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ABSTRACT

We consider the problem of dendritic spine detection from
X-ray micro-tomographic volumes that allow huge volume
of tissue visualization. To compensate for the noise in data
that induces false positives in the spine detection process, we
first segment the dendrites. This segmentation is obtained by
computing the medial axis and approximating the results by
segments obtained with a 3D Hough transform. Dendrites
are then reconstructed and a spine mask is obtained using the
typical diameter of dendrites and distance between spine and
dendrites. A point process is then optimized on this mask,
thus providing the spine detection.

Index Terms— Dendritic spine, X-Ray micro-tomography,
3D Hough transform, Point Process

1. INTRODUCTION

Dendritic spines are small bulbous structures connected to the
stem dendrite through a tiny neck. They have a huge biolog-
ical importance as they represent the majority of the synaptic
connections of the cerebral cortex providing the backbone of
the cortical connectome [1]. Studying their density and repar-
tition along dendrites provide essential information to explain
neural network functioning, and pathology of diverse disor-
ders [2, 3, 4, 5]. In addition, their repartition according to a
morphologic type (mushroom, stubby or thin) provides more
detailed quantative biomarkers.

The first step to study spine repartition consists in detect-
ing and segmenting the dendritic spines in neurons images.
In the literature, imaging protocols generally rely on fluo-
rescence microscopy techniques, either confocal scanning
microscopy [6], 2-photons scanning microscopy [7, 8], or
electron microscopic reconstruction. Such protocols provide
contrasted images at high resolution that facilitate the de-
tection process. However, the obtained images are usually
anisotropic, with a slice thickness that may be much larger
than the pixel size. As a consequence, some spines may be
missed. In addition, the imaged field of view of the scanning
microscopy technique is quite small (typically one hundred of

512x512 slices with a pixel size of about 0.05 µm): a larger
number of samples is required for statistical analysis.

In this paper, we consider an alternative imaging protocol,
namely the X-rays micro-tomography (XRMT). It overcomes
the two main drawbacks of the scanning microscopy proto-
cols, since the obtained 3D images are isotropic (the voxel
size is identical along the 3 dimensions), and it allows to im-
age larger samples (typically the obtained images are of size
10003 with a voxel size of 0.308µm3). Moreover, in contrast
to scanning microscopy, no occlusion or masking by overlap-
ping structures occur in the deeper slices (structures closer to
the objective lens occlude deeper ones beneath).

One advantage of fluorescence microscopy is due to the
potential use of dedicated labels, which are cellular specific.
However, they require either intracellular staining or use of
transgenic animals. Moreover, photo-bleaching is clearly a
limitation to such staining. Our staining technique (Golgi [9])
is more versatile, and is clearly sufficient to describe the fun-
damental brain circuits with a high specificity (Ramon y Ca-
jal describes the different morphologic spine types with such
staining at the end of the 19th century).

XMRT also exhibits a higher level of noise than laser
scanning microscopy. This implies that popular existing ap-
proaches (e.g. SpineLab [10] or Neuronstudio [6]) are likely
to fail. Hence, robust algorithms are mandatory. Moreover,
some of the existing methods requires user interaction, which
is not compatible with the large volumes produced by XMRT.
Therefore, a fully automated approach has to be designed.

Before defining a strategy to detect dendritic spines, let us
notice some difficulties linked with the problem: (i) spine size
is close to the data resolution, (ii) spine may appear not con-
nected with the dendrite. Therefore we have to avoid (i) de-
noising (as proposed in [7]) that may remove some spine, (ii)
basing the detection on the dendrite tree extraction (as pro-
posed in [6]) that may omit some spines and (iii) detecting
spines on the whole dataset that may introduce many false
positives (as proposed in [7]). Besides, we expect to make the
detection in 3D but not on the Maximum Intensity Projection
as in [11]. To circumvent these difficulties we propose to use
shape information and localization with respect to dendrites



to detect spines. We first extract dendrites as tubular struc-
tures. These tubular features are used to define a spatial mask
where spine may appear. A spine detector embedding shape
information is finally applied on this mask.

We detail the method in section 2 and show some result in
section 3 before concluding in section 4.

2. METHODS

2.1. Extracting dendrite medial axis

First, the medial axis of the dendrites are detected thanks to
a multi-scale Hessian-based method [12]. Basically, at each
scale σ the Hessian matrix (i.e. the matrix of the image sec-
ond derivatives) is calculated by a convolution of the image I
with the second derivatives of a 3D Gaussian kernel of stan-
dard deviation σ. At the center of a tubular structure, the Hes-
sian matrix exhibits two high eigenvalues, whose associated
eigenvectors v1 and v2 are orthogonal to the direction of the
tubular structure, and one low eigenvalue, whose associated
eigenvector obviously gives the direction of the tubular struc-
ture. Once the likely direction of the dendrite is identified at
point M , a function response is calculated that integrates the
radial derivative along a circle of radius σ:

Rσ(M) = 1/2π
∫ 2π

0

v(θ).∇σI(M + σv(θ))dθ (1)

with v(θ) = cos θv1 + sin θv2.
The responses at each scale are then combined into a mul-

tiscale response, thanks to normalized γ-derivatives [13], and
last the local extrema of this response, with respect to the di-
rections v1 and v2 are extracted.

2.2. Dendrite detection

To denoise the obtained dendrite medial axis image, we con-
sider a segment approximation by computing the 3D Hough
transform. To parametrize lines in the 3D space, we consider
a sphere including the data volume. Any line crossing the
sphere is then parametrized by the four angles corresponding
to the two intersection points between the line and the sphere.
Any voxel P above a threshold T , in the medial axis image
will vote for the following points in the 4D Hough space (see
figure 1):

{(θ1, φ1, θ2, φ2), θ1, θ2 ∈ [−π, π], φ1, φ2 ∈ [0, π2 ],
PS1

f
S1S2, } , (2)

where S1 (resp, S2) is the point on the sphere with angles
(θ1, φ1) (resp.(θ2, φ2)) The candidate lines are obtained by
extracting the local maxima in the Hough space. Finally, the
dendrites are approximated from the candidate lines by con-
sidering the segments constituted of voxels whose gray value

Fig. 1. The voting mechanism for the 3D Hough transform

is higher than the threshold T and having a minimal length
l. Once the segments describing the dendrite axis have been
obtained, we reconstruct the dendrites with a conditional di-
lation MD = (SD �K1) ∩ YT , where � is the Minkowsky
addition and YT is the data thresholded at T . As dendrites
are mainly vertically oriented, we consider a disk in the XY
plane for the structuring element K1, the size of which is de-
fined by the data resolution and the typical dendrites diameter
(three voxels in our case as the typical dendrite diameter is
1µm [14]).

2.3. Spine detection

Once we have detected dendrites we define a mask where
spines may lie. This mask is obtained using a dilation of the
dendrite mask as follows:

MS = MD �K2 −MD, (3)

where MD is the dendrite mask, � the Minkowsky addition.
The size of the structuring element K2 is defined by the res-
olution and the maximum distance between a spine and its
dendrite (again, a XY disk of size three voxels is used as a
structuring element corresponding to the typical size of spine
stalk [14]). The spine mask MS allows a reduction of the
computation time in the detection process but also avoids
false positives due to irregularities on dendrites.

To detect spines we consider a point process in MS . A
configuration of points is denoted x = {x1, ..., xn}, xi ∈
MS . This probabilistic framework embeds geometric con-
straints through the definition of a data term and structural
constraints through the definition of a prior. It has been suc-
cessfully applied for multiple objects detection problems such
as trees, flamingos or cells detection. We define the point pro-
cess by an unormalized density h with respect to the Poisson
measure [15] as follows:

h(x) = f(x)g(x|y), (4)

where f(x) is the prior and g(x|y) the data term depending
on data y. The prior is a hard core process:

f(x) =
∏

(i,j),i6=j

δ(d(xi, xj) > D), (5)



where δ(a) = 1 if a is true and 0 otherwise. Therefore
the prior states that the minimal distance between two spines
must be greater than D (D = 3 voxels in our case). To com-
pute the data term we consider that a spine is included in a
3×3×3 cube (the typical spine bulb size being 1µm in mam-
mals [14]) and consider the contrast between this cube and its
neighborhood by computing the Bhattacharyya distance:

b(xi)=

[
1
4
(µin−µout)2

σ2
in + σ2

out

+
1
2
log

(
σ2
in + σ2

out

2
√
σ2
inσ

2
out

)]
δ(
µin
µout

> 1),

(6)
where µin and σ2

in (resp. µout and σ2
out) are the mean and

variance of the set {ys : d(i, s) < 2} (resp. {xs : 2 ≤
d(i, s) < 3}). Finally, the data is written as follows:

g(x|y) = exp

[
−
∑
i

u(xi)

]
, (7)

where:

u(xi) =

{
1− b(xi)

b0
if b(xi) < bo

exp −(b(xi)−bo)
3b0

otherwise
(8)

b0 is a contrast parameter that defines spine candidates when
the corresponding Bhattacharyya distance is greater than b0.

To obtain the optimal solution with respect to h(.), we
consider a fast approximation of the Multiple Birth and Death
algorithm [16]:

Birth: Consider as candidates the set C of all points in MS

Sort: Sort the candidates xi ∈ C with respect to u(xi) in
the decreasing order (the worst first), to obtained x =
{x1, ..., xn}

Death: For i = 1 to n, if h(x) < h(x/{xi}) remove xi from x

3. RESULTS

To exemplify the proposed approach, a subvolume (220 ×
180 × 100) has been extracted from a XRMT volume that
is given on figure 2. As expected, the spines appear as small
objects, whose size is close to the image resolution, along
the tubular structures representing dendrites (see figure 3).
Using the localization information to detect spine is essen-
tial to prevent false positives due to noise or to the devia-
tion of dendrites from a cylinder model (see figure 4 for a
potential false positive avoided thanks to its distance with re-
spect to dendrites). The parameters linked with the geometry
(size of the mask and structuring elements) are automatically
fixed considering the image resolution and the dendrite spine
size referred in the litterature [14]. The remaining parameters
(threshold in the 3D Hough transform and in the detection
step) are data dependant as they are linked with the image
contrast. Next step will consists in estimating these parame-
ters from the image histogram.

Fig. 2. Original XMRT data. Left: axial slice (69µm×57µm)
; right: sagittal slice (69µm× 31µm) .

Fig. 3. Examples of spines. Left: constrasted spine; right:
poorly contrasted spine.

Fig. 4. Noise similar to spine but too far from dendrite.

Figure 5 shows the detected dendrite medial axis and the
spine mask derived from the dendrite detection. The obtained
spine detection is shown on figure 6. The obtained results are
promising and correspond to a visual inspection of the data.
We are currently performing a manual detection by several
experts to provide a quantitative evaluation of these results.

Fig. 5. Definition of a spine mask. Left: medial axis (per-
spective view from front side); right: dendrite in white and
spine mask in gray (perspective view from top).



Fig. 6. Dendrites (in green) and spines (in red)

4. CONCLUSION

We have proposed an automated algorithm for detecting den-
dritic spines from XRMT data. XRMT data allows imag-
ing a large volume of tissue, and therefore a higher number
of spines than laser scanning microscopy. We have shown
that despite the lower image quality compared to microscopic
data, we were able to extract dendritic spines. The main idea
of the proposed approach is to define a mask for performing
the spine detection without facing the false positive problem.
We therefore first extract the dendrites themselves and then
compute the spine mask based on prior knowledge on their
localization with respect to dendrites. Results are visually
promising, and a forthcoming validation study will allow to
better assess the quality of the detection by providing a quan-
titative evaluation. In a next step, we will consider the prob-
lem of spine classication in the three classical classes: stubby,
thin, mushroom.
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