
Indexing and Searching 100M Images with Map-Reduce

Diana Moise
INRIA Rennes

Diana.Moise@inria.fr

Denis Shestakov
INRIA Rennes

Denis.Shestakov@inria.fr

Gylfi Gudmundsson
INRIA Rennes

Gylfi.Gudmundsson@inria.fr

Laurent Amsaleg
IRISA-CNRS

Laurent.Amsaleg@irisa.fr

ABSTRACT

Most researchers working on high-dimensional indexing agree
on the following three trends: (i) the size of the multimedia
collections to index are now reaching millions if not billions
of items, (ii) the computers we use every day now come
with multiple cores and (iii) hardware becomes more avail-
able, thanks to easier access to Grids and/or Clouds. This
paper shows how the Map-Reduce paradigm can be applied
to indexing algorithms and demonstrates that great scalabil-
ity can be achieved using Hadoop, a popular Map-Reduce-
based framework. Dramatic performance improvements are
not however guaranteed a priori: such frameworks are rigid,
they severely constrain the possible access patterns to data
and scares resource RAM has to be shared. Furthermore,
algorithms require major redesign, and may have to set-
tle for sub-optimal behavior. The benefits, however, are
many: simplicity for programmers, automatic distribution,
fault tolerance, failure detection and automatic re-runs and,
last but not least, scalability. We share our experience of
adapting a clustering-based high-dimensional indexing algo-
rithm to the Map-Reduce model, and of testing it at large
scale with Hadoop as we index 30 billion SIFT descriptors.
We foresee that lessons drawn from our work could mini-
mize time, effort and energy invested by other researchers
and practitioners working in similar directions.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed systems

Keywords

High-Dimensional Indexing, Map-Reduce, Hadoop.

1. INTRODUCTION
Multimedia collections now reach sizes that were unthink-

able a few years back. Many papers published lately in mul-
timedia research venues have experimental sections where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMR’13, April 16–20, 2013, Dallas, Texas, USA.
Copyright 2013 ACM 978-1-4503-2033-7/13/04 ...$15.00.

the collections used for evaluations contain millions of im-
ages or billions of descriptors [9, 17, 12]. The quest for im-
proving speed, scale and performance is still there, however.

The processing power of each computer has also grown, as
well as the size of grids and now clouds. Architectures are
now all 64bits, allowing for huge on-board RAM capacities,
tens of gigabytes are not uncommon, and hundreds possible.
All computers now come multi-cored and thus writing par-
allel programs is no longer reserved to some elite, equipped
with exceptional machines.

Such architectures are appealing when processing massive
collections of multimedia material, especially when creating
high-dimensional indices. Taking a raw collection of high-
dimensional descriptors and creating for it an index to allow
subsequent ultra-fast searches is still a long, complex, costly,
and resource-consuming task. When the raw descriptor col-
lection is on the order of terabytes, as is the case when in-
dexing tens of millions of real world image using SIFT [18],
then indexing may take days or even weeks. Parallel and
distributed architectures are also needed when searching in-
dices in order to exhibit a very high query throughput.

This paper describes a complete Map-Reduce based high-
dimensional indexing approach running on top of the Hadoop
distributed framework. It builds on a very simple yet very
effective and efficient state-of-the-art centralized indexing
algorithm that is prototypical of the major trends we can
observe in the indexing literature [8]. It uses clustering as
an unstructured vectorial quantizer to create clusters group-
ing descriptors. At search time, one or few clusters are
fetched and the descriptors they contain compared to the
query vector. From this starting point, the three contribu-
tions described in this paper are:

1. Index creation with Map-Reduce. We propose
a Map-Reduce based high-dimensional index creation
scheme enabling the fast indexing of billions of de-
scriptors, terabytes of data. This index creation tech-
nique scales very well with growth of the data collec-
tion and/or available hardware resources. Its princi-
ples are very simple and can be applied to other in-
dexing schemes as long as they can be turned into a
divide-and-conquer process.

2. Index search with Map-Reduce. For some appli-
cations, throughput is way more important than is the
response time of individual queries. We propose a in-
dex search scheme that is geared toward throughput
as it processes very efficiently large batches of queries.
We show this search technique is essentially bounded

by the performance of I/Os, which leaves a lot of room
for possible improvements.

3. Very large scale experiments. We evaluate index
creation and search using an image collection contain-
ing roughly 100 million images, this is about 30 billion
SIFT descriptors or about 4 terabytes of data. The ex-
tensive experiments ran on this very large-scale dataset
provide a basis for a discussion on the problems raised
when managing so much data with Hadoop and a grid.
We thus draw several lessons we want to share.

The paper is structured as follows. Section 2 gives the
necessary background to understand the remainder of this
paper. Section 3 presents the high-dimensional indexing
scheme we start from and that we extend to fit with the
Map-Reduce paradigm. These extensions are described in
details in the Section 4. Section 5 presents the context of
the experiments and implementation details. Then, Sec-
tion 6 gives the performance results. Section 7 concludes.

2. BACKGROUND
This section briefly describes the recent evolutions in hard-

ware making possible the use of Map-Reduce as well as dis-
tributed and parallel frameworks dedicated to grid and cloud
computations such as Hadoop. We also briefly mention the
state-of-art in high dimensional indexing techniques.

2.1 Hardware
Multi-core CPUs have been around for a long time in spe-

cialized systems. But around 2005, multi-core architectures
hit the mass market and everyone could have a machine with
multiple cores, by default. Today, a standard desktop has
2–4 cores, and a server has 1–4 CPUs, each with 2–24 cores.

The performance of the applications depends of course on
the number of cores they use for their computations, on the
nature of the computation, as well as on their access pattern
to data. High-performance computing typically has compli-
cated iterative/recursive computations using the same data,
or just-created data, from one iteration to the other. Once
the calculation starts from the data in memory, it proceeds
and runs instructions on the data that is cached very close
to the processor, requiring to access RAM only every once
in a while and, when the calculation is over, to save the fi-
nal result. In this case, the CPUs are kept busy while the
underlying hardware is not stressed.

This is not at all the case for high-dimensional indexing
and retrieval applications for which consuming data is cen-
tral. All the work is data-driven, not calculus-driven. Data
is fetched from disks, then installed in memory and then
transfered to the processor where it does not stays that long
before being moved back elsewhere. Once processed, data
has to follow the inverse route at index creation time, as
each data item is then typically assigned to a group of simi-
lar elements stored on disks and later used during retrieval.
Data locality and the underlying hardware are therefore key
for the performance of such big data applications.

2.2 Map-Reduce
The Map-Reduce framework is originally by Google [4]

and it is a programming model for processing extremely
large datasets. It exploits data independence to do auto-
matic distributed parallelism. The developer is tasked with

implementing the Map and the Reduce functions. The input
data is distributed in blocks to the participating machines
using the distributed Google file system GFS [6].

When a job is launched, the system automatically spawns
as many Map functions as there are data blocks to process.
Each mapper reads the data iteratively as a key/value pair
record, processes it and, if necessary, outputs key/value pair
bound for a Reduce function. All records with the same key
go to the same Reduce task. The framework thus includes a
copy-merge-sort data shuffle step, where data from several
mappers gets directed to specific reducers depending on their
key. Once enough data is locally available to reducers, they
process the records and produce the final output.

The Map-Reduce run-time environment transparently han-
dles the partitioning of the input data, schedules the execu-
tion of tasks across the machines and manages the commu-
nications between processing nodes when sending/receiving
the records to process. The run-time environment also deals
with node failures and restarts aborted tasks on nodes, pos-
sibly on replicated data in case of unavailability. The frame-
work uses as little network bandwidth as possible by process-
ing data where it resides or at the nearest available node,
paying attention to the network topology and minimizing
reading over machine-rack boundaries.

2.3 Hadoop and HDFS
The Map-Reduce programming model has been imple-

mented by the open-source community through the Hadoop
project.Maintained by the Apache Foundation and supported
by Yahoo!, Hadoop has rapidly gained popularity in the
area of distributed data-intensive computing. The core of
Hadoop consists of the Map-Reduce implementation and the
Hadoop Distributed File System (HDFS). Hadoop is now the
de-facto reference Map-Reduce implementation.

The architecture of Hadoop consists of a single master
jobtracker and multiple slave tasktrackers. The jobtracker’s
main role is to act as the task scheduler of the system, by
assigning work to the tasktrackers. Each tasktracker has of
a number of available slots for running tasks. Every active
map or reduce task takes up one slot, thus a tasktracker
usually executes several tasks simultaneously.

When dispatching map tasks to tasktrackers, the jobtracker
strives at keeping the computation as close to the data as
possible. This technique is enabled by the data-layout infor-
mation previously acquired by the jobtracker. If the work
cannot be hosted on the actual node where the data resides,
priority is given to nodes closer to the data (belonging to
the same network rack). The jobtracker first schedules map
tasks, as the reducers must wait for the map execution to
generate the intermediate data. The jobtracker is also in
charge of monitoring tasks and dealing with failures.

HDFS [22] was built with the purpose of providing storage
for huge files with streaming data access patterns, while run-
ning on clusters of commodity hardware. HDFS implements
concepts commonly used by distributed file systems: data is
organized into files and directories, a file is split into fixed-
size blocks that are distributed across the cluster nodes. The
blocks are called chunks and are usually of 64 MB in size
(this parameter specifying the chunk size is configurable).

The architecture of HDFS consists of several datanodes
storing the data chunks and a centralized namenode re-
sponsible for keeping the file metadata and the chunk lo-
cation. HDFS handles failures through chunk-level replica-

tion (default 3 replicas). When distributing the replicas to
the datanodes, HDFS employs a rack-aware policy: the first
replica is stored on a datanode in the same rack, and the sec-
ond replica is shipped to a datanode belonging to a different
rack (randomly chosen).

In addition to being used in cluster computing, Hadoop
is becoming a de-facto standard for cloud computing. The
generic nature of clouds allows resources to be purchased
on-demand, especially to augment local resources for specific
large or time-critical tasks. Several organizations offer cloud
compute cycles that can be accessed via Hadoop. Amazon’s
Elastic Compute Cloud contains tens of thousands of virtual
machines, and supports Hadoop with minimal effort.

2.4 Image retrieval
Content-based image retrieval systems can now manage

collections having sizes that could not even be envisioned
years back. Most systems can handle several million im-
ages [16, 12], billions of descriptors [17, 13], or address web-
scale problems [5, 1]. The ImageTerrier platform [9] uses
Hadoop. The scale of their system is smaller since they in-
dex about 10 million images with a bag of feature approach.

Overall, most high-dimensional indexing schemes use some
form of partitioning where the data is split into little groups
at indexing time, and one or few such groups are loaded and
analysed at retrieval time. All indexing schemes differ by
the technique they use to create groups. They typically rely
on scalar quantization (such as LSH [7, 3]) or on vectorial
quantization (this is VideoGoogle [23] and all its derivatives,
including [9]). The algorithm we use in this paper belongs
to this second category, as it is presented next.

3. EXTENDED CLUSTER PRUNING AS A

STARTING POINT
We decided to build on top of the extended Cluster Prun-

ing (eCP) algorithm [8] for several reasons we highlight at
the end of this section. eCP is a centralized high-dimensional
indexing strategy. eCP is very related to the well-known k-
means approach. As k-means, eCP adopts an unstructured
quantization scheme to create clusters containing similar de-
scriptors. eCP is designed to be I/O friendly as it assumes
the data collection is too large to fit in memory and must
reside on secondary storage.

3.1 Indexing and Searching with eCP
eCP randomly picks C points from the collection that are

used as the representatives of the C clusters the algorithm
will eventually build. C is determined from having set the
average number of data points each cluster should contain.
This number is called the TargetSize, ts, and C = N/ts
where N is the number of points in the collection. eCP then
organizes the C representatives in a multi-level hierarchy
composed of L levels. The points from the data collection
that remain are read one after the other, traverse the tree
of representatives and are eventually assigned to the closest
cluster representative at the bottom of the tree. The multi-
level hierarchy allows to assign points with a logarithmic
complexity. Once all the data collection has been processed,
then eCP has created C clusters as well as a tree of repre-
sentatives, all this being stored on disk. Note the tree of
representative is rather small and can fit in main memory.

Searching with eCP requires to navigate down the tree of
representatives by following the path indicated at each level

by the representative that is the closest to the query point.
Then, the corresponding bottom cluster is fetched, and the
distances between the query point and all the points in that
cluster are computed to get the k-nearest neighbors.

eCP compensates its somewhat brutal clustering by adopt-
ing ideas from various state-of-art indexing schemes. It uses
a form of soft-assignment [2, 21] while building the tree of
representatives. With soft-assignment, each representative
is not solely assigned to its closest parent representative, but
it is assigned to its a closest representatives. Note a applies
only to the tree of representatives, not to the data stored in
the clusters. It also uses a form of multi-probe approach at
search time as more than one cluster can be searched, as it
has been proposed for LSH [19, 15]. eCP can probe the b
clusters that are the closest to the query point.

3.2 Motivation for eCP
We port eCP to Map-Reduce and not another state-of-

the-art indexing solutions for the following reasons:

• eCP is quite representative of the core principles un-
derpinning many of the unstructured quantization-based
high-dimensional indexing algorithms that perform very
well [23, 11].

• eCP is not iterative by nature while traditional index-
ing schemes based on k-means are. At every iteration
of a k-means process, and in order to eventually con-
verge, new representatives must be computed based on
the previous round. Distributing k-means or any other
algorithm that needs rounds to converge is costly as a
global state must be reconstructed and propagated to
all participants. Having no such rounds with eCP was
a strong motivation for using this algorithm, as dis-
tributing and parallelising it were greatly simplified.

• eCP pre-calculates a representative hierarchy that is
used to significantly speed-up the assignment of points
to clusters. This is key for performance when data col-
lections are terabytes sized in order to have a indexing
approach usable in practice.

• eCP proved to return good quality result despite the
crude process it uses to create clusters. This is shown
in the experimental section of this paper.

• Due to the extreme simplicity of its search procedure,
eCP indeed covers a large spectrum of existing index-
ing approaches. A behavior very similar to the one of
VideoGoogle [23] can be obtained if instead of com-
puting the distances to all the points in the fetched
cluster(s) eCP simply returns the cluster identifier, as
each cluster is indeed a visual word. It can also behave
quite similarly to the vectorial variant of LSH when it
processes the contents of the clusters [20]. eCP is also
compatible with the best indexing solutions that are
known today and that rely on some form of smart de-
scriptor aggregation [12].

4. MAP-REDUCING eCP
In this section we present how can eCP be adapted to fit

with the Map-Reduce paradigm. We first describe the index
creation and then move to describing the search process.

4.1 Index Creation with Map-Reduce
The index creation process of eCP can be split into two

main phases. During Phase #1, the creation of the index
tree, cluster representatives are picked from the collection
and organized in a in-memory tree. During Phase #2, vec-
tors are assigned to clusters.

Obviously, Phase #2 is the prime candidate for paral-
lelization and distribution. It is clear that chopping the en-
tire data collection into independent parts assigned to phys-
ically distinct nodes is going to speed up the whole process.

In contrast, Phase #1 is computationally cheap and re-
quires no distribution. Therefore, picking C random points
and building the in-memory hierarchy is done on a single
machine once ts, a and L have been set. The resulting hi-
erarchy of representatives is then sent to the various nodes
involved in the construction of the index. Each node will
use this hierarchy to assign its subset of the data collection
to clusters. Results will be consistent across nodes as the
hierarchy is identically replicated everywhere.

Map tasks do the assignments. Each mapper loads the
representative hierarchy and clusters the data by reading-
assigning-emitting every descriptor in it’s block of data. The
key emitted is the identifier of the cluster the descriptor is
assigned to.

Reduce tasks receive records grouped and sorted on their
cluster identifier from the shuffle. All reducers do is to
propagate to disk the data they receive to form the bottom
level of the index, i.e., the clusters themselves. Note some
bookeeping is needed to keep track of cardinalities, etc.

4.2 Search with Map-Reduce
The Map-Reduce abstraction is geared towards efficiently

streaming multi-megabyte blocks of data to map tasks. Such
behaviour is quite opposite to the one of an indexing system
that rapidly returns the points from the collection that are
the most similar to the query point. In this case, a very small
percentage of the indexed data is read from disks, one or few
clusters at most. This, in turn, optimizes the response times
of each query. Other applications need throughput, where
sacrificing individual query response time is acceptable so
that multiple queries can be run simultaneously. Copyright
infringement applications typically need throughput.

Being a batch processing framework, Map-Reduce is not
designed for answering individual queries, but is well suited
for processing massive batches of queries. A batch is typ-
ically in the range of 104–107 query descriptors extracted
from the associated images. It is easy to reorder query de-
scriptors in a batch according to the cluster identifiers into
which each query points falls, clusters being subsequently
used for searching for the k-nearest neighbors. Such scheme
minimizes the disk I/Os: one cluster fetched in memory is
read only once and used to answer all the query descriptors
in the batch that match with this cluster.1

All mappers receive the whole query batch with query de-
scriptors ordered by cluster identifiers, and start to process
their blocks of data. All blocks are read, but their contents
is processed only if points they contain belong to the clus-
ters needed by at least one query descriptor from the batch.
Batching consumes RAM at each mapper since they have
to maintain several k-nn tables for all the query points con-

1Hadoop reads only once all the data blocks, so grouping
query descriptors per cluster is compulsory in this work.

cerned with the current cluster under analysis. Tables can
be deallocated when map tasks cross cluster boundaries, and
a series of records are emitted. Special care must be taken
when a single cluster spans more than one data block.

Overall, the cost for processing a batch is either entirely
dominated by the cost of reading all data blocks, or domi-
nated by the CPU for distance computations if the batch is
really large or if there are very many points in each cluster.

5. CONTEXT OF THE EXPERIMENTS
The experiments were carried out on the Grid’5000 [14]

testbed. The Grid’5000 project is a widely-distributed in-
frastructure devoted to providing an experimental platform
for the research community. The platform is spread over ten
geographical sites located through the French territory and
one in Luxembourg. We could get access to the machines
belonging to the Rennes site only.

5.1 Datasets, Queries and Ground-Truth
The dataset we used in our experiments has been cre-

ated for the Quaero project.2 One of the Quaero partners,
Exalead, collected roughly 100 million images by harvesting
the Web. To limit the size of data and to facilitate shar-
ing among the partners in the Quaero project, images have
been resized to only 150pixels on their largest side. SIFT
descriptors were then extracted from these images, result-
ing in about 30 billion descriptors, i.e. 300 SIFT descriptors
per image on average. To best of our knowledge, this image
collection is one of the largest collections encountered in the
content-based retrieval literature.

To evaluate the quality of indexing, we used that data
collection as a distracting dataset into which we have drown
the well studied INRIA Copydays evaluation set [10]. We re-
size Copydays images to the same size as our distractors and
then use a copyright violation detection scenario, where we
include 127 original images in our indexed database and use
the associated 3055 generated variants (crop+scale, scale
change+jpeg compression and manually generated strong
distortions such as print-crumple-scan) as the queries. We
then simply count how frequently the original images are
returned as the top result. Many query images are visu-
ally such that only a very small number of SIFT descrip-
tors can be extracted from their contents, e.g., 1% of the
images have less than 8 descriptors. Finding the original
images from their modified versions is therefore sometimes
very challenging. Getting 100% accuracy is impossible as
some image variants have zero SIFT descriptors (too dark
e.g.).

5.2 Implementation Details
Several implementation details must be clarified to know

how eCP works with Map-Reduce and Hadoop.

Preparing the dataset. The descriptors extracted from
the image set are stored as binary files comprising records
of 132 bytes; each record defines a descriptor and consists of
a 4-byte integer for the image identifier followed by the 128
bytes of the actual descriptor. Overall, the 30 billion descrip-
tors occupy just below 4 TeraBytes on disks. We first im-
plemented a conversion mechanism creating SequenceFiles
from binary data. A SequenceFile is a Hadoop-specific data

2Quaero is a research and innovation program adressing au-
tomatic processing of multimedia and multilingual content.

file employed for dealing with binary data. It consists of a
header and one or multiple records. The header contains
metadata that HDFS uses to parse the records. The records
in a SequenceFile are fixed-sized and are defined as a sin-
gle key-value pair. Several features (such as support for
block compression and sync markers allowing to seek to the
boundary of a record) make SequenceFiles an optimal choice
for processing binary data with Hadoop. The descriptor con-
version to SequenceFiles in HDFS creates records with the
image identifier as the key, and the descriptor as the value.

Building the tree of representatives. We developed a
Java implementation of the creation of the index tree con-
taining cluster representatives. This tree of representatives
is built outside Hadoop and serialized to a file subsequently
used for clustering the data collection.

Creating the index: clustering. The clustering process
assigning points to cluster representatives uses the index tree
to efficiently discover the cluster each point belongs to. The
Hadoop application consists of a map function that loads
the tree of representatives and then reads the block of data
it has to process. Each point from this block traverses the
index tree until its closest cluster representative is known.
Then the map task emits a (cluster-id, point) and loops. The
reduce function simply outputs in SequenceFiles the records
received from the mappers. It is key to realize the index tree
is loaded by each map task at startup time. The tree will
thus be loaded as many times as there are map tasks needed
to complete an entire Hadoop job execution.

Searching batches of queries. A batch contains a very
large number of query descriptors. Before being used to
search the index, the query descriptors are reordered accord-
ing to the identifier of the cluster each query points falls into.
To do this, each query descriptor traverse the tree of repre-
sentatives until it hits the bottom level, at which point the
cluster identifier is known. To keep track of these identifiers
for every query descriptor we build a lookup table. This
table is created outside Hadoop and sent to every map task
when a batch search is fired.

When spawned, mappers start by loading the lookup ta-
ble.3 A mapper then receives its block of data. It then finds
in its block the records having any of the cluster identifiers
existing in the lookup table. Only those records are sub-
sequently used for distance calculation. It is possible that
not all records of a block are used because (i) it is unlikely
all query points of one batch will fall into distinct clusters,
(ii) there are typically much more clusters than query points
in a batch, (iii) a block typically contains several clusters.
Mappers emit k-nn results.

6. PERFORMANCE RESULTS
After having presented the experimental setup, this sec-

tion gives the performance results for running the index cre-
ation process on Hadoop. We then move to the performance
of the batch search.

6.1 Experimental setup
We could have access to 129 nodes belonging to our lo-

cal grid infrastructure. The nodes form three clusters, each
composed of identical machines, as it is reported in Table 1.

3When a batch is very large, then this table consumes a lot
of memory. Partial loading of the table is work in progress.

Cluster
#Nodes #CPU@Freq

#Cores
RAM

Local
id /CPU Disk
Cl1 64 2 Intel@2.50GHz 4 32GB 138GB
Cl2 25 2 Intel@2.93GHz 4 24GB 433GB
Cl3 40 2 AMD@1.70GHz 12 48GB 232GB

Table 1: Cluster Configurations.

%age #Imgs. #Desc.
Data

C L
Index

Size Size

10% 10M 3.3 × 109 0.5TB 652K 4 193MB
20% 20M 7.8 × 109 1.0TB 1.5M 4 461MB

100% 100M 30.2 × 109 4TB 6M 5 1.8GB

Table 2: Index Configurations.

While each cluster has a highly connective internal net-
work, inter-cluster bandwidth is limited. In practice, some
of 129 nodes may be down at any given point of time. The
Hadoop framework was deployed as follows: the namenode,
jobtracker and the job client are each on a dedicated ma-
chine, while the other nodes serve as both datanodes and
tasktrackers.

At the level of HDFS, we use the default replication fac-
tor of 3 for the input data. In addition to facilitating the
tolerance of faults, data replication favors local execution of
mappers and minimizes the number of remote map execu-
tions, this being key for performance. We however typically
set the output replication factor to 1 only. A larger value
adds a substantial overhead to the running time because one
replica goes to a remote rack. That cost becomes significant
given the size of our data set.

To facilitate the experiments as well as to get a better
understanding of the scalability issues, we indexed images
subsets containing roughly 10% and 20% of the entire col-
lection in addition to indexing the full 100M images. Details
on the resulting configurations are reported in the Table 2.
In all cases, a = 3 when soft-assigning the representatives in
the index tree; this does not apply to data in clusters, see
Section 3.1. The value of ts is also the same when indexing
each (sub-)set, it is set ts = 5, 000. This gives clusters con-
taining 5,000 points, occupying 645KB, on average. On the
one hand this creates quite a lot of clusters, on the other
hand, each is quick to analyze at searching time. ts and the
number of descriptors in each set to index give C, and L is
set such that the cost of traversing the tree of representatives
stays roughly the same across the configurations.

6.2 Index Creation
This section reports the performance results for running

the index creation process on Hadoop, while increasing the
data set from 10M to 100M images. For these experiments,
the chunk size at the level of HDFS was set to 128 MB, as
recommended by Hadoop, when dealing with large data.

6.2.1 Exp. #1: 10M images, 3.3B Descs., 0.5TB

The first experiment indexes 10% of the image collection,
i.e., about 10 million images, 3.3 billion descriptors, 0.5 Tera-
Bytes of data. This corresponds to the first line of Table 2.
With this setting, 3,478 map tasks are to run—this is deter-
mined by Hadoop from the number of data blocks needed
to store the raw descriptor collection. For this experiment,
we configured Hadoop such that each node run simultane-

ously up to 8 mappers and 2 reducers. We used 20 to 50
processing nodes belonging to the Cl1 cluster.

For all execution rounds, we checked the logs created dur-
ing runs and observed that most of the map tasks were exe-
cuted locally (only 20-40 out of 3,478 map tasks read remote
blocks of data); this is a consequence of having set the repli-
cation factor to 3 for the input data, enabling Hadoop to
favor most of the time local task execution. Replication is
important for performance. We observed a 10% increase of
the response time when setting the replication factor to 1
for the input data.

We now turn to the time it takes to complete the cre-
ation of the index. The measurements are reported in Ta-
ble 3. The second column of this table gives the average
time it takes to create the index when varying the number
of nodes. Of course, the more nodes, the faster each ter-
minates. The third column shows the total work where the
times for all nodes are summed up. Several comments are in
order. First, having no increase is a sign of having a global
system that scales. Second, it is rather surprising to observe
the work decreases as the number of nodes increases. This
is a direct consequence of some of the Hadoop architectural
design decisions colliding with the specific characteristics of
our application: (i) the total number of map tasks to run
is determined from the data collection size divided by the
size of a block (128MB here, resulting in running 3,478 map
tasks); (ii) the total number of map tasks is totally indepen-
dent from the number of nodes used to run the entire job;
(iii) a new map task is spawned every time a new block of
data is to process; (iv) at spawning time, a map task has
to load whatever auxiliary information it needs to correctly
process the data in its block (in our case, the tree of repre-
sentatives, 193MB to load every 128MB of data to index!).

It thus results that every map task has to load the tree
of representatives. Spawning a mapper thus includes a fixed
overhead for reading the tree of representatives. This tree
is loaded again and again, even by mappers running on the
same node. Overall, a large fraction of the differences in
running time can be explained by considering the number
of loads of this tree that can happen in parallel. With 50
nodes, more parallelism is possible, thus the overhead is less
prevalent and the work diminishes compared to 20 nodes.
It is also likely this data gets better cached when used that
frequently with 50 nodes.

Lesson #1. Performance are hurt when two conditions are
met: (i) the data collection occupies many blocks, hence
many map tasks have to be run, and (ii) each map task
need to load a lot of auxiliary information at startup time.
It is key to reduce as much as possible the overhead payed
by each map task at spawning time. One possible option is
to increase the size of the blocks of data to a value that is
significantly larger than the ones recommended by Hadoop,
typically 64MB or 128MB. Setting this to 512MB or few GB
in turn reduces the number of map tasks to spawn and thus
reduces in proportion the time wasted when each map task
starts. Note, however, that big data blocks may cause some
nodes to run out of disk space as the temp area buffering the
data produced by mappers and consumed by reducers fills
up faster when blocks are big. We kept using 128MB blocks
for this reason. It is also useful to compress as much as
possible that auxiliary information to reduce its load time
and to generously replicate it across the system to avoid
disks/network hot-spots.

#Nodes Time(min) Work(min)

20 149.3 2,986
30 95.7 2,871
40 61.8 2,472
50 45.2 2,260

Table 3: Indexing 10%, varying number of nodes.

6.2.2 Exp. #2: 20M images, 7.8B Descs., 1.0TB

The second experiment indexes 20% of the full set, that
is 1TB of data, about 20 million images and 7.8 billion de-
scriptors. This gives 8,178 map tasks to run. We extended
the deployment setup and used 57 nodes from Cl1, 15 from
Cl2 and 36 from Cl3, for a total of 108 nodes. Here again,
3 nodes are dedicated to managing the system, leaving 105
tasktrackers nodes. The system is again set to using, per
machine, at most 8 slots for mapping and 2 for reducing.

Aside the obvious differences in the hardware and the size
of the data set used here, we must highlight a key differ-
ence this experiment has with respect to the previous one
indexing 10% of the dataset. Here, the tree of representa-
tives used to guide and do the assignment of points is much
larger. It uses about 1.5M representatives. Not only this
occupies a lot more RAM (461MB), but it takes longer for
each mapper to load from disks that tree in memory and to
create the data structure for subsequent assignments. It also
means more distance calculations are needed to assign a de-
scriptor as there are more representatives eventually guiding
to a larger number of clusters. For these reasons, the overall
work for clustering this dataset is significantly larger than it
is in the case of the previous experiment.

Here, with 108 nodes, it takes 71 minutes to complete
the indexing and the total work amounts to 7,455 minutes.
This increased amount of work is also in part caused by the
uneven distribution of the representatives in the tree, from
one level to the other. Therefore, a large fraction of the data
traverses rather dense branches of the tree of representatives,
which, in turn, requires to do more distance calculations to
find the closest representative guiding to the next lower level.

6.2.3 Exp. #3: 100M images, 30.2B Descs., 4TB

The third experiment indexes the full dataset using 108
nodes. With this configuration, the tree of representative is
large as it uses more than 6 million data points to accom-
modate with the 30.2 billion descriptors to cluster. The tree
occupies roughly 1.8GB in RAM.4 This forced us to reduce
the number of map tasks per machine to 4 only as otherwise
not enough RAM was available for each mapper.

With this setting, it took about 10 hours to cluster the
entire data set. A careful analysis of the logs shows that 99%
of the reduce tasks where completed after 520 minutes, and
the remaining 1% reduce tasks completed after 80 additional
minutes. The reason behind this behavior is in part the
uneven distribution of points to clusters.

But there is another explanation to this response time.
Finely analyzing the data collection, we discovered that it
contains hundred thousands of identical distracting images
that turn out to come from a small set of explicit web sites
having different URLs redirecting to a unique point. This

4Note 1.8GB of auxiliary info have to be loaded every
128MB of data to cluster! This encourages using signifi-
cantly larger block sizes, see Lesson #1 above.

is unfortunate, but it is a good example of what happens in
the real world when indexing images. It would have been
possible to filter these images but this would have required
a specific ad hoc process we will integrate in the future. The
direct impact of so much duplicates is that there is a small
set of clusters into which the descriptors of these images
accumulate, creating very large, unbreakable clusters, and
writing them to disks takes a lot of time.

Lesson #2. Hadoop’s map tasks are completely indepen-
dent and each require to load the tree of representatives.
When this auxiliary information is large, then each map
task consumes a significant portion of the RAM available
on a node. In turn, it means map tasks are unable to run
inside every available core in a node, because there is not
enough RAM. It is unfortunate to waste some of the process-
ing power leaving cores idle because there is no way to share
data, even read-only data (as is the tree of representatives)
between map tasks running on the same node. This obser-
vation suggests for application programmers to implement
multi-threaded map tasks. This is way more complicated
to program but it is one option for using all the process-
ing power of nodes while circumventing Hadoop’s inflexible
architecture. With multi-threaded map tasks, a single task
would load the auxiliary data only once and then would pro-
cess its block of data faster thanks to its multiple threads
running on multiple cores. In the case of this experiment
with the full data set, one single map task could then use
up to 6 threads processing data in parallel on Cl3, overall
keeping the 24 cores constantly busy, instead of using only
4 cores now.

6.3 Batch searching
This section reports the performance results obtained when

searching the full data collection with batches of query im-
ages. The images in the batch are the 3,055 variants from
the Copydays evaluation set. The results are expressed both
in terms of response time and search quality. Response time
wise, we record the time it takes to complete the query batch
using the 110 nodes, almost as in Exp. #2 and #3. Quality
wise, we search for the 20 nearest neighbors of each query
point computed from the query images. There are just be-
low 1M query points in the batch. Each nearest neighbor
votes for the image from the indexed collection it belongs
to, and the votes are aggregated to eventually return the
identifiers of the most similar images. We have a rather
strict success criterion for searching: the search succeeds if
and only if the original image identified from its query quasi
copy has rank 1; the search fails otherwise. The percentages
given when discussing quality thus correspond to counting
the number of times original images are ranked first.

The lookup table built from the descriptors in a batch
(see Section 5.2) is stored as an HDFS file read by all search
mappers when they are spawned. It takes about 3 minutes
to build this lookup table on a single core outside Hadoop.
The lookup table file is replicated three times to reduce con-
tention when mappers access it. The block size for the in-
dexed data is 128MB, with hence 33,483 mappers to run. To
avoid remote reads, we replicated the indexed data in HDFS
using a replication factor set to two.

6.3.1 Exp. #4: Time and Quality, 100M images

Searching the entire batch took 1,623 sec. on average,
or just over 27 minutes. This gives an average processing

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 15 20 30 40 50 60 70 80 03 05 08 10 15 20 30 50 75

0%

100%
crop JPEG compression

str
on

g

All

20M 100M

Figure 1: Search Quality, Copydays evaluation set

time per image of under 530ms. Figure 1 shows the quality
results of the search. This figure plots for every family of
variants the percentage of original images found at rank 1.
It also plot the average percentage across all variants at the
far right end of the Figure. Note for comparison we also
measured the quality when indexing 20% of the data collec-
tion (see Exp.#2). From the Figure, it is clear that eCP
returns high quality results, except for some severely at-
tacked images such as when 80% of the image is cropped
and then it is rescaled to its original size, or when strong
manual variants are applied. Note, we count as search fail-
ures the cases when no descriptor can be computed on the
query images (this happens for 6 variants). It is interest-
ing to observe search quality does not significantly degrades
when the size of the distracting dataset increases. Overall,
82.68% of Copydays variants are found when drowning them
in 20M images, and we find 82.16% of them when drown in
100M images. This is a clear assessment that eCP is a very
viable indexing technique.

6.3.2 Discussion

Aside the experiment described above, we have done many
other performance evaluations varying several parameters.
We briefly report the key results we found.

Lesson #3. Most of the mappers read the data locally,
only about 1% of remote reads were observed. This is again
the case for setting the replication factor to a value above 1.
We have not seen any major performance improvement for
any value > 2. In contrast, maintaining a single copy of the
indexed data causes roughly 8 to 10% remote reads, hurting
performance. Rack awareness and replication are good for
performance, and not only for coping with failures. Note,
we experienced several nodes failures and happily observed
that Hadoop re-ran tasks, eventually completing the runs.

Lesson #4. We have re-blocked the indexed data before
running the search to see the impact of using larger blocks, as
suggested earlier. When setting the block size to 512MB, we
observed a dramatic response time improvement when us-
ing batches containing roughly 12,000 images (roughly 3.7M
descriptors). Times decrease down to roughly 1,500 seconds
(instead of 3,500 when blocks are 128MB), simply because
there are only 8,808 mappers loading the lookup table (its
size is roughly 1GB) instead of more than 33,000. This is
really making a case for using larger blocks.

Lesson #5. Hadoop is architectured such that all the
blocks of data are read. Therefore, search runs are totally
dominated by I/Os until the batch has enough points to keep
the CPU extremely busy doing distance calculations. Using
the 20% index configuration and 512MB blocks, we have ran
batches containing only one query image (312 query descrip-
tors), and this takes 323 seconds while the Copydays batch
(1M query descriptors)runs in 388 seconds. The difference
is quite small (15%), especially because it includes an I/O
bounded step (loading the batch) in addition to the extra
CPU work, likely almost entirely hidden by the I/Os.

Observation #6. We also used this index configuration to
check the impact of using a varying number of nodes on the
time it takes to run the Copydays batch. With 30 nodes, it
takes about 1,048 seconds, 744 seconds for 40 nodes and 388
seconds with the 100 nodes. The total work is stable when
using 30 and 40 nodes (respectively 31,440s and 29,760s) but
jumps to 38,800s when using all the nodes. Part of the extra
cost comes from the fix time it takes to launch Hadoop, it is
always about 20 to 40 seconds, which becomes a significant
part of a running time that is around 400 seconds.

7. CONCLUSIONS
This paper presents a Map-Reduced based implementa-

tion of an high-dimensional indexing algorithm that uses
clustering to build small groups of data, subsequently searched.
The performance of this algorithm have been demonstrated
in terms of speed gains when using more hardware. It has
also been demonstrated in terms of quality as we show it
correctly identifies about 82% of the images from a state-
of-the-art evaluation set drown in 100M distracting images.
Several lessons can be drawn from this work such as the case
for using data blocks of a size larger than the one Hadoop is
recommending, or the case for implementing multi-threaded
map tasks to fully use the processing power of cores while
avoiding RAM issues.

Overall, Hadoop is helpful for achieving scalability. Prop-
erly setting its parameters is not trivial, however, as de-
scribed in the paper. We observed that very often, running
an experiment that creates and/or searches an index is not
what consumes the largest amount of time. It is rather copy-
ing the data to HDFS before being ready to launch exper-
iments, or getting out the indexed data from the grid for
being used elsewhere. Feeding a grid/cloud with all the re-
quired data through limited bandwidth is a very practical
problem.

This work was partly achieved as part of the Quaero Project,
funded by OSEO, French State agency for innovation.

8. REFERENCES

[1] M. Batko, F. Falchi, C. Lucchese, D. Novak,
R. Perego, F. Rabitti, J. Sedmidubský, and P. Zezula.
Building a web-scale image similarity search system.
Multimedia Tools Appl., 47(3), 2010.

[2] F. Chierichetti, A. Panconesi, P. Raghavan, M. Sozio,
A. Tiberi, and E. Upfal. Finding near neighbors
through cluster pruning. In PODS, 2007.

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG, 2004.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1), 2008.

[5] M. Douze, H. Jégou, H. Singh, L. Amsaleg, and
C. Schmid. Evaluation of gist descriptors for web-scale
image search. In CIVR, 2009.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In SOSP, 2003.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In VLDB, 1999.

[8] G. Gudmundsson, B. T. Jónsson, and L. Amsaleg. A
large-scale performance study of cluster-based
high-dimensional indexing. In VLS-MCMR Workshop
with ACM MM, 2010.

[9] J. S. Hare, S. Samangooei, D. P. Dupplaw, and P. H.
Lewis. Imageterrier: an extensible platform for
scalable high-performance image retrieval. In ICMR,
2012.

[10] H. Jégou, M. Douze, and C. Schmid. Hamming
embedding and weak geometric consistency for large
scale image search. In ECCV, 2008.

[11] H. Jégou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. IEEE Trans.
on PAMI, 2011.

[12] H. Jégou, F. Perronnin, M. Douze, J. Sánchez,
P. Pérez, and C. Schmid. Aggregating local image
descriptors into compact codes. IEEE Trans. on
PAMI, 2011.

[13] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg.
Searching in one billion vectors: Re-rank with source
coding. In ICASSP, 2011.

[14] Y. Jégou, S. Lantéri, J. Leduc, and all. Grid’5000: a
large scale and highly reconfigurable experimental
Grid testbed. Intl. Journal of HPC Applications,
20(4), 2006.

[15] A. Joly and O. Buisson. A posteriori multi-probe
locality sensitive hashing. In MM, 2008.

[16] H. Lejsek, F. H. Amundsson, B. T. Jónsson, and
L. Amsaleg. NV-Tree: An efficient disk-based index
for approximate search in very large high-dimensional
collections. IEEE Trans. on PAMI, 2009.

[17] H. Lejsek, B. T. Jónsson, and L. Amsaleg. NV-Tree:
nearest neighbors at the billion scale. In ICMR, 2011.

[18] D. Lowe. Distinctive image features from scale
invariant keypoints. IJCV, 60(2), 2004.

[19] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe lsh: efficient indexing for
high-dimensional similarity search. In VLDB, 2007.

[20] L. Paulevé, H. Jégou, and L. Amsaleg. Locality
sensitive hashing: A comparison of hash function
types and querying mechanisms. Pattern Recognition
Letters, 2010.

[21] J. Philbin, O. Chum, M. Isard, J. Sivic, and
A. Zisserman. Lost in quantization: Improving
particular object retrieval in large scale image
databases. In CVPR, 2008.

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In MSST, 2010.

[23] J. Sivic and A. Zisserman. Video google: A text
retrieval approach to object matching in videos. In
ICCV, 2003.

