
HAL Id: hal-00766762
https://hal.science/hal-00766762

Submitted on 18 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Peer-Assisted Content Delivery Architecture
Bogdan Florescu, Mugurel Ionut Andreica

To cite this version:
Bogdan Florescu, Mugurel Ionut Andreica. Towards a Peer-Assisted Content Delivery Architecture.
Proceedings of the 18th International Conference on Control Systems and Computer Science (CSCS)
(ISSN: 2066-4451), May 2011, Bucharest, Romania. pp.521-528. �hal-00766762�

https://hal.science/hal-00766762
https://hal.archives-ouvertes.fr

Towards a Peer-Assisted Content Delivery Architecture

Bogdan Florescu*, Mugurel Ionu� Andreica**

*Computer Science Department, Politehnica University of Bucharest

Romania (Tel: 0722 695 042; e-mail: bogdan.florescu@cti.pub.ro).

**Computer Science Department, Politehnica University of Bucharest,

Romania (e-mail: mugurel.andreica@cs.pub.ro)

Abstract: Currently, the most widespread model for data transfer uses a client-server paradigm (e.g.

Content Distribution Network, or CDN). A totally different approach to content delivery is Peer-to-Peer

(P2P) technology. While both technologies have proven their validity, a series of limitations affect each

one: deploying CDN servers is expensive, and the overall transfer speed depends on the distributor’s

network bandwidth and processing power of the machine. Even though P2P architectures avoid these

problems, for a successful data transfer they require a sufficient number of seeding clients, making them

unreliable. In this paper, we propose a hybrid content delivery solution that tries to leverage the advantages

of both approaches, while mitigating their weaknesses. This architecture aims at offering a viable data

transfer model, with superior download speed, increased reliability and affordable resources.

1. INTRODUCTION

Over the last years, high-speed Internet connections became

widely available, and, as a consequence, the quantity of

transferred information has seen an exponential growth.

Different models for data transfer have been proposed, of

which two are highly used: client-server and peer-to-peer

systems.

When speaking of the client-server paradigm, from now on

we will refer to Content Distribution Network (CDN)

technologies. Understanding this model is very

straightforward: there are a number of CDN servers which

store and forward content, and some clients that make data

requests to these servers. Peer-to-peer (P2P) represents a

newer architecture for delivering content: instead of an

established server, every P2P node can be at the same time

server and client, distributing already stored content, while

downloading new content from other peers. These two very

different models have their strengths, but also some important

disadvantages. In this paper we will describe a hybrid

approach, which offers better performance and scalability

than either of these technologies alone, with the price of

increased system complexity. First of all, let’s analyze both

of these paradigms to understand what advantages and

disadvantages each one possesses.

1.1 Client-server architecture

As stated before, CDNs employ a client-server architecture:

„a network architecture in which each computer or process on

the network is either a client or a server. Servers are powerful

computers or processes dedicated to managing disk drives

(file servers), printers (print servers), or network traffic

(network servers). Clients are PCs or workstations on which

users run applications. Clients rely on servers for resources,

such as files, devices, and even processing power”

(Wikipedia, 2011a). Each CDN server distributes stored data

to clients in its designated domain. A simple CDN

architecture is shown in Fig. 1.

Fig. 1. �CDN Architecture.

A CDN server has dedicated storage capacity and high-

bandwidth Internet connection to address clients’ data

transfer requirements. Data management is simplified

because the files are stored in one location. Ensuring

information backup and security control is also an easy task.

However, deploying and maintaining these servers is difficult

and costly. Servers constitute a single point of failure, so in

such cases the entire system can suffer from great

performance loss or even become unable to deliver content to

its clients.

1.2 Peer-to-Peer architecture

On the other hand, Peer-to-Peer technologies are based on a

de-centralized architecture, which overcomes some of the

client-server disadvantages (note: in this paper, when

referring to a P2P architecture, the reader should understand a

pure P2P network). R. Schollmeier (Schollmeier, 2001) gives

a formal definition: “A distributed network architecture may

be called a Peer-to-Peer (P-to-P, P2P …) network, if the

participants share a part of their own hardware resources

(processing power, storage capacity, network link capacity,

printers …). These shared resources are necessary to provide

the Service and content offered by the network (e.g. file

sharing or shared workspaces for collaboration). They are

accessible by other peers directly, without passing

intermediary entities. The participants of such a network are

thus resource (service and content) providers as well as

resource (service and content) requestors (servent –

concept)”. Figure 2 describes a simple P2P architecture.

Fig. 2. �Peer-to-peer architecture.

In this architecture, every client (called peer) is defined as: „a

network node that can act as a client or a server, with or

without centralized control, and with or without continuous

connectivity” (Peer-to-Peer Working Group, 2011). After a

peer receives a certain piece of data, it can provide that data

to other peers. Two peers can establish a connection without

intervention from a central server. A peer that is currently

serving information is called a seeder, and a peer

downloading is referred to as leecher. The essential

advantage of this paradigm consists in the aggregated

dissemination capacity of individual seeders (Xu et al., 2006).

In contrast to client-server architecture, in P2P there is no

single point of failure, which means that any peer can leave

the network at any time, with no penalties on communication

between the remaining peers. Peer-to-peer networks scale

much better and avoid bottlenecks due to lack of

centralization. Another important benefit is the opportunity to

leverage clients’ resources, such as computing power, storage

capacity and network bandwidth. Unfortunately, P2P

networks have a series of important disadvantages. A data

transfer can begin only when a sufficient number of seeders

are available. Usually, clients’ connections are not designed

for high throughput, compared to what a CDN server could

offer. For sensitive content, peer-to-peer networks cannot

enforce the required standard of security policies. Also,

content availability depends directly on the seeder’s

availability. Instead of a centralized control, peers have to

rely on other peers’ will and resources to provide data.

Regarding this problem, there needs to be developed a set of

policies that ensure fairness and peer stimulation.

1.3 Hybrid architecture

This paper presents an architecture that retains the benefits

from client-server and P2P models, but tries to eliminate

most of their disadvantages. It can be viewed as a client-

server architecture, with an additional peer-to-peer layer. At

its core, the system relies on one or more content delivery

servers to provide continuous access to information. First,

new content will be available for transfer from these servers.

Each client connects to one or more CDN servers, and starts

the data transfer. When the client finishes the transfer of a

piece of data, the server marks it as a possible seeder for that

piece and adds it to an internal peer list. After this step, new

peers can connect to seeders in order to transfer data. When a

peer makes a data transfer request, the server decides who

will be the source and establishes a connection. In this way,

as the number of peers grows, the system can leverage their

resources, while maintaining control over the information

flow and network topology. Another issue needs to be

addressed: as in classic P2P networks, some peer stimulation

policies have to be implemented. In the absence of these

policies, the system cannot always benefit from the P2P

layer. A detailed system and policy description will be

provided in the following sections.

The next section discusses related work in the field of hybrid

content delivery networks. Section 3 describes a possible

architecture design; section 4 presents some policies for

stimulating peer participation in content distribution and

section 5 quickly reviews chosen technologies for

implementation. Finally, section 6 concludes this paper.

2. RELATED WORK

There are a lot of technologies available for transferring data

over a network. However, the majority of them is either

based on the client-server paradigm, or uses a peer-to-peer

architecture. In the recent years, the shortcomings of these

approaches became more and more evident. As a result, some

development effort was spent for building hybrid solutions to

address these disadvantages, while still benefiting from

previous knowledge. However, there are currently no widely

available and accessible hybrid solutions for data transfer

over the network.

In their paper “Towards a Peer-to-Peer Extended Content

Delivery Network” (Pakkala and Latvakoski, 2005), authors

Daniel Pakkala and Juhani Latvakoski propose the concept of

P2P extension for CDNs. The classic star topology CDN,

consisting of distribution and edge servers, is extended with

P2P overlay networks at three different domains. The

architecture of the P2P extensions is hierarchical: the P2P-

connected edge servers host and manage the extensions in the

CDN service provider domain, that further host and manage

the possible end user domain extensions. The authors’ main

focus in developing the P2P Extended CDN was to enhance

the star topology CDN networks with a peer-to-peer layer,

while still maintaing security. For a peer to enter the trusted

domain of the P2P extension, it needs to be authenticated and

authorized. Figure 3 presents this architecture, where red

triangles and squares represent peers from the P2P CDN

extension. While the concept is very interesting, no real

working prototype is provided. It addresses some security

issues related to P2P networks, but this also adds increased

system complexity, making it more difficult to implement

and deploy. However, it offers a solid starting point for

developing a hybrid CDN architecture.

Fig. 3. P2P Extension (Pakkala and Latvakoski, 2005).

One successful commercial hybrid CDN implementation is

Pando Networks (Pando Networks, 2011a). Pando Networks’

technology is based on a modified version of the BitTorrent

protocol. Its hybrid P2P and server-based network includes

central control over file distribution, intelligent throttling

between peers and servers, reporting/analytics and security.

Pando leverages both P2P and HTTP protocols (peers and

servers) to optimize content delivery for performance and

cost efficiency (Figure 4).

Fig. 4. Pando CDN peering (Pando Networks, 2011b).

Pando is a managed, hybrid P2P content delivery platform

designed to maintain central control of content distribution.

All networking communications are routed via Pando’s

trackers and web services. Consumers (peers) only supply

bandwidth and storage to content they have proactively

consumed. Moreover, Pando works as an add-on to an

existing CDN, not as a replacement. The CDN is always

considered the first and most reliable source of content. As

peers demand more bandwidth, they also provide more of it.

Demand and supply are directly proportional. As content

becomes popular, more of it is served by consumers (referred

to as “Peer Cloud”). Less popular content will continue to be

served mainly by central CDN Servers, which act as “super-

nodes” in a Peer Cloud. Pando’s commercial success stands

as proof of hybrid architectures’ viability in current real-

world networking context.

Another two interesting hybrid CDNs are described in (Ha,

2008) and (Xu et al., 2006). Both of them are aimed at

offering media streaming services by incorporating P2P over

a content distribution network. In (Ha, 2008), authors

propose „a new hybrid solution based on the effective

management of playing buffer at the peer-side to best

equilibrate the bandwidth used between CDN side and P2P

side”. They achieve this by dividing the playing buffer into

two parts with different priorities (CDN and P2P). During

playback, missing packets in the CDN priority part will be

received from CDN servers, and respectively, missing

packets in the P2P priority part will be received from other

peers (Figure 5). The authors hope to reduce the playback

time by using CDN servers to get immediately some parts of

the needed content during the playback process. Also, P2P

technology helps reducing the cost for a Content Provider.

The consumed bandwidth to deliver the content is provided

by the CDN and all the consumers. This solution

differentiates from other hybrid CDN-P2P systems by

working at the application level.

Fig. 5. Hybrid architecture for media streaming (Ha, 2008).

The paper (Xu et al., 2006) also presents a media streaming-

oriented P2P-CDN system (Figure 6). Aside from describing

the hybrid architecture with integrated capacity planning and

runtime operations, the study includes a suite of limited

contribution policies that advocate and reflect fairness toward

peers. The authors proceed to analyze the impact of different

policies and parameters on the progress, cost, and peer load

of a media distribution process.

Although these two papers are concerned with media

streaming problems, some ideas presented there can be

successfully implemented in a more general content delivery

system (e.g. prioritizing transfer buffer, contribution policies

etc.).

3. ARCHITECTURE

3.1 Overview

As stated before, the proposed hybrid architecture will be

based on one or more core servers, extended with peer-to-

peer capabilities (Figure 7). Servers are the primary source

for data, making sure that content can be always provided

even though there are no more peers seeding. In addition,

servers will be responsible for initiating connections between

peers, maintaining peer lists, enforcing policies and keeping a

topology map. At any time, peers can enter or leave the

network, without affecting communication between the

remaining clients and servers. After a peer finished

downloading a certain piece of data, it can choose to continue

seeding it. A server will establish connections between peers

only when its occupied bandwidth exceeds a defined

threshold, in order to avoid bottlenecks.

Fig. 6. Different hybrid architecture for streaming media

distribution (Xu et al., 2006).

Fig. 7. Hybrid peer-assisted content delivery architecture.

In Figure 7, peers connected to a server are shown to belong

to a server distribution domain, which means they can only

communicate with peers and servers from the same domain.

Our architecture will be implemented as a service which can

be accessed by clients. Generically speaking, clients submit

requests to the service, which processes them. After

processing a request, the service may send back a reply to the

clients. The service maintains an interval service state (e.g.

which, in this case, may consist of the files being served to

the clients). The processing of requests may update the

internal state (e.g. special clients may upload new files,

modify or delete current files). Fig. 8 and 9 present the

generic service view described in this paragraph.

Fig. 8. Generic service model.

Fig. 9. Generic interactions between a client and the service

(request-reply). Processing of requests may modify the

internal state of the service.

3.2 Stakeholders

Peers/clients can be in one of these states:

• Downloading – consumer or leecher – it only downloads

data from a server or from other peers. Either the client

opted not to share any data, or the server decided not to

initiate any connection to this peer.

• Uploading – seeder – it only serves previously

downloaded content to other peers. In this case, the peer

chose to share data and the server established

connection(s) with other peer(s). The peer acts like a

lightweight distribution server.

• Downloading and uploading – it provides content to

other peers while downloading new content from

peers/server.

CDN servers perform the following functions:

• Continuously provides content. Configured network

parameters define how much bandwidth can be reserved

for upload, until the server decides to redirect new

connections to seeders.

• Maintains active lists of connected peers. Periodically,

the server sends keep-alive messages to refresh peer lists.

It is useful to store additional information about each

client, such as connection quality (based on round trip

time of keep – alive messages). For every file stored, the

server associates a seeder list.

• Maintains a topology map, which contains information

about peers and cost associated with the network

connection between them.

• Maintains a list of active connections, necessary for

making decisions like moving transfers from a seeder to

another seeder. These decisions will be taken in case a

seeder quits the network, when a seeder with better

connection joins the network etc.

• Enforces policies for motivating peers to continue

seeding content even after they finish downloading.

Also, policies have the role to ensure fair contribution

between peers.

3.3 Network events

We will analyze, for now, two events that can happen across

the network:

a) a peer/client enters the network;

b) a peer/client leaves the network.

A. Peer/client connects to network

Client

1. request server connection

2. request file download

3. receive connection details

4. if necessary, connect to remote peer

5. start transfer

Server

1. establish connection

2. add client to active peers list

3. store / update client preferences (file(s) requested,

file(s) seeding, willingness to share content etc.)

4. if server_used_bandwidth is lower than threshold

1. search file in available files list

2. if found

1. set transfer parameters

2. serve content

5. else

1. loop through connected seeders list

1. search file in currently seeding list

2. if found

1. add seeder to temp list

2. sort temp list descending by upload speed

to client

3. select first seeder with load lower than a

threshold value (known as designated

seeder)

4. send transfer parameters to designated

seeder

5. send designated seeder’s connection details

to client

6. update connections list

7. update topology map

8. monitor client’s activity within the network and

periodically update its details

For optimization purposes, if a client had previously

connected to the network, the server can first check its last

peer connections, and select the one offering the best

bandwidth. If security is enforced, before initiating content

transfer, the server must validate security policies against

client’s security level.

Remote seeder

1. receive connection request from client

2. receive transfer parameters from server

3. establish connection

4. serve content

B. Peer/client leaves the network

Server

1. update active peers list

2. update topology map

3. update peer details (total transfer size, files

transferred list, total and per-file ratios etc.)

3.4 Interactions between core servers

So far, we implicitly assumed that the core servers provide a

fully replicated service to the clients, i.e. that each server

provides the same functionality and has access to the same

data (e.g. the files which are delivered to the clients). In order

to achieve this goal (that of a fully replicated service),

however, the core servers (CDN servers) need to

communicate with each other and synchronize their data.

There are multiple possibilities for achieving this goal. The

simplest one is to use a data storage and retrieval service for

storing and retrieving the files. Then, the CDN servers are

simply front-end servers which rely on other servers for

storing and retrieving the files for them.

If a separate data storage and retrieval service cannot (or

should not) be employed, then the files need to be stored on

the same machines on which the CDN servers are running. In

this case, the simplest possibility (conceptually speaking) is

to have the files fully replicated on each CDN server. Then,

when a new file is added (or is updated), it is propagated to

all the servers.

The most general case consists of partial replication of the

files. In this case, each file has several instances across

several CDN servers. When a server S needs to send a file F

to one of its clients, it first searches for F among its local

files. If F is not found, then it will search for F among the

other CDN servers – the more replicated F is, the fewer other

servers need to be queried. After F is found at a server P, the

server S may either transfer F from P (and then cache it

locally) or may redirect the client to the server P.

In order to efficiently implement the behaviors described

above, the CDN servers need to interconnect into a peer-to-

peer overlay (also called a service overlay network (Duan et

al., 2003)). In such an overlay, a server interacts directly only

with its neighbors. It may also interact with non-neighboring

servers, by routing messages through the overlay. A

framework for developing peer-to-peer applications and

services which can also be used for implementing a CDN

service overlay network was presented in (Andreica et al.,

2011).

Another aspect worth studying in the presented architecture is

the fault tolerance of the CDN service. Note that clients

(peers) may join and leave the system at any time, and even if

none of them is willing to help others download a file faster,

another client may always resort to a CDN server. Thus, the

fault tolerance of the normal peer overlay is not that

important, because a CDN server is always expected to be

available. Thus, the CDN service has strong high availability

constraints. Two important mechanisms for ensuring high

availability are checkpoint-restart(-replay) and dynamically

adaptive replication.

Finally, another important issue regarding CDN server

interactions is data transfer performance. In order to

synchronize their data, the servers may need to transfer large

files between them in a short amount of time. Thus, data

transfer speed may be an important factor (especially if the

data transfer is performed as a consequence of a pending

client request). Data transfer performance can be addressed at

least at the following two levels: data transport protocol level

and overlay level. On a protocol level there have been many

attempts (e.g. (Kelly, 2003), (Gu and Grossman, 2007),

(Iyengar et al., 2006)) to design data transport protocols with

various characteristics (e.g. reliable delivery, high

throughput, etc.). On an overlay level, communication

overlays for multi-path data transfers have been designed and

implemented (see, for instance, (Andreica et al., 2009)).

4. PEER STIMULATION POLICIES

This type of hybrid architecture relies on the P2P layer to

achieve superior download speeds compared to a simple

client-server model. In contrast to Peer-to-Peer, when seeders

start quitting the network, the content remains available, but

the advantages of the hybrid design fade away. The network

starts behaving like a regular CDN system, with the added

cost of managing the unproductive P2P extension. In order to

avoid these situations, certain policies for stimulating peer

contribution need to be developed.

4.1 Existing techniques

The BitTorrent protocol optimizes download speed using a

tit-for-tat strategy (meaning “equivalent retaliation”)

(Wikipedia, 2011b). Using this incentive policy, a BitTorrent

peer closes the connection with other peers that do not

provide upload in return to the peer’s own upload (Cohen,

2003). The upload slot is then allocated to a more cooperating

peer. To allow finding more cooperative peers and also offer

a chance to previously non-cooperating peers, a peer will

choose periodically a random non-cooperating peer and

allocate it an upload slot. In other words, BitTorrent peers

give upload priority to other peers that provide the highest

upload rate to them. While this method achieves a high level

of efficiency, it doesn’t offer any motivation for peers to

provide content after their download is finished.

In their paper (Carlsson and Eager, 2008), authors Niklas

Carlsson and Derek L. Eager suggest a new policy to address

the shortcomings of BitTorrent’s tit-for-tat approach. They

present an analytic model of a „priority-based incentive

mechanism which provides peers with strong incentive to

contribute upload bandwidth beyond their own download

completion”. Their solution extends the tit-for-tat policy by

enabling a peer to give a fraction of the upload bandwidth to

high-priority class peers. The system classifies peers into two

categories, high priority and low priority, based on their prior

contribution. Usage scenarios show proof of achieving better

transfer speed than a simple tit-for-tat policy, for both low

and high priority peers.

4.2 Proposed policies

An interesting and well-proven idea could be borrowed from

BitTorrent sharing communities, namely the concept of

“ratio”. Whenever a peer transfers a file, a ratio is calculated

between how much data was uploaded and how much data

downloaded:

R = U / D,

where R characterizes a file. There can be two types of ratios:

a file-specific ratio and an overall ratio (calculated using total

data size transferred). The goal is to ensure that peers are

actively stimulated to contribute content even after their

transfer is finished. This computed ratio will further be used

to gain credits for a peer: for every ratio R�1, the peer

receives � �R credits. These credits will provide a peer with

some benefits:

• better download speed;

• higher priority for future data transfers;

• early access to specific content, etc.

Each new download consumes a credit, but a ratio greater

than 1 earns new credits. The system can be enhanced for

peers that suffer from a low-bandwidth connection: R can be

calculated using time metrics instead of download/upload

size. Thus, the new formula will be:

R = Tu / Td, where

Tu = upload time (seed time) and

Td = download time (leech time)

The server performs tests for every peer connection, learning

different network parameter values, and then decides which

method is appropriate.

Using a different approach, the server can alter network

parameters to limit transfer speed for each peer. The limit is

dynamically calculated considering connection speed and file

size being transferred, to ensure the download of a specific

file ends only after a ratio R � 1 was attained. The goal is to

guarantee that every peer contributes fairly to the network.

These two types of policies can be used together or only one

at a time. A scenario when they can coexist is the following:

for peers with a number of credits greater than 0, the first

policy will be applied, while for the rest the connection speed

limiting policy will be used.

5. TECHNOLOGIES

5.1 Programming language

The peer-assisted content delivery solution proposed in this

paper will be developed using Java SE 6 and additional

software libraries/packages. Java was chosen due to the

straightforward approach to using sockets and the general

availability of resources (documentation, tutorials, libraries

etc.).

One solution for developing applications with sockets is the

java.net package. It provides a Socket class, that implements

one side of a two-way connection between two Java

programs on the network. The Socket class sits on top of a

platform-dependent implementation, hiding the details of any

particular system. Additionally, the ServerSocket class

implements a socket that servers can use to listen for and

accept connections to clients.

5.2 Additional libraries

Another solution is represented by the P2P Sockets

(P2PSockets, 2011) package, a reimplementation of standard

Java sockets on top of JXTA (JXTA, 2011). P2P Sockets

allows us to gain much of the power of JXTA, such as NAT

and firewall traversal, without being exposed to its

complexity. It does this through ports of popular software

projects, such as a web server and web services stack, to

work on the JXTA peer-to-peer network. P2P Sockets also

introduces implementations of java.net.Socket and

java.net.ServerSocket that can work on the JXTA network, as

well as a simple, light-weight, distributed and non-secure

DNS system.

The JXTA platform is an open network computing platform

designed for peer-to-peer computing. It employs a

standardized manner in which peers advertise and discover

resources, communicate and collaborate with each other. The

JXTA platform is defined by six protocols (e.g. Peer

Resolver Protocol (PRP), Peer Discovery Protocol (PDP),

Endpoint Router Protocol (ERP) and others). ERP is the only

required protocol. This offers great flexibility, by letting a

programmer to selectively implement a subset of other

protocols.

Flexibility is also provided in choosing the transport protocol,

as JXTA supports TCP/IP, HTTP, Bluetooth etc. The layer of

abstractization offered by JXTA makes it ideal for

implementing a working prototipe for the hybrid architecture

proposed in this article. Also, the wide array of supported

protocols and services provide the possibility for testing

different approaches and comparing results.

6. CONCLUSIONS AND FUTURE WORK

Today, there is more need than ever for an efficient data

transfer mechanism. Although many system architectures

manage to handle the task, no single model can ensure

performance, scalability and reduced costs at the same time.

In this paper, we propose a hybrid design that combines two

well-known architectures (peer-to-peer and client-server) to

achieve that goal. Related work in the area is discussed, along

with some peer stimulation policies that aim to enhance the

P2P layer.

Future work includes, most importantly, a working prototype,

in order to validate the proposed solution. It must be designed

in a manner that quickly allows changes at implementation

layer, with minimum impact on other components. A network

simulator also has to be used (or maybe developed from

scratch), in order to test different scenarios and compare

results with the simple P2P or client-server approaches.

Finally, a comprehensive test suite will be developed.

Except for the implementation aspect, we will also focus on

developing new and efficient techniques for the following

possible cases:

• creation and maintenance of the P2P overlay by a single

server;

• communication and coordination between servers (e.g.

data synchronization or transfer of missing data from one

server to another);

• creation and maintenance of a global P2P overlay

including clients connected to all the servers (unlike the

domain separation case which we considered currently);

• dynamic addition of servers

• peer stimulation policies.

ACKNOWLEDGEMENT

The work presented in this paper has been partially funded by

CNCSIS-UEFISCDI under research grant PD_240/2010

(contract no. 33/28.07.2010), PN II - RU program.

REFERENCES

Andreica, M. I., E.-D. Tirsa, and N. Tapus (2009). A Peer-to-

Peer Architecture for Multi-Path Data Transfer

Optimization using Local Decisions. In Proceedings of

the 3
rd

 Workshop on Dependable Distributed Data

Management (WDDDM), pp. 2-5.

Andreica, M. I., E.-D. Tirsa, and N. Tapus (2011). A Modular

Framework for the Development of Peer-to-Peer

Applications and Services. In International Journal of

Grid and Utility Computing, special issue on „Advances

in P2P Computing and Applications”, Inderscience

Publishers. In Press.

Carlsson, N. and D. L. Eager (2008). Modeling Priority-

based Incentive Policies for Peer Assisted Content

Delivery Systems. In: Proceedings of the 7
th

 International

IFIP-TC6 Networking Conference on AdHoc and Sensor

Networks, Wireless Networks, Next Generation Internet,

pp. 421-432.

Cohen, B. (2003). Incentives Build Robustness in BitTorrent.

bittorrent.org.

Duan, Z., Z.-L. Zhang, and Y. T. Hou (2003). Service

Overlay Networks: SLAs, QoS, and Bandwidth

Provisioning. In IEEE/ACM Transactions on Networking,

Vol. 11 (6), pp. 870-883.

Gu, Y. and R. L. Grossman (2007). UDT: UDP-based Data

Transfer for High-speed Wide Area Networks. In

Computer Networks: The International Journal of

Computer and Telecommunications Networking, Vol. 51

(7), pp. 1777-1799.

Iyengar, J. R., P. D. Amer, and R. Stewart (2006). Concurrent

Multipath Transfer using SCTP Multihoming over

Independent End-to-End Paths. In IEEE/ACM

Transactions on Networking, Vol. 14 (5), pp. 951-964.

JXTA (2011). http://www.jxta.org/

Kelly, T. (2003). Scalable TCP: Improving Performance in

Highspeed Wide Area Networks. In ACM SIGCOMM

Computer Communication Review, Vol. 33, pp. 83-91.

Ha, D. (2008). A Novel Hybrid CDN-P2P Mechanism for

Effective Real-Time Media Streaming. M.Sc. Thesis.

P2PSockets (2011). https://p2psockets.dev.java.net/

Pakkala D. and J. Latvakoski (2005). Towards a Peer-to-Peer

Extended Content Delivery Network. In: Proceedings of

the 14
th

 IST Mobile & Wireless Communications Summit.

Pando Networks (2011a). http://www.pandonetworks.com/

Pando Networks (2011b). CDN Peering.

http://www.pandonetworks.com/cdn-peering

Peer-to-Peer Working Group (2011). Glossary for Peer-to-

Peer. http://www.peer-topeerwg.org/tech/glossary.html

Schollmeier, R. (2001). A Definition of Peer-to-Peer

Networking for the Classification of Peer-to-Peer

Architectures and Applications. In: Proceedings of the

First International Conference on Peer-to-Peer

Computing.

Wikipedia (2011a). Client-Server Architecture.

http://www.webopedia.com/TERM/C/client_server_archit

ecture.html

Wikipedia (2011b). Tit for tat.

http://en.wikipedia.org/wiki/Tit_for_tat

Xu, D., S. S. Kulkarniz, C. Rosenbergz, H.-K. Chaiz (2006).

A CDN-P2P Hybrid Architecture for Cost-Effective

Streaming Media Distribution. In: Multimedia Systems,

Vol. 11 (4), pp. 383-399.

