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Abstract. Ranking models have recently been proposed for cascaded
object detection, and have been shown to improve over regression or bi-
nary classification in this setting [1, 2]. Rather than train a classifier in
a binary setting and interpret the function post hoc as a ranking objec-
tive, these approaches directly optimize regularized risk objectives that
seek to score highest the windows that most closely match the ground
truth. In this work, we evaluate the effect of non-maximal suppression
(NMS) on the cascade architecture, showing that this step is essential
for high performance. Furthermore, we demonstrate that non-maximal
suppression has a significant effect on the tradeoff between recall dif-
ferent points on the overlap-recall curve. We further develop additional
objectness features at low computational cost that improve performance
on the category independent object detection task introduced by Alexe
et al. [3]. We show empirically on the PASCAL VOC dataset that a
simple and efficient NMS strategy yields better results in a typical cas-
caded detection architecture than the previous state of the art [4, 1]. This
demonstrates that NMS, an often ignored stage in the detection pipeline,
can be a dominating factor in the performance of detection systems.

1 Introduction

State of the art object detection typically consists of training a statistical clas-
sifier and evaluating that classifier at as many regions of an image as is com-
putationally feasible. While such an approach is conceptually straightforward,
it is often inefficient as the majority of windows in an image do not contain an
instance of an object. Recognizing this imbalance, Viola and Jones proposed to
improve accuracy on a fixed computational budget by designing a cascade ar-
chitecture in which relatively few, inexpensive decision functions were sufficient
to reject a high proportion of image locations [5]. In this work, we consider the
problem of learning a cascade architecture rather than ordering function com-
putations into a cascade after training is completed. In particular, we employ a
ranking based objective that learns to assign high score to promising image re-
gions using inexpensive features [1, 2]. Regions that are scored highest are then
re-ranked using a more expensive function class, saving higher computational
effort for regions that are most likely to contain an instance of an object.



Several broad trends have been pursued in the literature to improve the
computational efficiency of object detection while maintaining the accuracy of
exhaustive sliding window approaches. One such method is to train a binary clas-
sifier on a set of samples using boosting or support vector machines, and then
reorder the component evaluations into a cascade architecture [6, 5]. Vedaldi
et al. have recently applied a similar setting that learns a series of progres-
sively more complex classifiers based on a hierarchy of kernel complexity [7].
Another approach is to incorporate the cascade architecture into the learning
process by making assumptions about the error distribution at each cascade
layer [8]. Lampert et al. proposed to use branch and bound to find the opti-
mal window according to a scoring function [9], while Lehmann et al. extended
this approach by approximating bounds by learned ranking functions [10]. Dis-
criminative max-margin ranking was introduced by Herbrich et al. and enforces
margin constraints for pairs of training samples [11]. This approach was recently
extended to additionally incorporate structured output losses [12, 13, 1, 2, 14],
and it is this approach that the present work extends. We evaluate our results
within the category independent object detection framework proposed by [3].

All detection systems must necessarily incorporate a non-maximal suppres-
sion (NMS) step into the detection process. This is because overlapping windows
will have similar scores, and the set of detections may be clustered around a sin-
gle image region, ignoring other detections. Viola and Jones used the strategy of
performing k-means to replace clusters of detections with their mean bounding
box [5]. Many recent systems perform greedy optimization based on overlap or a
probabilistic detection measure [15, 16, 1, 2]. NMS is in general NP-hard to solve
optimally [15, 16], posing challenges to the tractable formulation of NMS aware
learning strategies.

We propose in this work to address the effect of NMS on the learning problem
empirically, carefully evaluating the impact of design choices on cascade perfor-
mance. Of key interest is the relative performance of various design strategies
for improving results. To this end, we have developed a number of improved
features for the category independent detection task. These features enable us
to increase the capacity of the discriminant function at low computational cost.
We are therefore able to evaluate the relative improvements resulting from im-
proved features, and non-maximal suppression strategies. The rest of the paper
is structured as follows. In Section 2 we introduce precisely the family of ranking
objectives considered for the cascade setting. We develop several properties of
non-maximal suppression in Section 3, and discuss how the design of this step
impacts the detection pipeline. Our enhanced feature pipeline is presented in
Section 4. An empirical evaluation is performed in Section 5, and discussed in
Section 6. We next describe the family of ranking algorithms.

2 Ranking Cascades

A ranking cascade is a model that uses a discriminative ranking function at
each layer of the cascade [1, 2]. The discriminative ranking function is trained



using an objective that enforces constraints for pairs of detections, such that
the better detection is ranked higher than the worse detection. Mistakes are
penalized proportional to the difference in loss between the misordered pair.
The learning objective is as follows

min
w,ξ

1

2
‖w‖2 + C

∑
(i,j)∈E

ξij (1)

s.t. 〈w, φ(xi, yi)〉 − 〈w, φ(xj , yj)〉 ≥ 1− ξij
∆j −∆i

, ξij ≥ 0 ∀(i, j) ∈ E (2)

where w parametrizes the scoring function, 〈w, φ(xi, yi)〉, that orders image–
detection pairs according to the fitness of the detection, yi, in its corresponding
image, xi. ∆i encodes the loss associated with making a (partially overlapping)
prediction yi, while φ is a feature function that encodes statistics of the image,
xi, at the detection location, yi. E is the edge set of a preference graph that
specifies which pairs of samples will have a constraint enforced in Equation (2).
This model is the slack rescaled variant of structured output ranking, which
has favorable properties compared to a related variant, margin rescaling [17].
∆j − ∆i is the difference in losses between a worse prediction, j, and a better
one, i, while (2) pays a convex bound to this loss when a margin between such
pairs is violated.

A key issue is the complexity of optimizing (1). This complexity depends
on the form of E . In the case of bipartite E , [1] give a linear time algorithm
for optimizing a related ranking objective. This makes feasible the optimization
of preference graphs that contain millions of training samples. The bipartite
preference graphs are designed to give performance tailored to the specific task
of cascaded detection, while maintaining a high degree of scalability.

Cascaded detection works by applying an inexpensive function, in our case
w, to a set of candidate detections, filtering these at each step. By successively
increasing the complexity of the decision function, later stages can apply a more
sophisticated decision function to a small fraction of potential candidate win-
dows. Early stages are thus only tasked with making relatively easy distinctions
using a less expensive function class. It is essential to apply a non-maximal sup-
pression (NMS) strategy in order to achieve good results. NMS enforces that a
diverse set of candidate windows pass through to subsequent stages by removing
detections that significantly overlap with other detections. It is provably NP-
hard to apply optimal non-maximal suppression in general, posing a significant
challenge to learning strategies that make use of this step [15, 16]. We discuss in
the next section how the careful design of non-maximal suppression strategies
can approximate optimal performance while maintaining the overall tractability
of the learning approach.

3 Non-Maximal Suppression

Non-maximal suppression ensures that the set of candidates generated at a layer
of a cascade be diverse. A number of schemes have been proposed, but in general



the task can be seen to trade off a unary potential measuring the quality of a
given detection, with pairwise or higher order potentials that measure the degree
of overlap of pairs or sets of detections. This can be interpreted as a random
field model [16] resulting in a non-submodular minimization:

min
Π
−
∑
i

〈w, φ(xΠi
, yΠi

)〉+
∑
ij

Ω(yΠi
, yΠj

) (3)

where Π is the set of detections selected for further processing, and Ω is a
function that penalizes overlapping detections, ensuring a diverse set. For such a
strategy to make sense, the unary potentials, 〈w, φ(xΠi

, yΠi
)〉, must be ordered

appropriately by the detection quality, i.e. the overlap with the ground truth.
Ideally, the non-maximal suppression step would be incorporated directly into

the learning procedure, so that the top samples after non-maximal suppression
be constrained to be ranked above the rest of the samples, and that the unary
potentials be optimized to improve the resulting performance. However, such a
strategy makes the learning architecture intractable due to the NP-hardness of
the NMS step [15, 16]. Instead, a typical approach is to compose the learning step
with an NMS step that makes use of the learned unary potentials, enabling NMS
to be computed using an efficient approximation [15, 16, 18] to Equation (3). We
explore in the Experimental Results section the composition of ranking and NMS
by subsequently reranking detections after the NMS procedure, using a second
ranking objective trained specifically to discriminate detections with high overlap
to the ground truth.

Rahtu et al. made use of a two stage NMS strategy in a cascaded detection
setting [1]. In this strategy, they did an initial approximate filter to decrease the
number of windows. This was achieved by looking for local maxima in the window
score landscape to select a pool of windows approximately one tenth the number
of the original set, and ten times the number to be selected. Subsequently, the
NMS strategy of [7] was employed on this reduced set of windows, which can
be interpreted as an application of the approximation scheme of [18]. The two
stage NMS strategy of [1] can be thought of as approximately optimizing higher
order potentials in Equation (3) that favor windows that are local maxima. We
evaluate this assumption empirically in Section 5.

Equally important are the pairwise potentials indicating the penalization
allocated to overlapping windows. We consider a simple case in which windows
are simply discarded if the overlap to a previous detection is too high. This
can be viewed as a pairwise potential that is zero if the overlap threshold is
not reached, and ∞ otherwise. If the threshold is set to be high, fewer windows
will be discarded by non-maximal suppression, and the set of windows will be
less diverse. They will, however, be more tightly localized around the areas with
highest score. This will maximize recall at very high overlap, while recall at
lower overlap will decrease. When the threshold is lowered, NMS is more strict,
discarding a higher proportion of windows. The average score of the windows
passing through NMS filtering will be lower, but the diversity of such windows
will be higher. We thus expect to have fewer very precise detections, but will
have higher recall at lower overlap.



The form of pairwise suppression potentials is key for trading off performance
along the recall-overlap curve. While the PASCAL VOC challenge evaluates
detection accuracy using a threshold of 0.5 overlap [19], it is often key to have
very precisely localized candidate windows for models that are sensitive to spatial
misalignment. In such a case, overall performance is likely to be optimized by
tuning earlier cascade layers to trade off lower recall at 0.5 overlap for higher
recall at higher overlap, with the exact parameter settings depending on the
behavior of subsequent layers.

4 Image Features

Stronger function classes and richer features are key to improve performance in
object detection [7]. Furthermore, insufficiently rich function classes may make
it impossible to observe significant differences between competing learning al-
gorithms. As early cascade layers are strongly constrained computationally, it
is almost certain that the features employed will tend to underfit rather than
overfit the data. Furthermore, cascade architectures are incapable of recovering
from early mistakes, further reinforcing the importance of good feature design
for these early stages. To this end, we develop here several novel features for
category independent object detection. The feature set, φ(xi, yi), employed here
extends the publicly available features described in [3] and [1], and shares much
of the same computation. The cost of the entire pipeline is comparable to these
previous works.

We have largely followed the strategy of [1] in generating the initial set of
candidate windows. This consists of generating windows in two ways. The first is
to use superpixel segmentations5 to generate sets of windows that form bound-
ing boxes around superpixel combinations, while the second is to sample win-
dows according to a learned spatial distribution of object locations. Using these
two strategies, approximately 105 windows are generated. Noting that bounding
boxes of superpixel combinations are more likely to describe the location of an
object, we enable the learning algorithm to base its estimate of a bounding box
fitness on the information of which of these two processes generated the candi-
date. Specifically, we include binary features that specify in which way a box
was generated.

We propose a new set of computationally efficient image features which allow
to characterize the generic objectness of candidate windows. The features are
based on measuring the responses of a set of linear filters along the superpixel
boundaries. This approach is motivated by the observations in [3] and [1], where
it was noted that both superpixel boundaries and gradient magnitudes are useful
objectness cues. Hence, in a sense, our aim is to combine information from both
superpixels and gradients, and to do it in a way which is statistically justified so
that more weight is given to rare (i.e. salient) features in each particular image.

5 We have extended this candidate generation strategy by using four different super-
pixel segmentations using different color spaces: RGB, opponent color space, nor-
malized RGB, and the hue channel from HSV.
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Fig. 1. Our image features measure the responses of 12 linear filters along the su-
perpixel boundaries. (a) An example image. (b) Example image filtered with the first
filter. (c) The set of 12 filters of size 11×11 pixels. (d) The filter response image (c)
transformed to a self-information map by estimating the histogram of responses. (e)
The self-information map weighted with the superpixel boundary map. (f) Given a
candidate bounding box we integrate the values of (e) over two subregions (A and B)
of the box, and repeat this for all the filters, which results in 24 values for the box. (g)
Distribution of the summed feature values integrated over the outer (top) and inner
(bottom) boundary regions (regions A and B in (f)) for boxes whose overlap score with
a ground truth box is ≥ 0.5 (blue) and < 0.5 (red).

However, instead of simply using gradient filters in four different orientations
as in [1], we use a richer set of features by learning a set of linear filters whose
responses are as independent as possible in a set of natural training images. For
this we use the independent component analysis method described in [20]. That
is, given a set of image patches from natural images, represented as elements of a
vector space, a linear basis is learnt for the vector space so that when the patches
are projected to the basis their coordinates are as statistically independent as
possible. The corresponding projection operators are linear filters. In this work,
we use image patches of 11×11 pixels from a set of 13 training images provided
by [20], and estimate 12 filters of size 11×11 which are shown in Fig. 1(c). The
filters represent edge and corner detectors and such features typically emerge
from natural images independently of the particular dataset [20]. Hence, these
filters can be considered as generally informative features for natural images,
and they can be fixed after once learned.

An example of a filter response image, obtained with one of the filters, is
shown in Fig. 1(b). This filter response map can be seen to correspond to the
oriented gradient magnitude maps which were used in [1] to build their object-
ness measures. In fact, some of the filters are quite similar to horizontal and
vertical gradient filters. However, as we use more filters we get a richer set of



features. Moreover, we do not directly integrate the filter responses along the
boundary of each candidate window to measure its fitness, as in [1]. Instead, we
first transform the response map to a self-information map (Fig. 1(d)), which
reflects the rarity of features at the image level. That is, we estimate the his-
togram of filter responses in the image, normalize it to a discrete probability
density function, pk, and then assign the value −log(pk) to pixels assigned to
histogram bin k. These self-information values reflect the informativeness of local
image patches. Typically strongest responses are the rarest (pk is small) and their
self-information −log(pk) is large. Nevertheless, if there is background clutter or
dominant background texture in the image, it may be that not all strong edges
are as informative as others. Hence, certain edge and corner patches may be more
informative object boundary indicators than others, and this informativeness (or
saliency) may vary in different images based on their content. Further, the most
salient boundaries are intuitively the most promising object boundaries and our
features aim to utilize this information.

Finally, since [3, 1] have observed that superpixels are powerful cues of object
boundaries, we combine the information from our features with the superpixel
boundaries by weighting the self-information maps (like the one in Fig. 1(d)) with
a smoothed version of the superpixel boundary image. The result is illustrated
in Fig. 1(d). Then, given a candidate object window, we integrate the values
from the weighted self-information maps over two different subregions of the
window which are illustrated in Fig. 1(f) (regions A and B). Since there are 12
self-information maps per image and two subregions per window we get in total
24 scalar feature values per window. As we need to evaluate the feature values
for a large number of windows we utilize integral images for the integration. The
overall computational cost is comparable to the superpixel straddling measure
introduced by [3].

In principle, due to the independence assumption of our feature responses
it is justified to think that the ”boundary information” carried by all the self-
information maps is obtained by summing the map values related to different
filters. This is because the joint density of independent random variables is the
product of individual densities and the logarithm of a product is the sum of
logarithms. In fact, by summing the integrals of different maps in the two window
subregions provides two values per window and in Fig. 1(g) we have plotted the
distributions of these values for windows whose maximum overlap score with a
ground-truth object box is either ≥ 0.5 or < 0.5. (We used a subset of PASCAL
VOC images.) This shows that our features indeed allow to distinguish the object
windows from the other windows.

However, as the features related to different filters may have different perfor-
mance as objectness measures and since our final scoring function for windows
is simply a linear combination of feature values, we do not sum the different
feature values in advance but let them be separate in a 24 dimensional vector
so that the ranking approach of Section 2 may learn suitable relative weights
for the different feature components. At test time the new features are linearly
combined with other features (those from [3, 1]) using learnt weights.
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Fig. 2. A comparison of overlap-recall results across various systems with different NMS
overlap parameters. Alexe et al. corresponds to the results presented in [4]. Rahtu et al.
corresponds to the results presented in [1], while “Rahtu et al. modified” corresponds
to our re-implementation of that system with varying NMS parameters. The results
from [4, 1] are presented with fixed NMS parameters across the different plots, while
the other curves have varying NMS thresholds. “NMS rank” corresponds to the system
described in this paper with simplified NMS parameters while “NMS rank image stats”
corresponds to the system with the new natural image statistics features incorporated.

5 Experimental Results

We evaluate our cascade architecture in the generic object detection task [3].
In this task, a cascade layer generates category independent object detection
proposals. This has the advantage of the resulting proposals being the same for
all categories, enabling the first cascade layer to be shared across multiple cate-
gory dependent cascades. Provided such a problem can be solved efficiently and
accurately, such a shared architecture promises to multiply the computational
savings by the number of categories. Also, generic object detection enables the
system to pool large numbers of training samples across multiple interrelated
object categories, increasing the statistical efficiency, and enabling the system to
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Fig. 3. Re-ranking variant of NMS. The red curve corresponds to the NMS strategy
used in previous figures, while the blue curve corresponds to the re-ranking strategy.
Reranking tends to improve recall at low overlap at the expense of recall at high
overlap. Measured by area under the curve (AUC), the results in Fig. 3(c) are the
highest reported.



generalize to previously unseen object classes [3, 21]. As [1, 7], we present results
in terms of recall-overlap curves, which measure the recall achieved in a test set
for a given level of detection overlap as measured by the VOC overlap score on
the 2007 dataset [19]. We have included difficult and truncated objects in this
evaluation. We compare to the previous state of the art [3, 4, 1]. Like previous
works, we show results for both 100 and 1000 windows returned per image.

Our first experiments compare recall-overlap curves for several baseline sys-
tems and new results with varying NMS parameters and numbers of returned
windows. We have presented the results of [4], as these result from an improved
version of the system described in [3], and are strictly better. We have reim-
plemented the system of [1] as it is the base for this work, and enables us to
vary the parameters of their NMS system in concert with those of our simplified
NMS strategy. We have also reported the results achieved by downloading their
precomputed detections for comparison. Results for this setting are in Fig. 2. We
see that our reimplementation performs slightly better, possibly due to our using
different superpixel parameters or the use of slack rescaling instead of margin
rescaling in the learning.

In the second set of experiments, we evaluate a variant of non-maximal sup-
pression in which we first detect 5000 windows. Subsequent to this filtering,
we apply a ranking discriminant function that was trained using the top 2000
windows per image with a complete preference graph (c.f. Section 3). We then
apply this re-ranking objective to the 5000 filtered windows to obtain the top
scored detection candidates. This enables the objective function to focus purely
on discriminating the top candidates. Results are shown in Fig. 3.
Pre-computed detections from the experiments described here are available for
download from http://www.cse.oulu.fi/CMV/Downloads/ObjectDetection.

6 Discussion

The experiments in Fig. 2 demonstrate the tradeoff inherent in the NMS thresh-
old parameter. Lower values of this parameter result in the overlap-recall curve
performing best at low overlap levels, while higher values shift the curve pro-
portionately to the right at the expense of performance at low overlap. Alexe
et al. seem to have optimized their system at 0.5 overlap, corresponding to the
recall computed in the VOC challenge. Our system with NMS parameter set
to 0.5 dominates the performance of [4] at all points on the curve, while our
system with NMS parameter set to 0.75 dominates the performance of [1] at all
points on the curve. In comparing different strategies, it is thus important to
identify which part of the curve has been optimized. The green curve indicates
the performance of the NMS strategy of [1]. We see that it has a bias towards
optimizing recall at high overlap at the expense of performance at lower overlap.
As measured by area under the curve (shown in parenthesis in the figure legend),
the simplified NMS strategy employed here gives better performance.

In the second set of experiments, we use an alternate NMS strategy in which
NMS is interleaved between two ranking steps (Fig. 3). This approach is de-



signed to couple the NMS step with the optimization. As discussed in Sect. 3,
computational issues prevent joint optimization of the learning objective with
NMS incorporated. Instead, most works have first performed learning, and sub-
sequently apply NMS. These experiments show that improvements can be made
with a simple strategy that couples learning and NMS, but is still computa-
tionally tractable. Measured by AUC, the results in Fig. 3(c) are the highest
reported so far [4, 1].

7 Conclusions

We have shed light on a portion of the detection architecture that is usually left
unanalyzed, and is often performed using ad hoc approaches. We have shown
that non-maximal suppression is critical to the performance of a system, and
naturally encodes a tradeoff between recall levels at different detection qualities.
The most striking observation is that the size of the changes in performance
due to NMS is much larger than those due to features or window sampling. Our
system has improved on the state of the art in the task of category independent
object detection, dominating the performance of previous systems at all levels
of overlap with a modest increase in computational cost for additional features.

NMS is typically uncoupled from statistical learning as its complexity com-
plicates the formulation of tractable approximations. We have shown here that
a loose coupling resulting from an additional ranking step can improve results
while maintaining computational tractability. A combination of improved NMS
and an augmented feature pipeline have enabled us to improve over the previous
state of the art. We will make our code, pre-computed features, and detections
available at the time of publication. We see several opportunities for the appli-
cation of our work in related settings. The ranking models and NMS models
developed here are likely applicable to the setting of [10]. It would also be possi-
ble to replace the use of SVMs in [7] with a ranking cascade model for category
dependent object detection.
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