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Abstract 

 

 We suggest a new type of optimized composite filter, i.e. the asymmetric segmented 

phase-only filter (ASPOF), for improving the effectiveness of a VanderLugt 

correlator (VLC) when used for face identification. Basically, it consists in merging 

several reference images after application of a specific spectral optimization method. 

After segmentation of the spectral filter plane to several areas, each area is assigned 

to a single winner reference according to a new optimized criterion. The point of the 

paper is to show that this method offers a significant performance improvement on 

standard composite filters for face identification. We first briefly revisit composite 

filters (adapted, phase-only, inverse, compromise optimal, segmented, minimum 

average correlation energy, optimal trade-off maximum average correlation, and 

amplitude modulated phase-only (AMPOF)) which are tools of choice for face 

recognition based on correlation techniques and compare their performances with 

those of the ASPOF. We illustrate some of the drawbacks of current filters for 

several binary and gray scale images identifications. Next, we describe the 

optimization steps and introduce the ASPOF that can overcome these technical issues 

to improve the quality and the reliability of the correlation based decision. We derive 

performance measures, i.e. peak-to-correlation energy values and receiver operating 

characteristic curves, to confirm consistency of the results. We numerically find that 

this filter increases the recognition rate and decrease the false alarm rate. The results 

show that the discrimination of the ASPOF is comparable to that of the AMPOF, but 

the ASPOF is more robust than the trade-off maximum average correlation height 
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(OT-MACH) against rotation and various types of noise sources. Our method has 

several features that make it amenable to experimental implementation using a VLC. 



 4 

 

1. Introduction  
Intense interest in optical correlation techniques over a prolonged period has focused 

substantially on the filter designs. These techniques represent a powerful tool for a wide range of 

applications like target tracking, identification, and classification. These applications require a 

real time processing, must be robust to several perturbations, e.g. face rotation, and should be 

insensitive to noise. The optical correlation technique is a good candidate for very fast 

recognition systems. However, the principle of correlation based on a comparison between the 

target image and a correlation filter makes this method not robust to rotation. One of the 

techniques used to overcome this problem is the composite filter, i.e. it contains information 

coming from multiple images. Based on the composite technique, the overall goal of this line of 

research is to develop and optimize a novel filter for the VanderLugt correlator used in face 

recognition [1] that is able to fulfill the above requirements and can handle a large database. In 

this study, we use different faces with several viewpoints from the Pointing Head Pose Image 

Database (PHPID) [2]. The results will show the impact of using the fusion criterion permitting 

to assign a single reference to each filter-pixel. Moreover, thanks to the symmetry property of the 

spectrum the number of real references in the composite filter is increased. This has for effect to 

improve significantly the decision making process.  

Following this brief introduction, we have divided the rest of the paper as follows: a general 

overview of optical correlation methods is given in Sec. 2 providing technical details for the 

system under consideration, and a connection to earlier ideas. In Sec. 3, we present a number of 

relevant examples to illustrate our strategy for improving the effectiveness of the VLC using the 

asymmetric segmented phase-only filter (ASPOF). This face recognition algorithm was 

compared to a whole set of composite correlation filters: all systems were trained and tested on 
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the same images. Our conclusion is that the increase of performance obtained with the ASPOF 

indicates that we were able to propose and validate a new composite correlation filter allowing 

us to increase considerably the number of references to be incorporated in one filter. The ROC 

curves permitted to distinguish between the good recognition and the true non recognition values 

based on an optimized PCE criterion. Finally, we draw our conclusions in Sec. 4.  

 

2. Some preliminary considerations and relation to previous work 

The optical correlation method can be traced back to the pioneering research in the 1960s [1,3]. 

This method consists of comparing a target image and a reference image that comes from a 

database. This comparison leads to correlation peak in the correlation plane. This correlation 

peak is more or less intense, depending on the degree of resemblance between the target and 

reference images. To optimize recognition, several filters created from the reference image have 

been studied [4-6]. However, the correlation approach which needs to compare the target image 

with a large number of reference images in order to increase its robustness is time consuming. To 

reduce the processing time, several composite filters have been developed [6-11]. 

Over the last decade, there has been a resurgence of interest, driven by recognition and 

identification applications [12-17], of the correlation methods. For example, Alam et al. [17] 

demonstrated the good performances of the correlation method compared to all numerical ones 

based on the independent component model. Another significant example in this area of research 

is the work by Romdhani et al. [18], which compared face recognition algorithms with respect to 

those based on correlation. These references are far from a complete list of important advances, 

but fortunately the interested reader can easily trace the historical evolution of these ideas with 

Vijaya Kumar's review paper, Yu’s book, and the chapter of Alfalou and Brosseau containing an 
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extensive bibliography [4, 6-7, 19]. According to the above considerations, our goal is to propose 

and validate a new robust and discriminating composite correlation filter which is able to include 

a large set of training images into this filter which allows one to deal with the diversity of facial 

expressions as input information. To proceed further, we begin with a brief overview of the VLC 

method. Next, we wish to specify the definition of standard performance measures that will be 

used to compare filters. 

 

2.1. VLC 

In this study we consider only the VLC scheme and we focus on the design of a new type of 

optimized composite filter. VLC was preferred to the joint transform correlator (JTC) [20-23] 

because it allows exploitation of all the finite bandwidth in the input plane [24]. Fig. (1) 

illustrates a simplified schematic of the VLC [1,4]. It is based on the multiplication between the 

spectrum, obtained by Fourier transforming the target image (Fig 2 (a)), with a correlation filter 

made from the FT of a reference image and placed in the Fourier plane. The correlation plane is 

obtained from FT
-1

 of the product of both spectra. This results in a more or less intense central 

correlation peak depending on the degree of similarity between the target object and the image 

reference. Many approaches for designing the correlation filter can be found in the literature 

according to the specific objects that need to be recognized [4, 6, 19, 25]. 

 

2.2. Performance measures for filter design 

In order to quantify the correlation plane by the correlation of a filter and a test image different 

correlation plane performance measures were used [26-27]. We choose the PCE criterion [26-27] 

which is defined by 
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 PCE = (Energy in the correlation peak)/(overall energy in the correlation plane) (1) 

In other words, the PCE must be interpreted as the weight of the output signal (correlation peak) 

in the correlation plane relative to noise. In practice, one should take into account of the width of 

the correlation peak in the calculation of the PCE. In what follows, PCE will be evaluated as 
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(2) 

where (x0,y0) denote the position of the correlation peak, C(x,y) denotes the value of the 

correlation plane at point (x,y), t is set to the number of neighboring pixels used, and (N,M) 

denote the size (in pixels) of the correlation plane. A distinct advantage of the PCE is that it 

permits evaluation of the relative importance of the correlation peak with reference to the noise 

of the correlation plane. 

Among standard measures for parametrizing the correlator performances, the receiver 

operating characteristic (ROC) curve, which allow characterizing the binary classifiers, was 

selected [28]. The ROC curve can be represented by plotting the fraction of true positives out of 

the positives TPR (sensitivity, or true positive rate) versus the fraction of false positives out of 

the negatives FPR (1- specificity, or false positive rate). We find it can be more useful to 

consider adapted ROC curves [28]. We fix a weight according to the relative position of the PCE 

with respect to threshold. We shall consider 10 zones separating the threshold and the maximum 

PCE values obtained for a target face, and affect the weight =0.1 for the first zone, 0.2 to the 

second zone, and so on. 
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3. Asymmetric segmented composite POF (ASPOF): a spectral 

optimized filter 
The preceding analysis demonstrates the impact of a reduced number of correlations to obtain a 

reliable decision by using a composite filter. However, this filter needs to be optimized in order it 

can permits to merge a large number of reference images within a given filter. For that purpose 

we suggest a new composite filter, the ASPOF. The ASPOF is an optimized version of the 

segmented correlation filter [8]. Our algorithm has been extensively tested by comparing its 

performance with those of several composite filters [30].  

 

3.1. Segmented composite filter (SPOF) 

The main idea behind the SPOF is that the high saturation regions of the reference images are 

suppressed. Briefly stated, this is achieved through two steps [8]. First, a segmentation of the 

spectral plane of the correlation filter is realized into several independent regions. Second, each 

region is assigned to a single reference. This assignment is done according a specific energy 

criterion  
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where E
l
u,v denotes the energy on the pixel (u,v) of the reference image (l) in the spectral domain. 

This criterion compares the energy (normalized by the total energy of the spectrum) for each 

frequency of a given reference with the corresponding energies of another reference. Assignment 

of a region to one of the two references is done according Eq. (3). Hence, the SPOF contains 

frequencies with the largest energy. 
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3.2. ASPOF algorithm 

A serious limitation of the SPOF is that the regions to which are assigned the winning references 

become smaller as the similarity between the reference images is increased. This effect 

eventually leads to isolated pixels. This issue can be critical since this paper deals with training 

sets of reference images bearing a strong resemblance, i.e. data-base obtained by rotating images 

within the range (-90°,+90°), and we want to increase the number of reference images in the 

filter. Our optimizing method follows from the four-step scheme which defines the ASPOF.  

(i) We first separate the reference image base (  
Ni

R
...1

, where N denotes the number of 

used references), in two sub-classes: one,  1

i
R , which contains the reference images with 

1,...,5,3,1  Ni , the other one,  2

i
R , deal with the other indices Ni ,...,6,4,2  (Fig. 3).  

Next, in stage (ii), two segmented filters are constructed, using an analysis similar method to 

[29], for the two sub-classes,  1

SPOF
H  and 2

SPOF
H , respectively.  

(iii) Selection and assignment optimized criterion used for segmentation of the Fourier plane 

for both filters are realized as follows 
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(4) 

Here l

vu
Spect

,
 is the spectrum of the reference Rl at position (u,v), 

,

l

u v
E  is the energy of the 

reference Rl at the position (u,v). The constant a, (here, set to 1.2), is a pixel assignment 

coefficient. Basically, it means that the pixel of the filter is assigned to a given reference if and 

only if its energy relative to spectral position (u,v) is larger than the energies of all other 
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references multiplied a times. Otherwise, it is not assigned. In Eq. (4), the usefulness of the 

coefficient a is motivated by the fact that sometimes there exist areas of the spectral plane which 

are very similar. Thus, by introducing this coefficient a these areas are not assigned to any 

spectrum according to the segmentation criterion (Eq. 4). These areas will be assigned according 

the neighborhoods of each spectrum (Fig. 4). A similar operation for the second filter 
2

SPOF
H  is 

applied using the spectra of the second sub-class and considering again Eq. (4).  

(iv) In this procedure, unclassified pixels, i.e. those which do not satisfy Eq. (4), are 

assigned to one of the two spectra by looking at their closest neighbors (Fig. 4) in order to avoid 

isolated pixels. An isolated pixel represents a pixel of a spectrum l which is surrounded by pixels 

of the spectrum k. Isolated pixels are detrimental to the segmented filter’s performance; the 

effect being more and more important as the number of references which define the filter is 

increased. Faced with several options for the purpose of decreasing this effect, we chose the 

following scenario. The assignment of pixels which do not satisfy Eq. (4) is realized according 

the schematic illustration depicted in Fig. 4. This figure show different situations, e.g. in Fig. 4 

(a) and (b) the considered pixel is surrounded by pixels of only one spectrum.  

Hence, the pixel is assigned to this spectrum. In another situation, Fig. 4 (c) illustrates the 

case of a pixel surrounded by pixels belonging to the two spectra. In this case, the algorithm 

searches for the immediate neighborhood ( 3 3 pixels) of the pixel, and the rule is to assign this 

pixel to the spectrum which has the largest number of pixels. Fig. 4 (d) represents an example in 

the case that the surrounding environment of the considered pixel contains exactly the same 

number of pixels for the two spectra. In this case, the algorithm searches for the spectrum that 

has the largest number of pixels in an enlarged neighbourhood, i.e. 5 5 pixels.  
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(v) Next, the assignment step is repeated. Interestingly, we observed that a single iteration is 

necessary for letters.  

(vi) Next,  
1

SPOF
H  is multiplied with a symmetric filter (denoted as filter1(1/0) in Fig. 5, and 

2

SPOF
H  is multiplied with the corresponding filter2(0/1) in Fig. 5. Finally, we sum the two filters 

in the Fourier plane. Overall, the ASPOF can be described by 

1 2

1 1 2 2ASPOF SPOF SPOF
H p H filter p H filter  , with 

1
p and 

2
p  being two coefficients. In the 

following we will study the effect of these two numbers on the performance of the ASPOF. 

 

3.3. ASPOF parameterization 

Two kinds of parameter were considered. On the one hand, to illustrate how t in Eq. (2), i.e. 

2
(2 1)t   pixels are required for the calculation of the PCE, can impact the correlation 

performances, we consider the letter A (with rotations between -90° and 90°) and compare the 

performances of the POF, SPOF, AMPOF, and ASPOF. The fabrication of these filters was 

realized using with 10 references, i.e. binary images of the letter A and 10 rotation angles. Fig. 6 

compares the PCE resulting from correlating the letters A and V with the four composite filters. 

Taking t=1 pixel (Fig. 6 (a)), the ASPOF is found to be very discriminating. One way to increase 

the robustness of the ASPOF is to increase t. It can be seen that the ASPOF shows the best 

compromise between robustness and discrimination factor when t=10. For t larger than 10, the 

discrimination quality decreases (Fig. 6 (d)). In the following, t is set to 10. On the other hand, 

we further show how p1 and p2 can influence the performances of the ASPOF. Fig. 7 (a) shows 

the PCE values with p1=p2=1 where we choose the same illustrating example as above. We 

found by an iterative method (100 iterations, Fig 7 (b)) that the best performances were obtained 

by taking p1=2 and p2=1.5.  
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3.4. Composite filters used for comparison with the ASPOF 

In this subsection, we will review various composite filters in order to select some of them 

(POF, SPOF, AMPOF, and trade-off maximum average correlation height (OT-MACH)) that 

will be compared with the ASPOF in order to demonstrate its robustness and its good 

discrimination. We first study the effect of the background. We considered different classical 

composite filters (the full list is shown in Table 1). A detailed comparative study of the 

discrimination and robustness performances for standard composite correlation filters employed 

for face recognition is presented in the supplementary material [30].  

As expected the adapted composite filter is robust against rotation and not discriminating. 

Moreover, its low discriminating character is more and more visible as the number of references 

is increased. Our findings suggest that the composite POF is quite robust but not much 

discriminating, see Fig. 8 and Fig. 9.  For obtaining these figures we have correlated different 

rotations (from -90 to 90 °) of the A and V letters with different composite POF filters using 

different rotations of the letter A as reference images. As seen in Fig. 8 the different PCE data 

show that the correlation values have an average PCE value larger than 3 10
-3

. It is important to 

point out that the PCE values obtained from the correlation of the letter V correlated with the 

same filters have an average value less than 10
-3

, and support the conclusions reported in [31].  

In addition, composite POF show robustness to noise, especially when the noise is clearly 

identified. However, we find that the energy contained in the correlation peak decreases 

significantly, i.e. the PCE is decreased by a factor of 3 when using a POF containing 3 references 

by contrast with a POF realized with a single reference (Fig. 8). This supports also the 

conclusions made in [31]. Fig. (8) shows that for a 11-reference POF, the PCE is decreased by an 
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order of magnitude which renders unreliable the decision on the letter identification. Beyond 11 

references, the weakness of the magnitude of the PCE makes the recognition of the images 

forming the filter very difficult. This is partly due to the saturation. Indeed, when the number of 

training images is large saturation occurs because the correlation filter is pixelated, i.e. since ach 

pixel is encoded with a fixed number of bits, increasing the latter has for effect to slow down the 

filtering process and thus to increase the required memory space. To overcome this saturation 

limitation the segmented composite filter (SPOF) was proposed and validated in [8]. To further 

show the interest in using a segmented filter with respect to the saturation problem which affects 

the classical composite filter, we show in Fig. 2 (b) the 8-bit image of the sum (without 

segmentation) of the three spectra corresponding to the reference images (Fig. 2 (a)). Fig. 2 (c) 

shows the corresponding sum with segmentation [8]. Our calculations clearly indicate that the 

image with segmentation shows significantly less saturation than that obtained without 

segmentation.  

For comparison, we performed simulations for a binarized composite POF [30]. Overall, the 

behavior of this kind of filter is very similar to that of POF albeit with smaller performances. We 

should notice that this conclusion is similar to that noted by Mohammed et al. in [32]. The low 

performances of the binarized POF is confirmed by a comparison between the results obtained 

by Mohammed et al. [32] and those reported by Rahman et al. [31].  

Overall, we found that the composite POF has a good robustness against rotation but has a 

low discrimination. To look at the discrimination of composite filters in more detail, we shall 

consider the inverse composite filter. Such filter shows a strong discriminating ability and a low 

robustness against small changes of the target image with respect to the reference image [30]. 

Fig. 10 presents the correlation results obtained for different rotations of the letter A and several 



 14 

inverse filters. This leads to the conclusion that this inverse composite filter is not well adapted 

for the composite architecture.    

Next, testing the compromise optimal filter, we observed that its composite version is robust 

to noise when the latter is clearly identified [30]. We also observed that the filter OT is not 

robust to image rotation when the images are noisy, especially if the noise cannot be explicitly 

evaluated, see Fig. 11 (different versions of this filter were considered in [30]).  

The minimum average correlation energy (MACE) filter was also studied [11,33]. Its 

correlation performance is good when the target image is similar to one of the reference images, 

see the region B in Fig. 12. Nevertheless, the robustness of this filter is very poor since the 

correlation peak disappears in the A and C regions (Fig. 12). In [34], Iftekharuddin et al. 

proposed and validated an optimized MACE filter, the amplitude coupled MACE filter, that is 

robust to rotation. However, as the classical MACE filter the optimized version is also sensitive 

to noise, especially to structured noise. 

Next, the AMPOF [16,35] was considered because it is high discriminating performance. 

Awwal et al. [35-36] suggested an optimization of the POF filter based on the following idea: the 

more the spectrum of the Fourier plane can be flattened the sharper will be the correlation peak. 

These authors introduced the amplitude-modulated phase-only filter (HAMPOF). As shown in our 

tests [30], the AMPOF is not robust to rotation and that is weakly robust to noise. However, the 

AMPOF is found to have significantly superior correlation discrimination capability. In [37], 

Iftekharuddin et al. studied a discretized version of the AMPOF filter. The resulting filter has 

good recognition performances of a nosiy object. In addition, the good discrimination 

performances of the AMPOF led Iftekharuddin et al. [38] to introduce an amplitude modulated 

inverse filter (AMIF) which is robust to Gaussian white noise. But, the AMIF is very sensitive to 
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face rotation. Thus, we considered this AMPOF filter in order to compare it with our new 

ASPOF filter. This is to highlight the good discriminatory performance of our ASPOF filter. 

Another filter that was considered in this study is the OT-MACH filter [39-40]. From these 

different comparisons, the POF, AMPOF, and the MACH composite filters were selected for the 

comparison of correlation performances with our optimized ASPOF filter.   

 

3.5. Performance criterion adapted to the ASPOF 

Here, we will modify the definition of the PCE, i.e. Eq. (2), since we assumed that only a 

single correlation peak is considered, and that the filter which led to the correlation peak contains 

the total energy. These assumptions should be reconsidered for the ASPOF. Only half of the 

energy of the output plane is associated with each filter since the ASPOF is composed of two 

distinct filters. On the other hand, each filter leads to a correlation peak. Hence, for various 

situations two correlation peaks can appear in the output plane (see, e.g. Fig. 13 (a)). To 

circumvent the problem connected to the energy lowering of the correlation peak with the 

ASPOF, i.e. only half the filter plane is used, the correlation peak magnitude could be multiplied 

by a factor of 2. However, this “trick” is insufficient. In fact the asymmetry feature of this filter 

leads to a correlation between the target image and a part of our filter, while there is 

intercorrelation with the second part. This can be observed in Fig. 13 which shows three 

correlation planes of the target image defined by the letter A. 

As is apparent in Fig. 13, no correlation peaks are visible with the composite filters and 

AMPOF. However, it should be noted that the correlation plane displayed in Fig. 13 (a) shows 

two peaks: a first peak arises from the autocorrelation between the target image and the part of 

the ASPOF which contains the reference image which is similar to the target image, and the 

second peak can be identified as due to the intercorrelation between the target image and the 
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other part of the ASPOF. Overall, the autocorrelation plane is noised by the intercorrelation 

plane. This effect has for effect to decrease the PCE values and consequently the identification 

performances of the ASPOF. In addition, it may happen that the target image is similar to two 

reference images, with one of them being in the first part of the ASPOF and the other one being 

in the second part of the ASPOF. To address this difficulty, we defined a different criterion, 

hereinafter denoted as the adapted peak-to-correlation energy (PCEA), which can be written as   
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(5) 

To further investigate this point, i.e. to separate the autocorrelation plane from the 

intercorrelation one, we have added a specific phase term to the two parts of the ASPOF. This 

phase is chosen that the correlation can be placed at a given point in the output plane. The 

respective correlation plane performances of the different simulations are in very good 

agreement with those gauged with the PCEA performance metric.  

 

4. Illustrating the ASPOF performances  

 

4.1 Robustness against face rotation 

We considered the behavior of the 10-reference HASPOF for the problem of identifying the 

letter A with a rotation angle ranging from -20° to 25°. Then, each letter A of the data-base 

(obtained by rotating the A image over (-90°,90) in increments of 1° counter clockwise) was 

correlated with the 10-reference HASPOF. As shown by the green line in Fig. 14 (a), the letter A 

has been identified over (-20°,25°). To emphasize the benefit of the optimization stage 

concerning the isolated pixels (stage (iv) of the algorithm) on the filter behavior, it is instructive 
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to contrast the results obtained for the HASPOF 
without taking into account this step in our 

algorithm as shown by the green line in Fig. 14 (b). In the latter case, it should be noted that the 

PCE values are decreased by a factor of 2.  It is evident that this optimization stage allows us to 

decrease the influence of the isolated pixels in the classical segmented filter HSPOF.  

For comparison, we also plot in Figs. 14 (a) and (b) the correlation performances obtained 

with 1

POF
H  (blue line), HSPOF (red line), and HAMPOF (black line) in the case of a noise free target 

image. Figs. 14 (a) and (b) show that HASPOF is characterized by the largest PCE values in the 

correlation region A, including those of the AMPOF. In addition, HASPOF presents the most 

significant contrast between the correlation region A and the no-correlation regions B and C. 

This shows that HASPOF is robust in the correlation region and discriminating in the no-correlation 

regions. 

1.1.1. Robustness to rotation and noise 

As we next demonstrate, the conclusions are robust since ASPOF remains effective when 

noise is contained in the target image. The noise analysis procedure was identical to that 

performed previously. Fig. 14 (c), corresponding to a centred white noise of variance set to 0.1, 

and Fig. 14 (d) which considers a structured background noise. For each case, HASPOF is a noise 

robust filter by comparison with the composite filters which were considered previously. 

Different tests involving other types of noise (not shown) are consistent with this observation.  

 

4.2. ROC curves 

The ROC curves in Fig. 15 demonstrate the effectiveness of the ASPOF for image 

recognition. The data base consisted of 10 reference images of the letter A (binary image, 

512 512 pixels) taking a range for angle of rotation from -60° to 60°, i.e. -55°, -45°, -30°, -15°, 



 18 

0°, 15°, 30°, 45°, 55°, 60°. The correlation planes are quantified using Eq. (2) and Eq. (5) (we 

choose t=10 pixels), and the recognition performance of composite filters for this specific set of 

reference images are studied and compared (supplemental material [30]). The merging of the two 

components of the ASPOF, i.e. 
1 2

ASPOF SPOF SPOFH aH bH  , was also optimized by choosing 

a=2 and b=1.5. Fig. 15 shows the ROC curves obtained with the capital letters A and V (by 

rotating the V letter in increments of 1° counter clockwise from -90° to 90°) for different 

composite filters. As it can be seen in the ROC curves of Fig. 15 the AMPOF gives the closest 

results to a random guess. This reflects the strong discrimination and the low robustness to 

rotation of the AMPOF. From Fig. 15, we can see that the overall performance of the segmented 

filter is better than that of the AMPOF, but remains poor because of the isolated pixels. POF is 

able to achieve better performance than AMPOF; however due to the saturation problem only a 

weak difference between the good decisions and the false alarms is observed (Fig. 14). This is in 

contrast with the different performance points that can be achieved with the ASPOF. On one 

hand, the results of our tests clearly show the good recognition performance of the ASPOF, i.e. 

TPR=0.92 corresponding to FPR=0. On the other hand, it presents good separation between good 

decisions and false alarms (Fig. 14). 

 

4.3. Application to face recognition 

The final point we wish to mention here is that the above ideas can be extended to the 

problem of gray scale images identification. For this purpose we considered six different subjects 

from the PHPID [2]; an example is given in Fig. 16 (a) with several training images per person 

corresponding to different face orientations. As above, it is possible to define a 5-reference 

ASPOF for a given subject (with variable rotation angles, i.e. from top to bottom: -15°, 0°, +15°, 
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and from left to right: +90°, 0°, -90) in the following manner: 3 references were placed in the 

first half of the ASPOF and the remaining two references were positioned in the other half part 

of the ASPOF.   

In this example, we choose t=1 pixel, a=3 and b=1.5. The values of these parameters are 

chosen in relation with the considered application. The 5-reference images corresponds to -45°,-

30°,-15°,15°,45° rotation angles (Fig. 16 (b)). ASPOF training set correlations in Fig. 17 (a) were 

observed to produce good recognition performances in comparison to those of POF. It is likely 

that these differences originate from the saturation problem which is more pronounced for the 

case of faces. The recognition performance of the ASPOF was also compared to that of the 

optimal trade-off MACH (OT MACH) filter with a background noise. The parameters for the OT 

MACH are α=0,25, β=1, and γ=0,1 [30,39-40]. The results in Fig. 17 (b) show that the 

recognition performances are significantly larger with the ASPOF. The result (Fig. 17 (b)) of our 

method demonstrates the good recognition performance of the ASPOF, i.e. TPR=0.69 

corresponding to FPR=0 to be compared with TPR=0.33 and TPR=0.47 for the OT MACH and 

POF, respectively).  

 

5. Summary 

In summary, we have developed a face recognition system based on optical correlation for use 

in identification and classification. The system will be able to detect, identify and track various 

targets with robustness and discrimination. The method has two main stages: increase the 

number of reference images in order to consider as much as possible target image changes, and 

use composite filters. The main advantage of these filters is to merge the information of many 

reference images in a single filter, thus reducing the number of correlations to make a reliable 
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decision. However, the robustness and discrimination performances decrease as the number of 

reference images is increased, i.e. saturation. To overcome this limitations, we have presented 

herein a fairly thorough analysis of an optimized composite filter, i.e. the asymmetric segmented 

phase only filter (ASPOF), for improving the effectiveness of a VLC when used for face 

identification. The principle of our filter consists in a specific segmentation of the filter’s Fourier 

plane in several regions. Next, each region was assigned to a single reference image. This 

optimization stage allowed us to increase significantly the number of reference images of the 

segmented filter. However, the main drawback of this solution is to generate isolated pixels 

which yield to low overall performances of this kind of filter. Next, we have proposed a new 

type of optimized composite filter, i.e. the ASPOF. We found useful to introduce a new 

segmentation criterion to characterize the correlation plane of this filter. Each of the stages has 

various parameters that must be optimized in order to increase the robustness and discriminating 

ability while increasing the number of reference images contained in the filter. We have 

validated this technique and applied it to several binary and gray scale images identification. 

Overall, our results are encouraging and demonstrate that the ASPOF is characterized by a good 

compromise between robustness and discrimination. 

Furthermore, we believe that the simplicity of the technique provides sufficient appeal 

from the experimental viewpoint. Of equal or potentially more importance will be to optically 

or numerically implement it. We believe that it would be interesting to explore this topic 

further-we discuss very briefly below how this might be done. There are two key directions for 

improving the results presented here. First, a careful optimization of the merging method is 

required to maximize the use of the filter’s Fourier plane bandwidth. Second, we expect that 
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these general results will apply in 3D face recognition application as well as well. Work 

addressing these avenues has been initiated. 
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Table 

Table 1: Illustrating the different composite filters used in this study. 
Adcomp

H  denotes the adapted 

composite filter. It is realized by considering a linear combination of reference images and using 

the adapted filter definition.  HComp-POF is the POF composite filter. We tested two different 

schemes for realizing the composite POF filter. In the first scheme (
1

POFcomp
H ), a linear 

combination of reference images was used to create the POF. The second scheme (
2

POFcomp
H ) 

involves performing the POFcfor each reference, and using the linear combination of these 

POFs. 
1

BPOFcomp
H  and 

2

BPOFcomp
H  are the binarized versions of the filters 

1

POFcomp
H  and 

2

POFcomp
H , 

,respectively. The composite inverse filter 
IFcomp

H is the inverse filter of the linear combination of 

reference images. The optimal composite filter 
OTcomp

H is realized by linearly combining 

reference images. 
1

SPOFcomp
H denotes the segmented filter realized by doing segmentation and 

assignment with the energy criterion. The calculation of filter 
2

SPOFcomp
H  is done by replacing the 

energy with the square of the real part of the different references spectra to be merged. 

MACEcomp
H is the composite filter of the MACE filter.  

AMPOFcomp
H  is the composite version of the 

AMPOF. 
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Figure Captions 

 

FIG. 1: Schematic of the principle of the VLC scheme.  

 

FIG. 2: Illustrating the saturation effect: (a) three 8-bit grey scale images. (b) Image obtained by 

a classical linear combination of the three images shown in (a). (c) Image obtained using an 

optimized merging (spectral segmentation). 

 

FIG. 3: Technique used to classify the reference images in 2 sub-classes. 

 

FIG. 4: Illustrating the optimized assignment procedure for isolated pixels. 

 

FIG. 5: Merging technique based on the Fourier plane symmetry property. 

 

FIG. 6: (Color online) PCEs obtained with 10-reference POF, SPOF, AMPOF, and ASPOF. (a) 

t=1 , (b) t=5, (c) t=10, and (d) t=20.  

 

FIG. 7: (Color online) PCEs obtained with a 10-reference ASPOF and t=10 pixels. (a) p1=p2=1 

(b) p1=2 and p2=1.5.   

 

FIG. 8: (Color online) PCEs obtained with the composite POF. The colors shown in the inset 

denote the different filters as a function of the number of references used.  
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FIG. 9: (Color online) Discrimination results: (a) the target image is the letter V. (b) PCEs 

obtained with a filter fabricated with reference images of letter A. The colors shown in the inset 

denote the different filters as a function of the number of references used. 

 

FIG. 10: (Color online) PCEs obtained with the inverse composite filter. The colors shown in the 

inset denote the different filters against the number of references used. 

 

FIG. 11: (Color online) (a) Illustrating the letter A with additive background noise. (b) Same as 

in (a) with a rotation angle of -50°. (c) Illustrating the letter A with structured noise. (d) Same as 

in (c) with a rotation angle of 50°. (e) Illustrating the letter A for a weak contrast. (f) PCEs 

obtained with the OT composite filter taking α=0.6. The colors shown in the inset denote the 

different filters versus the number of references used.  

 

FIG. 12: (Color online) PCEs obtained with a 10-reference MACE when the target images are 

noiseless. Several examples of the rotated letter A are shown at the bottom of this figure. The 

inset shows two correlation planes. On the right hand: autocorrelation obtained without rotation,. 

On the left hand, inter-correlation obtained with the letter A oriented at -75°. 

 

FIG. 13: Output normalized Fourier planes obtained by correlating of the same target image 

(letter A with a rotation angle of -75°) with: (a) ASPOF, (b) composite filter, and (c) AMPOF. 

 

FIG. 14: (Color online) Comparison between the different correlations of letter A (we consider 

rotation angles ranging between -90° and 90°) with the 10-reference composite filters: POF (blue 
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line), Segmented (red line), AMPOF (black line), and ASPOF (green line). (a) PCEs obtained 

using the optimization stage concerning the isolated pixels, (b) PCEs obtained without the 

optimization stage concerning the isolated pixels. (c) and (d) represent the PCEs obtained with 

noised target images. 

 

FIG. 15: (Color online) ROC curves obtained with 10-reference composite filters:  POF (red), 

SPOF (green), AMPOF (purple) and ASPOF (navy blue). The sky-blue line shows the random 

guess. 

 

FIG. 16: Example of face images from PHPID, that were captured under variable angle 

conditions, i.e. from top to bottom: +15°, 0°, +15°, and from left to right: -90°, 0°, +90°: (a) 

target faces, (b) references. 

 

FIG. 17: (Color online) (a) ROC curves obtained by correlating faces of a given subject, e. g. 

Fig. 9 (a), with 6 other individuals with 5-reference ASPOF (navy blue) and POF (red) 

composite filters. The sky-blue line shows the random guess. (b) ROC curve obtained with an 

OT MACH. 
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Composite filter Notation 

Adapted filter 
Adcomp

H  

Phase-only filter 1

POFcomp
H , 

2

POFcomp
H  

Binary phase-

only filter 

1

BPOFcomp
H , 

2

BPOFcomp
H  

Inverse filter 
IFcomp

H  

Compromise 

optimal filter 
OTcomp

H  

Segmented filter 1

SPOF
H , 

2

SPOF
H  

Segmented binary 

filter 

1

BSPOF
H , 2

BSPOF
H  

Minimum 

average 

correlation 

energy filter 

MACEcomp
H  

Amplitude 

modulated phase-

only filter 

AMPOFcomp
H  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 1: Leonard, Alfalou and Brosseau 
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FIG. 1: Leonard, Alfalou and Brosseau 
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FIG. 2: Leonard, Alfalou and Brosseau 
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FIG. 3: Leonard, Alfalou and Brosseau 
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FIG. 4: Leonard, Alfalou and Brosseau 
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FIG. 5: Leonard, Alfalou and Brosseau 
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FIG. 6: Leonard, Alfalou and Brosseau 
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FIG. 7: Leonard, Alfalou and Brosseau 
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FIG. 8: Leonard, Alfalou and Brosseau  
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FIG. 9: Leonard, Alfalou and Brosseau  
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FIG. 10: Leonard, Alfalou and Brosseau  
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FIG. 11: Leonard, Alfalou and Brosseau  
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FIG. 12: Leonard, Alfalou and Brosseau  
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FIG. 13: Leonard, Alfalou and Brosseau 
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FIG. 14: Leonard, Alfalou and Brosseau 
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FIG. 15: Leonard, Alfalou and Brosseau 
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FIG. 16: Leonard, Alfalou and Brosseau 
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FIG. 17: Leonard, Alfalou and Brosseau 


