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Abstract

We present a new sharp uniform-in-bandwidth limit law for the nearest-neighbor den-
sity estimator. Our result is established in the framework of convergence in probability,
and we allow the bandwidth to vary within the complete range for which the estimator
is consistent. We provide the explicit value of the asymptotic limiting constant for the
sup-norm of the estimator’s random error.
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1 Introduction and Result

We are concerned with the nonparametric estimation of the density f(·) of a random vari-
able [rv] X ∈ R by the nearest-neighbor [NN] method. The NN estimators are motivated
as follows (see, e.g., Fix and Hodges [17]). Let X1,X2, . . . be independent and identically
distributed [iid] random copies of X, with distribution function [df] F(x) := P(X ≤ x),
for x ∈ R. Denote the empirical df based upon X1, . . . ,Xn, by Fn(x) := n−1#{Xi ≤ x :
1 ≤ i ≤ n}, for x ∈ R , where # stands for cardinality. For each λ > 0 and x ∈ R , set

Rn,λ(x) := inf {h > 0 : Fn (x+ h)− Fn (x) ≥ λ} , (1)

and
Rλ(x) := inf {h > 0 : F (x+ h)− F (x) ≥ λ} , (2)

where we make use of the convention that inf∅(· ) = ∞. Since Fn(·) and F(·) are right-
continuous, it is readily checked from (1) and (2) that

Fn(x+Rn,λ(x))− Fn(x) ≥ λ and F(x+Rλ(x)) − F(x) ≥ λ.

This, in turn, entails that Rn,λ(x) ∈ (0,∞] and Rλ(x) ∈ (0,∞] for all x ∈ R and λ > 0.
When the density f(t) = F′(t) of X exists and is continuous in a neighborhood of x ∈ R,
we have, as λ ↓ 0,

Mλ(x) :=
λ

Rλ(x)
→ f(x). (3)
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In view of (1) and (2), the usual NN-estimator of f(x) is the empirical counterpart of
Mλ(x) in (3), given by

fn,λ(x) :=
λ

Rn,λ(x)
. (4)

The convention that λ/∞ = 0 for λ > 0 renders meaningful the definitions of Mλ(x) ∈
[0,∞) in (3), and of fn,λ(x) ∈ [0,∞) in (4), for all x ∈ R and λ > 0. Variants of the
NN-estimator fn,λ(·) in (4) have been discussed by a number of authors, among whom
we should cite Loftsgaarden and Quesenberry [18], Devroye and Wagner [14], Csörgő and
Révész [5], Mack [19], Deheuvels and Mason [9], and Viallon [23]. Let I := [C,D] ⊂ J :=
[A,B], with −∞ < A < C < D < B < ∞, be specified sub-intervals of R , under the
assumption (H) that f(·) is continuous and strictly positive on J . Set log+ u := log(u∨ e)
for u ∈ R. Our main result is the following uniform-in-bandwidth convergence theorem.

Theorem 1 Let 0 < an ≤ bn ≤ 1 be such that, as n → ∞,

bn → 0 and nan/ log n → ∞. (5)

Then, with Hn := [an, bn], we have, as n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

sup
x∈I

±
{

fn,λ(x)−Mλ(x)

f(x)

}

− 1

∣

∣

∣

∣

∣

= oP(1). (6)

Remark 1 1◦) Our proofs will show that the conclusion (6) of Theorem 1 remains valid if,
in the definitions (3)–(4) of Mλ(x) and fn,λ(x), we respectively replace Rλ(x) and Rn,λ(x),
by

R∗
λ(x) = inf

{

h > 0 : F(x+ 1
2h)− F(x− 1

2h) ≥ λ
}

,

and
R∗

n,λ(x) = inf
{

h > 0 : Fn(x+ 1
2h)− Fn(x− 1

2h) ≥ λ
}

.

2◦) It is easy to see that, under (5), the limit law (6) holds with the formal replacement of
±{fn,λ(x)−Mλ(x)} by |fn,λ(x)−Mλ(x)|.
3◦) The extension of our methods to NN nonparametric estimators of the regression func-
tion (see, e.g., Beck [1], Collomb [4], Devroye [13], Burba et al. [3]) will be considered
elsewhere.

4◦) The uniform consistency of fn,λ(· ) over bounded intervals was discussed by Moore and
Henrichon [20] (see, e.g., Devroye and Wagner [14]), under the assumption that f(· ) is
uniformly continuous and positive on R.

5◦) Theorem 1 allows us to construct uniform asymptotic simultaneous confidence bands
for f(· ), in the spirit of that given in Deheuvels and Mason [10] (see, e.g., Deheuvels and
Derzko [7], Deheuvels [6]).

As may be checked from our forthcoming proofs, Theorem 1 remains valid if we allow
an and bn to be random and fulfilling (5) in probability. A motivation for uniform-in-
bandwidth results such as that given in Theorem 1, is to describe the limiting behavior
of nonparametric functional estimators when their smoothing parameter (or bandwidth)
is possibly random or data-dependent. A number of elaborate schemes have been pro-
posed in the statistical literature for constructing such bandwidth sequences (see, e.g.,
Berlinet and Devroye [2], and sections 2.4.1-2.4.2 in Deheuvels and Mason [10]). These
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authors typically recommend bandwidths of the form λ = λ∗
n = Znn

−1/5 where Zn is
an appropriate (possibly data-dependent) random sequence, stochastically bounded away
from 0 and ∞. Making use of Theorem 1, we readily obtain a description of the limiting
behavior of the corresponding NN-estimators. We refer to Einmahl and Mason [16], and
Deheuvels and Ouadah [11], for discussions and references on the closely related problem
of uniform-in-bandwidth convergence for kernel estimators. To illustrate the sharpness of
(5), we set Hn = [λn, λn] in Theorem 1, and observe that, whenever {λn : n ≥ 1} are
constants fulfilling, as n → ∞,

λn → 0, and nλn/ log n → ∞, (7)

then, as n → ∞,

{

nλn

2 log+(1/λn)

}1/2

sup
x∈I

±
{

fn,λn
(x)−Mλn

(x)

f(x)

}

P→ 1. (8)

Almost sure versions of (8) have been established, under various sets of assumptions, by
Csörgő and Révész [5], Mack [19], Deheuvels and Mason [9], and Ralescu [21]. We note
that (8) (and hence, (6)), does not hold almost surely [a.s.] for an arbitrary choice of the
continuous density f(·) on J , and for all bandwidth sequences {λn : n ≥ 1} fulfilling (7).
If we assume, in addition to (7), that, as n → ∞,

log(1/λn)/ loglog n → ∞, λn ↓ 0, and nλn ↑ ∞, (9)

then (see, e.g., Theorem 4.3 in Deheuvels and Mason [9]), we have, a.s.,

lim
n→∞

{

nλn

2 log+(1/λn)

}1/2

sup
x∈I

±
{

fn,λn
(x)−Mλn

(x)

f(x)

}

= 1.

This last result is known not to hold in general when the first condition in (9) is not
fulfilled. Viallon [23] has obtained a uniform-in-bandwidth convergence theorem in the
spirit of (6), by showing that, a.s.,

lim
n→∞

sup
λ∈Hn

{

nλ

2 log+(1/λ)

}1/2

sup
x∈I

∣

∣

∣

∣

fn,λ(x)−Mλ(x)

f(x)

∣

∣

∣

∣

= 1, (10)

where Hn = [λ′
n, λ

′′
n], and λ′

n, λ
′′
n are sequences of constants fulfilling (7)–(9) together with

at least one of the additional conditions below. As n → ∞,

√
nλ′

n log(1/λ
′
n)

log n
√

loglog λ′
n

→ ∞ or

√

λ′′
n log(1/λ

′′
n)

λ′′
n log(1/λ

′′
n)

= o

( √
n

log n

)

.

We mention that Viallon [23] works under the assumption that F(·) is twice continuously
differentiable on J , and such that, for some γ > 0,

sup
u∈J

F(u)(1− F(u))|f ′(u)|
f2(u)

≤ γ.

Subject to additional conditions on Hn, he showed that, as n → ∞,

sup
λ∈Hn

{

nλ

2 log+(1/λ)

}1/2

sup
x∈I

∣

∣

∣

∣

fn,λ(x)−Mλ(x)

f(x)

∣

∣

∣

∣

P→ 1. (11)
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The conditions imposed on λn in (9), as well as the additional restrictions in Viallon [23],
are more strenuous than (5). We should point out that (11) is a much weaker statement
than (6). Indeed, the asymptotic limiting constant in (11) relies on a specific λ ∈ Hn,
whereas the limit law (6) provides the asymptotic limiting constant for the sup-norm of
the estimator’s random error, uniformly over λ ∈ Hn.

The proof of Theorem 1 is postponed until §2.4. It relies on a uniform-in-bandwidth limit
law of Deheuvels and Ouadah [11], which we recall in §2.1. In §2.2 and §2.3, we present
preliminaries which are needed in our proofs.

2 Proofs

2.1 A Uniform-in-Bandwidth Limit Law

The following notation is needed for the statement of the uniform-in-bandwidth limit law
of Deheuvels and Ouadah [11] (see Fact 1), which will be instrumental in our proofs. Let
U1, U2, . . . be iid rv’s with a uniform distribution on (0, 1). Let Un(u) := n−1#{Ui ≤ u :
1 ≤ i ≤ n}, for u ∈ R, be the empirical df based upon the first n ≥ 1 of these observations.
Define the empirical quantile function [qf] pertaining to Un(·) by Vn(v) := inf{u ≥ 0 :
Un(u) ≥ v}, for 0 ≤ v ≤ 1, Vn(v) := 0 for v < 0 and Vn(v) := 1 for v > 1. Denote the
uniform empirical quantile process by

βn(u) := n1/2 (Vn(u)− u) , for u ∈ R. (12)

For each I = [r, s] ⊆ [0, 1], with r < s, consider the statistic

δ±n,I(h) := sup
t∈I∩[0,1−h]

±{βn(t+ h)− βn(t)}. (13)

Fact 1 is established in Deheuvels and Ouadah [11] (see Corollary 1).

Fact 1 Let Hn = [an, bn] be as in Theorem 1. Then, as n → ∞, we have

sup
h∈Hn

∣

∣

∣

∣

∣

δ±n,I(h)
√

2h log+(1/h)
− 1

∣

∣

∣

∣

∣

= oP(1). (14)

Theorem 1 is an application of the uniform-in-bandwidth limit law (14).

2.2 Some Other Useful Facts

The following arguments are oriented towards proving Theorem 1. We inherit the notation
of §1. Let Q(t) := inf{x ∈ R : F(x) ≥ t}, for 0 < t < 1, denote the quantile function [qf]
pertaining to F(·). We extend the definition of Q(·) to the endpoints of [0, 1], by setting

Q(0) := A := lim
t↓0

Q(t), and Q(1) := B := lim
t↑1

Q(t).

We shall provide a proof of Theorem 1 under the assumption (H) that J = [A,B] is the
support of F(·), and that f(·) := F

′(·) is continuous and (stictly?) positive on J . The
extension of our methods to the general case is readily achieved by routine arguments
which we omit. The assumption (H) implies that the qf Q(·) is differentiable on [0, 1],
with quantile density [qd] q(·) := Q′(·), continuous and positive on [0, 1]. We have, namely,

q(t) :=
1

f(Q(t))
∈ (0,∞) for 0 ≤ t ≤ 1. (15)
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Under (H), the rv’s U1 := F(X1), U2 := F(X2), . . . are uniformly distributed on (0, 1),
and fulfill, with probability 1, X1 = Q(U1),X2 = Q(U2), . . . We observe that (see, e.g.,
Proposition 1.1 p. 98 in del Barrio et al. [12])

F(Q(t)) = t, for 0 ≤ t ≤ 1, and Q(F(x)) = x, for x ∈ J. (16)

Denote by Qn(t) := inf{x ≥ 0 : Fn(x) ≥ t}, for 0 < t < 1, the empirical qf pertaining to
Fn(·). Set further

Qn(0) := lim
t↓0

Qn(t) = min{X1, . . . ,Xn},

Qn(1) := lim
t↑1

Qn(t) = max{X1, . . . ,Xn}.

Recalling the definition Un(u) := n−1#{Ui ≤ u : 1 ≤ i ≤ n}, u ∈ R, of the uniform
empirical df in §2.1, we recall the definition of the empirical qf based upon U1, . . . , Un,
given by

Vn(v) := inf{u ≥ 0 : Un(u) ≥ v} for v ∈ [0, 1].

We extend the definition of Vn(·) to 0 and 1, by setting

Vn(0) = lim
v↓0

Vn(v), Vn(1) = lim
v↑1

Vn(v).

Observe that

Qn(t) = Q(Vn(t)), for 0 ≤ t ≤ 1, (17)

and
Fn(x) = Un(F(x)), for x ∈ R. (18)

The next fact collects some well-known relations. For (19), refer to (1.6) in Shorack [22],
and (2.48)(i) in Fact 6 of Deheuvels and Ouadah [11]. The relation (20) is a consequence
of the Dvoretzky, Kiefer and Wolfowitz inequality (see, e.g., Lemma 2 in Dvoretzky et al.
[15], and Theorem 3.3 p. 140 in del Barrio et al. [12]). For (21) and (22), we refer to
Deheuvels and Devroye [8].

Fact 2 For each fixed k ≥ 1, we have, as n → ∞,

(i) sup
0≤t≤1

|Fn(Qn(t))− t| = n−1 a.s.; (19)

(ii) sup
0≤t≤1

|βn(t)| = OP(1); (20)

(iii) sup
0≤t≤1−k/n

{Vn(t+ k/n)− Vn(t)} = OP(n
−1 log n); (21)

(iv) sup
0≤t≤1

|Vn(Un(t))− t| = OP(n
−1 log n). (22)

In (20), we let βn(u) = n1/2(Vn(u)− u), u ∈ R, be as in (12).

2.3 Proof of Theorem 1 - I

In this section, we shall assume, unless otherwise specified, that F(t) = Q(t) = t and
f(t) = q(t) = 1 for 0 ≤ t ≤ 1. We shall let throughout λ vary in (0,∞). In view of the
definitions (3)–(4) of Mλ(·) and of fn,λ(·), we write,

fn,λ(Q(t)) −Mλ(Q(t)) = − λ2

Rn,λ(Q(t))Rλ(Q(t))

{

Rn,λ(Q(t)) −Rλ(Q(t))

λ

}

. (23)

We shall treat the right-hand side of (23) in the next two lemmas.
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Lemma 1 Whenever Hn = [an, bn] satisfies (5) in Theorem 1, we have, as n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

sup
t∈[0,1−λ]

±
{

Rn,λ(Q(t))−Rλ(Q(t))

λ

}

− 1

∣

∣

∣

∣

∣

= oP(1). (24)

Proof. Since F (t) = Q(t) = t for 0 ≤ t ≤ 1, we infer from (17)–(18) that Qn(t) = Vn(t)
and Fn(t) = Un(t) for 0 ≤ t ≤ 1. Thus, by (22), we have, as n → ∞,

sup
0≤t≤1

|Qn(Fn(t))− t| = sup
0≤t≤1

|Vn(Un(t))− t| = OP

(

n−1 log n
)

. (25)

By combining the definition (1) of Rn,λ(· ) with (25) and the definition (12) of βn(· ), we
see that, for each λ > 0 and x ∈ [0, 1],

Rn,λ(x)− λ = inf{h > 0 : Fn(x+ h)− Fn(x)) ≥ λ} − λ

= Qn(Fn(x) + λ)− x− λ

= Vn(Un(x) + λ)− Vn(Un(x))− λ+OP(n
−1 log n)

= n−1/2 {βn(Un(x) + λ)− βn(Un(x))}+OP(n
−1 log n).

(26)

Now, by applying (21), we obtain that, as n → ∞,

sup
0<λ<1

∣

∣

∣

∣

sup
0≤x≤1

±n−1/2 {βn(Un(x) + λ)− βn(Un(x))} − sup
0≤x≤1

±n−1/2 {βn(x+ λ)− βn(x)}
∣

∣

∣

∣

≤ 2n−1/2 sup
0≤s,t≤1
|t−s|≤1/n

|βn(t)− βn(s)| = OP

(

n−1 log n
)

. (27)

Fix t ∈ [0, 1] and λ ∈ [0, 1 − t], then set x = Q(t) + h, for h > 0. By combining the
definition (2) of Rλ(·) with the relation F(Q(t)) = t, following from (16), we get

Rλ(Q(t)) = inf {h > 0 : F (Q(t) + h)− F (Q(t)) ≥ λ}
= inf {x > 0 : F(x) ≥ t+ λ} −Q(t)

= Q(t+ λ)−Q(t) = λ. (28)

We infer from the above assertions (26), (27) and (28), that, as n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

sup
t∈[0,1−λ]

±
{

Rn,λ(Q(t))−Rλ(Q(t))

λ

}

− 1

∣

∣

∣

∣

∣

= sup
λ∈Hn

∣

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

sup
t∈[0,1−λ]

±
{

Rn,λ(t)− λ

λ

}

− 1

∣

∣

∣

∣

∣

≤ sup
λ∈Hn

∣

∣

∣

∣

∣

sup
t∈[0,1−λ]

±
{

βn(t+ λ)− βn(t)
√

2λ log+(1/λ)

}

− 1

∣

∣

∣

∣

∣

+ sup
λ∈Hn

{

1
√

2λ log+(1/λ)

}

×OP(n
−1/2 log n),

(29)

which, by the limit law (14) and the condition (5), equals

OP

(

{

log n

nan

}1/2
)

= oP(1).

This yields (24), as sought.�
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Lemma 2 Whenever Hn = [an, bn] satisfies condition (5) of Theorem 1, we have, as
n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

sup
t∈[0,1−λ]

±
{

Rn,λ (Q(t))Rλ (Q(t))

λ2
− 1

}

−
{

2 log+(1/λ)

nλ

}1/2
∣

∣

∣

∣

∣

= oP(1). (30)

Proof. We make use of (28), and of the assumption that Q(t) = t, t ∈ [0, 1]. We so see
that Rλ(Q(t)) = Q(t+ λ)−Q(t) = λ for t ∈ [0, 1 − λ], whence

sup
t∈[0,1−λ]

±
{

Rn,λ (Q(t))Rλ (Q(t))

λ2
− 1

}

= sup
t∈[0,1−λ]

±
{

Rn,λ(Q(t))

Rλ(Q(t))
− 1

}

= sup
t∈[0,1−λ]

±
{

Rn,λ(Q(t))−Rλ(Q(t))

λ

}

.

By combining these equalities with (24) of Lemma 1, we obtain (30).�

Proof of Theorem 1 - I The observation (23), together with Lemmas 1 and 2, implies
(6), with F(t) = Q(t) = t and f(t) = q(t) = 1 for 0 ≤ t ≤ 1.�

2.4 Proof of Theorem 1 - II

In this section, we let F(·) and Q(·) be as in §1.

Lemma 3 Fix any 0 ≤ u < v < 1. Then, whenever Hn = [an, bn] satisfies condition (5)
of Theorem 1, we have, as n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

sup
t∈[u,v]

±
{

Vn(Un(t) + λ)− (t+ λ)

λ

}

− 1

∣

∣

∣

∣

∣

= oP(1). (31)

Proof. Making use of (22) and the definition (12) of βn(· ), we observe that, for each
λ > 0 and t ∈ [u, v],

Vn(Un(t) + λ)− (t+ λ) = n−1/2 {βn(Un(t) + λ)− βn(Un(t))}+OP

(

n−1 log n
)

.

We next infer from (27) of Lemma 1, when combined with the limit law (14) of Fact 1
and condition (5), that, as n → ∞, (31) holds. �

We shall need the following variant of Lemma 1.

Lemma 4 Whenever Hn = [an, bn] satisfies condition (5) of Theorem 1, we have, as
n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

sup
t∈[0,1−λ]

±
{

Rn,λ(Q(t))−Rλ(Q(t))

λq(t)

}

− 1

∣

∣

∣

∣

∣

= oP(1). (32)

Proof. Letting λ > 0, and t ∈ [0, 1 − λ], we combine the definitions (1)–(28) of
Rn,λ(·) and of Rλ(Q(t)), with the relations F(Q(t)) = t, Qn(t) = Q(Vn(t)) and Fn(x) =
Un(F(x)), for x ∈ R, following respectively from (16), (17) and (18), to see that,

Rn,λ(Q(t)) −Rλ(Q(t)) = inf{h > 0 : Fn(Q(t) + h)− Fn(Q(t)) ≥ λ}
−{Q(t+ λ)−Q(t)}

= {Qn(Fn(Q(t)) + λ)−Q(t)}
−{Q(t+ λ)−Q(t)}

= Q(Vn(Un(F (Q(t))) + λ)−Q(t+ λ)

= Q(Vn(Un(t) + λ))−Q(t+ λ) . (33)
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Fix an ε, such that 0 < ε < q(u′) and select 0 ≤ u′ < u < v < v′ ≤ 1, in such a way that

sup
s,t∈[u′,v′]

∣

∣

∣

∣

q(t)

q(s)
− 1

∣

∣

∣

∣

< ε. (34)

If we let λ vary in Hn = [an, bn], there exists a.s., an n0 such that, for all n ≥ n0 and
t ∈ [u, v], we have t+ λ ∈ [u′, v′]. Moreover, it is readily checked that, if we denote by An

the event
An =

{

Vn(Un(t) + λ) ∈ [u′, v′] : ∀ t ∈ [u, v] and λ ∈ Hn

}

,

then, P(An) → 1 as n → ∞. This, in turn, implies that, on the event An, we have, for all
t ∈ [u, v] and λ ∈ Hn, as n → ∞,

(1− ε)q(t)

{

Vn(Un(t) + λ)− (t+ λ)

λ

}

≤ Q(Vn(Un(t) + λ))−Q(t+ λ)

λ

≤ (1 + ε)q(t)

{

Vn(Un(t) + λ)− (t+ λ)

λ

}

. (35)

In view of (31), (33) and (35), we so obtain that, as n → ∞,

P

(

sup
λ∈Hn

∣

∣

∣

∣

{

nλ

2 log+(1/λ)

}1/2

× sup
t∈[u,v]

±
{

Rn,λ(Q(t))−Rλ(Q(t))

λq(t)

}

− 1

∣

∣

∣

∣

> ε

)

→ 0.

Given this last statement, we conclude readily (32) by splitting [0, 1] into a finite union of
intervals [u′, v′] on which the oscillation of q(·) fulfills (34), and then, by choosing ε > 0
arbitrarily small.�

We shall also need the following variant of Lemma 2.

Lemma 5 Whenever Hn = [an, bn] satisfies condition (5) of Theorem 1, we have, as
n → ∞,

sup
λ∈Hn

∣

∣

∣

∣

∣

sup
t∈[0,1−λ]

±
{

Rn,λ (Q(t))Rλ (Q(t))

λ2q(t)2
− 1

}

−
{

2 log+(1/λ)

nλ

}1/2
∣

∣

∣

∣

∣

= oP(1). (36)

Proof. The proof is essentially identical to the proof of Lemma 2, adding the following
observation. Making use of the definitions (3)–(15) of Mλ(· ) and of q(· ), we see that,
uniformly over t ∈ (0, 1], we have, as λ → 0,

λq(t)/Rλ(Q(t)) → 1.

We omit details.�

Proof of Theorem 1. We have now in hand all the necessary ingredients to prove
Theorem 1. In view of the definitions (3)–(4)–(15) of Mλ(·), fn,λ(·) and of q(· ), we write,

fn,λ(Q(t)) −Mλ(Q(t))

f(Q(t))
= − λ2q(t)2

Rn,λ(Q(t))Rλ(Q(t))

{

Rn,λ(Q(t)) −Rλ(Q(t))

λq(t)

}

. (37)

This, when combined with Lemmas 4 and 5, readily implies (6). The proof of Theorem 1
is therefore completed.�
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