κ, which is moreover κ+-saturated and strongly κ+-homogeneous. Apply this
to M = G and κ = ℵ0.
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