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Abstract

We introduce a generative model for learning person

and costume specific detectors from labeled examples. We

demonstrate the model on the task of localizing and nam-

ing actors in long video sequences. More specifically, the

actor’s head and shoulders are each represented as a con-

stellation of optional color regions. Detection can proceed

despite changes in view-point and partial occlusions. We

explain how to learn the models from a small number of la-

beled keyframes or video tracks, and how to detect novel

appearances of the actors in a maximum likelihood frame-

work. We present results on a challenging movie example,

with 81% recall in actor detection (coverage) and 89% pre-

cision in actor identification (naming).

1. Introduction

Detecting and naming actors in movies is important

for content-based indexing and retrieval of movie scenes

and can also be used to support statistical analysis of film

style. Additionally, detecting and naming actors in unedited

footage can be useful for post-production. Recent advances

in face detection, upper-body detection and full-body de-

tection have already been applied to this problem but such

detectors are designed to be generic and they discard person

specific and costume-specific features. Methods for learn-

ing such features are desired to improve the recall and pre-

cision of actor detection in long movie scenes where the

appearance of actors is consistent over time.

Contributions We propose a complete framework to

learn view-independent actor models using maximally sta-

ble color regions (MSCR) [10] with a novel clustering al-

gorithm. The actor’s head and shoulders are represented

as constellations of color blobs where the appearance of

each blob is represented in a 9 dimensional space combin-

ing color, size, shape and position relative to the actor’s co-

ordinate system, together with a frequency term. Based on

such a model we propose a detection framework with two

stages. The first stage is a search space reduction using the

k-nearest neighbours corresponding to the actor by just us-

ing the appearance of the blobs in the model. The second

stage is a sliding window search for the best localization of

the actor in position and scale. By repeating those two steps

for all actors at all sizes, we obtain detection windows and

actor names that maximize the posterior likelihood of each

video frame.

Organization The remainder of the paper is structured as

follows. First, we briefly review related work in generic and

specific actor detection in movies. Then Section 3 describes

the proposed statistical model and how it can be learned

from examples. Section 4 describes the corresponding de-

tection algorithms. Experimental results and evaluation of

the method are presented in section 5. Finally, Section 6

draws some conclusions and discusses directions for future

work.

2. Related work

Much previous work on actor detection and recognition

has been based on face detection. Everingham et al. [5] use

scripts and subtitles to learn the association between char-

acter names and faces in television drama using a frontal

face detector. Sivic et al. [18] demonstrate a much im-

proved coverage (recall) by using profile views. In one of

their examples, they report that 42% of actor appearances

are frontal, 21% profile and 37% are actors facing away

from the camera. Drawing on that observation, they suggest

that future work on increasing coverage must go beyond the

use of face detection as a first step. Indeed, generic meth-

ods for detecting upper-body or full-body actors have been

proposed by Dalal et al. [3], Eichner and Ferrari [4] and

Felzenswalb et al. [7], among others. While such meth-

ods can potentially increase the coverage of actor detectors

by detecting actors in profile and back views, they also suf-

fer from the higher variability of actor appearances in such

views.

Extending the work in [18], Ramanan et al.[15] demon-

strate that color histogram of body appearance can be used

as a strong cue to group detected faces into tracks. They

show that given the unconstrained nature of the video, peo-
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(a) (b) (c) (d)

Figure 1. Illustration of training process of an actor, for each row

(a) Given training frame. (b) Detected upper body and the MSCR

features. The red window shows the upper body detection and

green window shows the extended window to include the torso,

when available. (c) The blobs chosen for training shown with the

head and the torso partition. (d) The color blobs scaled and shifted

to the normalized actor coordinate system which is represented by

the red axis.

ple can be tracked only about 50% of the time using such

an approach. While the work in [18] and [15] focuses on

first obtaining tracks and later classifying or hand labeling

them, our method can directly perform actor specific detec-

tions on individual frames. Closer to our approach, Sivic et

al. represent people in a scene with a simple pictorial struc-

tures with 3 rectangular image regions (face, hair and torso)

and use that model for finding the same people in repeated

shots of the same scene [19] . Starting from face detection

regions, they use likely positions for the hair and torso re-

gions and cluster them into actors. Instead, we use a training

set containing front views, side views and even back views

of actors, as shown in Figure 1. Our actor model is simpler

since we only model two body parts (head and shoulders)

but each part is an arbitrarily complex constellation model

of color blobs.

Our generative model of actor’s appearance is closely

related to recent work in object detection and recognition

[20, 8]. In the classical constellation model, image features

are generated in the vicinity of detected interest points and

the features are clustered using k-means, which builds a vi-

sual vocabulary of ”object part appearances”. Appropriate

feature detectors are then trained using these clusters, which

can be used to obtain a set of candidate parts from images.

It is difficult to apply such models to actor appearances be-

cause interest points and their image features are typically

Figure 2. Training images from different viewpoints are merged to

obtain an actor model.

not very stable on actors, due to fast motion and complex

clothing patterns, and the density of interest points and their

features can be very low. We resolve this issue by repre-

senting parts of actors with color regions rather than local

features. Color regions have been shown to give good re-

sults on the problem of person re-identification [6], where

the goal is to identify a person given its detection window.

We extend such previous work to the more difficult prob-

lem of ”re-detecting” actors where the generic detectors fail

due to variations in pose and viewpoints, partial occlusions,

etc. This is similar to the recently-proposed Implicit Shape

Model [13, 12] which builds a star shaped structural model,

where the position of each local part is only dependent on

the object center. While the models in [13] are view spe-

cific, we build a single view-independent model of each ac-

tor’s appearance.

3. Generative model

In this section, we introduce our generative model for

the appearance of actors and describe a method for learn-

ing the model from a small number of individual keyframes

or short video tracks. Our model is designed to incorpo-

rate the costume of the actor and to be robust to changes

in viewpoint and pose. We make one important assump-

tion that the actor is in an upright position and that both the

head and the shoulders are visible. As a result, we model

the actor with two image windows for the head and shoul-

ders, in a normalized coordinate system with the origin at

the actor’s neck, and with unit size set to twice the height

of the actor’s eyes relative to the origin. The head region
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(a) Brandon (b) Philip (c) Janet (d) Kenneth

(d) Mrs. Wilson (e) Mrs. Atwater (f) Rupert (g) Mr. Kentley

Figure 3. Appearance models for all 8 actors in the movie ”Rope” [11]

extends from (−1,−1) to (1, 0) and the shoulder region ex-

tends from (−1, 0) to (1, 3). Examples are shown in Figures

1 and 3.

More specifically, we associate with each actor a visual

vocabulary of color blobs Ci described in terms of their nor-

malized coordinates xi, yi, sizes si, colors ci and shapes

mi, and their frequencies Hi. Color blobs above the actor’s

origin are labeled as ”head” features and color blobs under

the origin are labeled as ”shoulder” features. Contrary to

previous work [16, 14, 1, 9], our head and shoulder mod-

els are not based on a fixed number of body parts but on

an arbitrary number of salient color regions. This allows to

accommodate ample clothing not revealing the body parts,

and to incorporate optional or even unusual costume ele-

ments such as glasses, hats and helmets, to name just a few.

Formally, our generative model for each actor consists in

the following three steps:

1. Choose screen location and window size for the ac-

tor on the screen, using the detections in the previous

frame as a prior.

2. Choose visible features Ci in the ”head” and ”shoul-

der” regions independently, each with a probability Hi

3. For all visible features Ci , generate color blob Bi from

a gaussian distribution with mean Ci and covariance

Σi, then translate and scale to the chosen screen loca-

tion and size

In effect our model is an AND/OR graph with one

AND node and multiple OR nodes [21]. Example of ran-

domly generated blob images are shown in Fig 4. We learn

the model parameters from image examples by computing

maximal color regions in all examples, clustering those re-

gions in x, y, s, c,m space and counting the frequency Hi of

appearance for each cluster.We now describe each of those

steps in more details.

3.1. Maximally stable color regions

The maximally stable color regions (MSCR) feature is

a color extension of the maximally stable extremal region

(MSER) feature [10]. It is an affine covariant region de-

tector which uses successive time steps of an agglomerative

clustering of pixels to define a region. The raw moments up

to order two are calculated for each detected region, which

are then used to calculate the regions area, the centroid, the

inertia matrix and the average color. Each region is thus rep-

resented by 9 parameters i.e. the centroid, average color and

4 raw moments representing the size and the shape of the

region. An approximated ellipse is then defined over each

detected region. These approximated ellipses are termed as

color blobs in the later part of the text. Examples of detected

MSCR features over an image are shown in Fig 1.

3.2. Clustering

We build a view-independent model of an actor’s appear-

ance by choosing a small number of front views, side views

and back views for training (Fig.2). The actual choice of

samples is not very important, as long as we cover the entire

range of appearances of the actor (we try to keep the training

set equally sampled across different views i.e. front, back

and side views). Ideally a sequence of each actor perform-

ing a 360 degree turn would be sufficient to build such mod-

els. We manually draw the upper body bounding boxes for

all training examples and label them with the actor’s names.

We compute the MSCR features over all keyframes in

the training set. We then collect the color blobs in all train-

ing windows, center and resize them, and assign them to ac-
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(a) (b)

Figure 4. Example of two independent randomly generated blob

images given the actor and background models. (a) Brandon and

Janet. (b) Brandon, Janet and Kenneth

tors. We cluster the blobs for all actors using a constrained

agglomerative clustering. For every actor in n training im-

ages we get n set of blobs (f1, f2, ...., fn) with varying

number of blobs in each set, where each blob is represented

as a 9 dimensional vector in normalized actor coordinates.

An example of this process is illustrated in Fig 1. Each blob

in the first set f1 is initialized as a singleton cluster. We then

compute pairwise matching between those clusters and the

blobs in the next set f2. At each step, for each cluster, we

assign at most one blob (its nearest neighbor) if it is closer

than a threshold. Each cluster is represented by the mean

value of its blobs. Blobs not assigned to an existing cluster

are assigned to their own singleton cluster. The process is

repeated for all frames and for all actors. Finally, we elim-

inate the remaining singleton clusters. The cardinality of a

cluster is the number of its occurrences in the training set.

We interpret this value as a frequency, i.e. the probability

of the cluster being visible in the actor. Note that the num-

ber of clusters per actor is variable. As a result, actors with

more complex appearances can be represented with a larger

number of clusters. The appearance models for eight differ-

ent actors are shown in Fig 3.

4. Actor detection

Given the learned appearance models for a cast of ac-

tors, we now describe a framework for detecting them in

any given video frame. Our framework searches for actors

over a variety of scales, from foreground (larger scales) to

background (smaller scales). For each actor we first per-

form a search space reduction using kNN-search. Then, we

scan a sliding window and search for the most likely loca-

tion for the actor. Then we perform a multi-actor non max-

ima suppression over all the detected actors. Finally, we

report the best position and scale for each detected actor.

The complete detection process is illustrated in Fig 5.

4.1. Search space reduction

Given an input frame first we calculate the maximally

stable color regions over it as illustrated in Fig 5(b) and Fig

Algorithm 1 Detection and localization algorithm

1: Given actor models(Ca,Σa, Ha) and the image fea-

tures B.

2: for each actor a do

3: for each scale s do

4: Normalize image features w.r.t scale.

5: [IDX,D7] = kNN-SEARCH(B,Ca,k).

6: Build inverted index i.e. for each unique blob B′

in the Knn refined set, store corresponding clus-

ters in Ca and respective distances using IDX
and D7.

7: for each position (x, y) do

8: Find blob indices Jhead and Jshoulders
9: Compute mij using blob indices and inverted

indices

10: score(x, y, s, a) =
∏

k(
∑

j∈Jk
P (Bj ,mij , a))

11: end for

12: end for

13: end for

[x∗(a), y∗(a), s∗(a)] = argmax
∑

a
(score(x, y, s, a)− t0)

5(c). This gives us a initial set of blobs B over which we

perform a refinement step using kNN search given the ac-

tor model and the particular scale. This pre-refinement is

done only based on the color, size and shape parameters.

The kNN-SEARCH(B,Ca,k), calculates k nearest neigh-

bours in B for each cluster center in Ca by performing an

exhaustive search over the euclidean distances in the 7 di-

mensional space of appearance. It returns IDX and D7,

both N × k matrices, where N is the number of clusters in

the given actor model. Each row in IDX contains the in-

dices of the k closest neighbours in B corresponding to the

k smallest distances in D7.

This is further used to build inverted indices i.e. for each

unique blob B′ in the kNN refined set IDX , we store corre-

sponding clusters in Ca and respective distances, ensuring

that the distance is less then a threshold τ1. This boosts the

efficiency of the matching step in two ways. Firstly for each

blob within the sliding window we only require to compare

it with its corresponding entries in the inverted index table

instead of doing an exhaustive search. Secondly, the dis-

tances in appearance are pre-calculated and distance in po-

sition D2 can be directly added to calculate the full distance.

An example of pre-refinement is illustrated in Fig 5(d). The

figure shows the refinement for a particular scale but this is

performed independently for each scale in sliding window

search.

After the search space reduction, only sparse set of fea-

tures remain for the matching step which leads to the speed

up of the detection process in two ways, firstly many win-

dows can be rejected without any processing using a im-

portance term based on a binary map as shown in Fig 5(e)
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Illustration of the detection process. (a) Given Actor model. (b) Input frame and obtained detection for given Actor model

with the proposed method. (c) MSCR features on the input frame. (d) Refined set of blobs for the given actor at given scale, based on

appearance. (e) Binary map which can be used to reject some of the windows without processing, in practice we use separate binary maps

for head and torso features. (f) The features in the image which were finally matched and considered for scoring for the final detection

window as shown in (b). (g) The corresponding matched cluster centers in the given actor model.

which can be efficiently implemented using integral images.

Secondly, it reduces the number of matches to be performed

by a large margin over a naive exhaustive matching. No-

tice that the number of required comparisons become inde-

pendent of number of features in the image after the kNN

refinement, which is done once in the beginning. Hence,

the efficiency will go higher with increasing number of fea-

tures. In addition to computational benefits, kNN refine-

ment also makes the matching step much more robust by

filtering out the background clutter, which is a major bene-

fit while using low dimensional features like MSCR.

4.2. Sliding window search

We now proceed to define the detection scores for all

actors at all positions and scales using a sliding window ap-

proach. Each actor detection score is based on the likeli-

hood that the image in the sliding window was generated

by the actor model using the previous frame detections as

prior information. In practice we compute MSCR features

in the best available scale and then shift and scale the blobs

respectively while searching at different scales. Remember

that the model was normalized to a fixed scale during train-

ing. During recognition, we similarly normalize the size,

shape and position of blobs relative to the sliding window.

This ensures that all computations are performed in reduced

actor coordinates. The detection procedure is illustrated in

Algorithm 1.

We represent B as the set of all blobs detected in the

image and Ca as the set of cluster centers in the model for

a given actor a. Given a sliding window at position (x, y)
and scale s, we find all blobs centered within the sliding

window and assign the blobs indices Jhead and Jshoulders.

Using these indices and a matching function mij , we define

the score as:

score(x, y, s, a) =
∏

k

(
∑

j∈Jk

P (Bj ,mij , a))

which is a product of parts, where each part is a sum

of optional MSCR regions. Only two parts i.e. the head

and the shoulder are considered in this case. The term

P (Bj ,mij , a) is the similarity function between the model

cluster Ca
i and the corresponding matched blob Bj in nine

dimensional space (position, size, color and shape), which

is defined as follows:

P (Bj ,mij , a) =
∑

i

Hi·mij ·exp
{

− (Ca
i −Bj)

T Σa
i
−1 (Ca

i −Bj)
}

where Ca
i is the center for cluster i in the actor model

and Σa
i is its covariance matrix. A distinctive feature of

our detection framework is that it requires us to find a par-

tial assignment mij between blobs in the the sliding win-

dow and clusters in the model. More precisely, we compute

mij such that each blob in the sliding window is assigned

to at most one cluster, each cluster is assigned to at most

one blob, and the assignment maximizes the total likeli-

hood
∏

k(
∑

j∈Jk
P (Bj ,mij , a)) of the matched blobs. Al-

though potentially more computationally intensive, we have

found that this method produces significantly better results

than computing the average score over all possible blob-

to-cluster assignments, where the same blob may be as-

signed to multiple clusters, and the same cluster to multiple

blobs, which is prone to detection errors. A key to our algo-

rithm is therefore a fast approximate solution to the assign-

ment/matching problem for evaluating the detection score

benefiting from a pre-refinement step.

We further benefit from the previous frame detections

Dt−1 to modify the scores as follows:

score(x, y, s, a) =

{

l1,1 · score(x, y, s, a) · prt,t−1 if a ∈ Dt−1

l0,1 · score(x, y, s, a) otherwise.

where, l1,1 and l1,0 measures the probability that the

same actor is observed in consecutive frames. When the ac-

tor is not present in the previous frame, all positions in next

frame are equally probable. When the actor is present in

both frames, we assume the new position to be close to the

previous position, within some covariance term Σpos. Em-

pirically, we have found that the terms l1,1, l1,0 and Σpos
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Figure 6. Comparison of results on recall and precision for ac-

tor detection using Upper body detector(UBD), Color Blob detec-

tor(CBD) and Combined method (UBD-CBD)

are in fact independent on the choice of actor or movie. The

term prt,t−1 is defined using the covariance term as follows:

prt,t−1 = exp
{

−(pt − pt−1)
′Σ−1

pos(pt − pt−1)
}

The above procedure is repeated for all actors in-

dividually and after non maximal suppression over

score(x, y, s, a) we get the potential detections for each ac-

tor. Benefiting from the fact that an actor can only appear

once on a frame, we then search for the best possible posi-

tions [x∗(a), y∗(a), s∗(a)] which maximizes the total score

over all actors.

[x∗(a), y∗(a), s∗(a)] = argmax
∑

a

(score(x, y, s, a)− t0)

A threshold t0 is used to reject all the detections with

score below a threshold value.

5. Experiments

5.1. Dataset

As mentioned earlier the previous work in actor specific

models have focused on obtaining tracks and then perform-

ing classification on the obtained tracks. And in datasets

related to the re-identification problem, the bounding boxes

are provided and the goal is only to identify the pedestrians.

Our method on the other hand can perform direct detection

using actor specific models, even on keyframes which is a

much harder task than classifying tracks and we target the

scenario where it is difficult to obtain face or upper body

tracks.

Due to this reason, for a detailed evaluation of our

method we propose the ROPE dataset1 which is set of

1http://imagine.inrialpes.fr/people/vgandhi/CVPR 2013/

Figure 7. Comparison of recall with increasing number of actors

in UBD, CBD and combined cases

keyframes at equal intervals, a frame every 10 seconds from

the movie ”Rope” [11] by Alfred Hitchcock. This dataset

presents significant scale and viewpoint variations for each

actor with presence of motion and focus blur. There is sig-

nificant camera movement and constant background varia-

tions from flat regions to cluttered patterns. The lighting

changes considerably during the movie and the clothing ap-

pearance of all the actors remains consistent which makes

it suitable for our experiments. The movie is composed of

a single shot and choosing a frame every 10 seconds gives

about 443 frames. There are 8 different actors in the en-

tire movie (except the initial victim and Alfred Hitchcock

himself). All of them were considered in our experiments.

The number of appearances per actor vary between 38 and

275. All 443 frames were hand labeled with the names and

screen locations for all actors to serve as ground truth.

5.2. Results

A1 A2 A3 A4 A5 A6 A7 A8

A1 99 0 0 0 1 0 0 0

A2 0 78 0 16 0 2 3 1

A3 0 1 96 0 3 0 0 0

A4 0 25 0 74 0 0 1 0

A5 0 0 5 0 95 0 0 0

A6 0 4 0 0 0 93 0 3

A7 3 4 0 0 1 2 81 9

A8 0 0 0 0 0 6 22 72

Table 1. Actor identification results for all 8 actors in Rope dataset

(percentages).

This section describes the results on the proposed

dataset. We ran our detection and recognition algorithm us-

ing the built actor models, on all 443 frames and compared

the results with the ground truth. Fig 6 shows the results on

recall and precision of actor detection using the proposed

method (CBD) and it is compared with the state of the art

Upper Body Detector (UBD)2 and the combined case where

we merged the detections obtained from both the methods

individually. Results demonstrate an increase in recall from

about 57 percent in UBD to 70 percent in proposed Color

blob detector (CBD) to about 81 percent in combined ap-

proach for a similar precision. Thus, the coverage is sig-

nificantly improved keeping the same false positive rate. In

2http://www.vision.ee.ethz.ch/∼calvin/calvin upperbody detector/

6



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 8. Some detection results from Rope dataset using proposed method CBD (in red) with recognized actor names on top left, UBD

(in yellow) and not detected by both (in green). Notice how our method is able to detect and identify the actors in the presence of multiple

actors with partial occlusions [e.g. (a), (d), (e), (o)], varying viewpoint and posture [e.g. (f), (m), (g), (j)], varying illumination [e.g. (b),

(l)], motion blur [e.g. (h)] etc.

(a) (b) (c) (d) (e)

Figure 9. Few examples where our method wrongly detects or fails to detect the actors, the typical failure cases are due to shadows [e.g.

(e)], merging of foreground blobs with the background due to low illumination [e.g. (a)] or heavy blur [e.g. (b)], confusing the hands as

the head [e.g. (d)] and large occlusions [e.g. (c)]. This also demonstrates the difficulty of the proposed dataset.

Fig 7 we plot recall rates for both UBD and CBD and com-

bined case, with different number of actors present in the

frame and it shows that the proposed method gives consis-

tent results with varying number of actors.

Recognition results on the detected actors are presented

in Table 5.2. As can be seen, our method not only increases

the average recall rate for all actors, but also correctly names

all actors with an average precision of 89 percent despite the

large number of back views and partial occlusions.

Some of the example detections results are shown in

Fig 8 and they demonstrate how our method performs well

even with severe cases of occlusions, viewpoint scale and

pose variations in a multi actor scenario. Fig 9 shows some

failure cases. Most failure cases are caused by insufficient

illumination or severe occlusions. In 9(a) the blobs in the

torso region of the undetected actor gets merged with the

background, heavy blur causes mis-detection in 9(b), torso

is largely occluded in 9(c). In fourth instance 9(d), the hand

gets detected as the head and blobs below as torso, leading

to a false detection. Note that there is very little temporal

coherence between frames in our dataset. As a result, we

cannot rely on context to resolve such problems. Detect-

ing actors at a finer temporal scale (every second or every

frame) may help alleviate the problem but that requires a
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stronger model of temporal coherence, taking into account

the inter-frame motion of actors, the temporal coherence of

the blobs, and the probability of visual events such as en-

trances and exits. This is left for future work.

6. Conclusions

We have presented a generative appearance model for

detecting and naming actors in movies that can be learned

from a small number of training examples. We have shown

that low dimensional features like MSCR that were previ-

ously used for actor re-identification can also support actor

detection, even in difficult multiple actors scenarios. Re-

sults show significant increase in coverage (recall) for actor

detection maintaining high precision. To our knowledge,

this is the first time that a generative appearance model is

demonstrated on the task of detecting and recognizing ac-

tors from arbitrary viewpoints. Our method also appears to

be a good candidate for tracking multiple actors constantly

changing viewpoints and occluding each other in long video

sequences such as ”Rope”, which include important appli-

cation scenarios, such as unedited, raw video footage and

recordings of live performances. We also plan to investi-

gate weakly supervised methods by extracting actor labels

from temporally aligned movie scripts [17, 2].

One obvious limitation of our method is that it only handles

cases where the appearance of actors does not change much

over time. In future work, we are planning to investigate

extensions with mutually-exclusive appearances per actor,

so that actors can change their appearances and costumes

over time. Because each appearance requires so few train-

ing examples to be learned, we believe this extension is in

fact possible.
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