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Abstract

Compressed sensing (CS) is a theory which guarantees the exact recovery of sparse sig-
nals from a few number of linear projections. The sampling schemes suggested by current
CS theories are often of little relevance since they cannot be implemented on practical ac-
quisition systems. In this paper, we study a new random sampling approach that consists
in selecting a set of blocks that are predefined by the application of interest. A typical
example is the case where the blocks consist in horizontal lines in the 2D Fourier plane.
We provide theoretical results on the number of blocks that are required for exact sparse
signal reconstruction in a noise free setting. We illustrate this theory for various sensing
matrices appearing in applications such as time-frequency bases. A typical result states that
it is sufficient to acquire no more than O

(
s ln2(n)

)
lines in the 2D Fourier domain for the

perfect reconstruction of an s-sparse image of size
√
n × √

n . The proposed results have
a large number of potential applications in systems such as magnetic resonance imaging,
radio-interferometry or ultra-sound imaging.

Key-words: Compressed Sensing, blocks of measurements, sampling continuous trajectories,
exact recovery, ℓ1 minimization.

1 Introduction

The fundamental Shannon-Nyquist theorem claims that sampling a signal at least twice faster
than its bandwidth is sufficient to exactly reconstruct the initial signal. Nevertheless, the result-
ing number of measurements needed can be so large that the storage becomes impossible and
the acquisition time too long. Compressive Sensing (CS) is a new sampling theory, that gives
theoretical conditions to ensure exact recovery of signals from a few number of linear projections
(below the Nyquist rate). The key property allowing to apply this idea is the sparsity of the
signals of interest, i.e. they can be represented by a small number of atoms in a well-chosen
basis. We will say that x ∈ Cn is s-sparse if

‖x‖0 ≤ s,

where ‖·‖0 denotes the ℓ0 pseudo-norm counting the number of non-zero entries of x.
In the seminal papers [Don06], [CRT06a], it has been showed that a sparse signal x can be

perfectly reconstructed by solving the following ℓ1-minimization problem:

min
z∈Cn

‖z‖1 such that AΩz = y, (1)
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where AΩ ∈ Cq×n (q ≤ n) is a sensing matrix, y = AΩx ∈ Cq represents the vector of linear
measurements, and ‖z‖1 =

∑n
i=1 |zi| for all z = (z1, . . . , zn) ∈ Cn . If AΩ satisfies an incoherence

property described later, then it can be shown that q = O(s ln(n)) measurements are sufficient
to perfectly reconstruct x.

The construction of good sensing matrices AΩ is a keystone for the successful application of
compressed sensing. The use of matrices with independent random entries has been popularized
in the early papers [CRT06b], [Can08]. Such sensing matrices have limited practical interest
since they can hardly be stored on computers or implemented on practical systems. More
recently it has been shown that partial random circulant matrices [Rau10, PVGW12, RRT12]
may be used in the CS context. With this structure a matrix-vector product can be efficiently
implemented on a computer by convolving the signal x with a random pulse and by subsampling
the result. This technique can also be implemented on real systems such as magnetic resonance
imaging (MRI) or radio-interferometry [PMG+12]. However this demands to modify the physics
of the acquisition device, which is often uneasy and costly. Another way to proceed consists in
drawing q sampling locations among n possible ones, see [CRT06a], [RV08]. This setting, which
is the most widespread in applications, presents the major advantage of allowing to implement
CS strategies on almost all existing devices. Its efficiency depends on the incoherence between
the acquisition and sparsity bases [DH01, CR07]. It is successfully used in radio interferometry
[WJP+09], digital holography [MAAOM10] or MRI [LDP07] where the measurements are Fourier
coefficients independently drawn at random. In this paper, we assume that we have access to a
fixed projection set (a∗

k)k∈{1,...,n} with a∗
k ∈ Cn . Let us present a typical non-uniform recovery

result in this setting. Let P = (p1, . . . , pn) denote a probability distribution on {1, . . . , n} and
define a random set Ω constituted of q indices in {1, . . . , n} resulting from i.i.d. drawings from
P.

Let A =



a∗
1
...
a∗
n


 denote a unitary matrix and AΩ be the q× n matrix obtained by extracting

the rows of A corresponding to the indices in Ω. Then, using the above notation, Theorem 4.2
in [Rau10] can be written as follows:

Theorem 1.1. [Rau10, Theorem 4.2] Let S ⊂ {1, . . . , n} be of cardinality s and let ǫ = (ǫℓ)ℓ∈S ∈Cs be a sequence of independent Rademacher (or Steinhaus) random variables, see Definitions
A.4 and A.5 for more details. Let x be an s-sparse vector of Cn with support S and sign

(
xS
)
=

ǫ, with xS = (xℓ)ℓ∈S. Let AΩ be the sampling matrix. Assume that

q ≥ CR ln2
(
6n

ε

)
s max
k∈{1,...,n}

‖ak‖2∞
pk

(2)

with CR ≃ 26.25, where ‖a∗
k‖∞ = max1≤i≤n |a∗

k(i)| for all k ∈ {1, . . . , n}. Set y = AΩx. Then
with probability at least 1− ε the vector x is the unique solution to the ℓ1-minimization problem
(1).

For instance, if A represents the matrix associated to the discrete Fourier transform, then
‖ak‖2∞ = 1/n for all k ∈ {1, . . . , n}. Therefore if P is the uniform distribution, Theorem 1.1
states that CRs ln

2
(
6n
ε

)
measurements are sufficient for perfect recovery with probability 1− ε.

Note that Theorem 1.1 gives a non-uniform recovery result, in the sense that a given s-sparse
vector x can be reconstructed with high probability. There also exist uniform results that
ensure a perfect reconstruction of all s-sparse vectors. Such results are obtained by estimating
the restricted isometry constants of AΩ, see e.g. [Can08, Rau10] for further details. Uniform
recovery results are somewhat stronger than non-uniform ones. However they lead to a required
number of measurements much larger than those given by Inequality (2).

In this paper, we concentrate on obtaining non-uniform recovery results in the case of sam-
pling schemes that are different from those usually considered in CS. Indeed, the result of
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(a) (b) (c)

Figure 1: An example of MRI sampling schemes in the k-space (the 2D Fourier plane
where low frequencies are centered) (a): Isolated measurements drawn from a probability
measure Π having a radial distribution. (b): Sampling scheme in the case of non-overlapping
blocks of measurements that correspond to horizontal lines in the 2D Fourier domain, (c):
Sampling scheme in the case of overlapping blocks of measurements that correspond to straight
lines.

Theorem 1.1 is valid for the case of isolated measurements of the form a∗
ix for i ∈ Ω. In the case

of measurements in the 2D Fourier domain, this corresponds to sampling points on a square,
according to the distribution P, see Figure 1 (a) in which P is chosen to be a radial probability
distribution. Unfortunately implementing such a strategy is impossible or impractical on many
devices. Indeed, for the majority of acquisition systems, the number of measurements is of
minimal importance relative to the path the sensor must take to collect the measurements. For
instance in MRI, images are probed by measuring Fourier coefficients along curves parameterized
by smooth functions see e.g. [Wri97, LKP08], see Figure 1 (b) for an example of measurements
along lines in the 2D Fourier domain. In [HPH+11], the authors consider the case of mission
design strategies for mobile robots whose task is to perform spatial sampling of a static environ-
mental field. The robots are subject to kinematic constraints and the objective is to minimize
the energy spent to cross the acquisition path. In ultrasound imaging, images are sampled along
lines in the space domain [Sza04].

We consider a sampling strategy consisting of randomly choosing blocks of measurements,
and not only isolated measurements. Each block corresponds to a set of rows of an orthogonal
sensing matrix. We deal with the case where the blocks are predefined. As far as we know,
only reference [Gan07] deals with a similar strategy. In [Gan07], the author proposes to sample
images by collecting contiguous pixel blocks of identical size using random matrices. The interest
of this work is mostly numerical since no theoretical guarantee on the reconstruction quality is
provided.

We study the problem of exact non-uniform sparse recovery in a noise-free setting. This
strategy raises various questions. How can we set an optimal drawing probability in the case
of blocks of measurements? How many blocks of measurements are needed to ensure exact
reconstruction? Is the required number of blocks compatible with faster acquisition? We provide
some answers to these questions. Our first contribution is the extension of Theorem 1.1 to
the case of blocks of measurements. This result allows us to compute drawing probability
distributions that minimize the number of blocks of measurements needed for exact recovery.
These results provide a theoretical basis to the use of compressed sensing for many practical
devices such as MRI, echography, computed tomography scanners, ...

The remaining of the paper is organized as follows. Section 2 describes the notation. Section 3
contains the main results about acquisition by non-overlapping blocks, along with some examples
illustrating their relevance in practical settings. Section 4 contains the proofs of the main results
contained in Section 3. In Section 5 , we discuss the extension of our results to the acquisition
by overlapping blocks (see Figure 1 (c)), which is of significant importance for many application
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fields.

2 Notation and problem setting

We consider a full unitary sensing matrix A ∈ Cn×n, i.e. A∗A = AA∗ = Idn, with A∗ denoting
the adjoint matrix of A. Let (a∗

i )1≤i≤n be the rows of A, such that

A =



a∗
1
...
a∗
n


 .

The matrix A is given a block structure, as follows:

A =



B1
...

BM


 ,

where the blocks (Bj)1≤j≤M are made of rows of A. In Section 3, we assume that the blocks

(Bj)1≤j≤M form a partition of the set of rows {a∗
i }1≤i≤n and are such that Bj ∈ Cbj×n with

∑M
j=1 bj = n. We will consider the case of overlapping blocks in Section 5.
Let Π = (π1, . . . , πM ) be a discrete probability distribution on the set of integers {1, . . . ,M}.

Throughout the paper, (Jk)1≤k≤m denotes a sequence of i.i.d. discrete random variables taking
their value in {1, . . . ,M} with distribution Π.

Let S ⊂ {1, . . . , n} be a set of cardinality s. For a matrix M ∈ Cm×n , we define

MS = (Mij)1≤i≤m,j∈S .

In this paper, we consider the following sampling strategy. We randomly select m blocks
among (Bj)1≤j≤M , according to the discrete probability distribution Π, which leads to consider
the sequence of i.i.d. random blocks (Xk)1≤k≤m defined by

Xk =
1

√
πJk

BJk , k = 1 . . . m.

We can notice that E [X∗
kXk] = Idn and E [XS∗

k XS
k

]
= Ids. This condition is a generalization

of the isotropy property defined in [CP11] for the construction of sensing matrices in the case
of isolated measurements.

We consider the following random under-sampling matrix

Ãm =
1√
m



X1
...

Xm


 . (3)

Let y = Ãmx denote a set of blocks measurements of a signal x. Finally, in order to
reconstruct x, the following standard ℓ1-minimization problem is solved:

min
z ∈ Cn

‖z‖1 subject to Ãmz = y. (4)

3 Main results

3.1 Statement

Let us first introduce a new quantity of interest that will be shown to be of primary importance
to obtain exact recovery results.
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Definition 3.1. For all k ∈ {1, . . . ,M}, we define

‖B∗
kBk‖∞ = max

1≤i≤bk
1≤j≤n

∣∣∣(B∗
kBk)i,j

∣∣∣ .

We call this quantity the block-coherence.

The block-coherence is somewhat related to the sub-coherence of a block already used in
[EKB10] in a different context.

The following theorem is the main result of the paper. It gives a set of sufficient conditions
for exact recovery of x with large probability.

Theorem 3.2. Let S ⊂ {1 . . . n} be a set of cardinality Card (S) = s and let ǫ = (ǫℓ)ℓ∈S ∈ Cs

be a sequence of independent random variables that are uniformly distributed on {−1; 1} (or on

the torus {z ∈ C , |z| = 1}). Let x be a sparse vector with support S and sign(xS) = ǫ. Let Ãm

be the sampling matrix defined in (3). Assume that

m ≥ Cs ln2

(
23/43n

ε

)
max

1≤k≤M

‖B∗
kBk‖∞
πk

, (5)

where C = 200κ2, and κ2 =
(√

17+1
4

)2
.

Then with probability at least 1−ε, the vector x is the unique solution of the ℓ1-minimization
problem (4).

The proof of Theorem 3.2 is detailed in Section 4.1. The approach is inspired by the results
in [Rau10]. To derive Theorem 3.2, probabilistic tools such as symmetrization and Rudelson’s
lemma have to be extended from the vectorial case [Rau10] to the matricial one, see Lemmas
A.6, A.8.

Theorem 3.2 and Condition (5) on the required number m of blocks of measurements can be
used to derive an optimal drawing probability.

Proposition 3.3. The drawing probability distribution Π∗ minimizing the right hand side of
Inequality (5) on the required number of measurements is defined by

π∗k =
‖B∗

kBk‖∞∑M
ℓ=1

∥∥B∗
ℓBℓ

∥∥
∞
, ∀k ∈ {1, . . . ,M, } . (6)

For this particular choice of Π∗, the right hand side of Inequality (5) can be written as follows

m ≥ Cs ln2

(
23/43n

ε

)
M∑

ℓ=1

‖B∗
ℓBℓ‖∞ . (7)

In Section 3.2, we discuss different examples leading to different choices of the drawing
probability Π∗.

3.2 Examples

In this section, we illustrate Theorem 3.2 and Proposition 3.3 on various examples of practical
interest.
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3.2.1 Blocks made of a single row - the case of isolated measurements

First, let us show that our result matches the standard setting where the blocks are made of
only one row. This is the standard case considered e.g. by [CRT06a], [Rau10], leading to the
reconstruction result recalled in Theorem 1.1. According to Theorem 3.2 the number of isolated
measurements sufficient to obtain perfect reconstruction with probability 1− ε must verify the
following inequality

m ≥ Cs ln2

(
23/43n

ε

)
max

1≤k≤M

‖aka
∗
k‖∞

πk
. (8)

By Theorem 1.1, the required number of isolated measurements is

q ≥ CRs ln
2

(
23/43n

ε

)
max
1≤k≤n

‖ak‖2∞
pk

. (9)

Noting that,
‖ak‖2∞ = ‖aka

∗
k‖∞, ∀k ∈ {1, . . . , n} ,

it follows that Condition (8) is comparable to (9) up to a multiplicative constant. This difference
is not too prejudicial since Theorem 3.2 should be mainly considered as a guide to construct
sampling schemes and not as a requirement for perfect recovery.

In addition, by Theorem 3.2, choosing Π∗ as suggested by Proposition 3.3 such that

π∗k =
‖aka

∗
k‖∞∑n

ℓ=1 ‖aℓa
∗
ℓ‖∞

, ∀k ∈ {1, . . . , n} ,

leads to the following required number of measurements:

m ≥ Cs ln2

(
23/43n

ε

)
n∑

ℓ=1

‖aℓa
∗
ℓ‖∞. (10)

Contrary to common belief, the probability distribution minimizing the required number of
measurements is not the uniform one, but the one depending on the ℓ∞-norm of the considered

row. Let us highlight this fact. We consider that A =

(
1 0
0 Fn−1

)
, where Fn−1 denotes the 1D

Fourier matrix of size (n − 1) × (n − 1). If a uniform drawing distribution is chosen, the right
hand side of (2) is O(sn ln2(n)). This shows that the CS is not applicable for this sensing matrix.
Note that ‖A‖∞ = 1, which is the worst possible for orthogonal matrices. On the contrary, if
the optimal drawing distribution is chosen, i.e.

p∗k =

{ 1
2 if k = 1

1
2(n−1) otherwise

then, the right hand side of (2) is O(2s ln2(n)). In this setting, CS remains a relevant sampling
strategy. Furthermore, note that the latter bound could be easily reduced by a factor 2 by
systematically sampling the location associated to the first row of A, and uniformly picking the
m− 1 remaining isolated measurements.

3.2.2 Acquisition in the 2D Fourier domain and sparsity in the 2D spatial domain

We now turn to a realistic setting where signals are sparse in the spatial basis and blocks of
frequencies are probed in the 2D Fourier domain. We consider blocks that consist of discrete
lines in the 2D Fourier space as in Fig 1(b). This scenario is close to what can be encountered
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in MRI or for some tomographic devices. We assume that
√
n ∈ N and that A is the 2D Fourier

matrix applicable on
√
n×√

n images. For all p1 ∈ {1, . . . ,√n},

Bp1 =

[
1√
n
exp

(
2iπ

(
p1ℓ1 + p2ℓ2√

n

))]

(p1, p2)(ℓ1, ℓ2)
(11)

with 1 ≤ p2 ≤
√
n, 1 ≤ ℓ1, ℓ2 ≤

√
n. The number of blocks is thus M =

√
n.

Proposition 3.4. Let A ∈ Cn×n denote the 2D discrete Fourier matrix and consider a partition
in M =

√
n blocks that consist of lines in the 2D Fourier domain. In the same setting as in

Theorem 3.2, the required number of measurements for perfect recovery with probability greater
than 1− ε is

m ≥ C ln2

(
23/4n

ε

)
s√
n

max
1≤k≤M

1

πk
. (12)

The drawing probability minimizing (12) is given by

π∗k =
1√
n
, ∀k ∈

{
1, . . . ,

√
n
}

and for this particular choice, the required number m of blocks of measurements must satisfy the
following inequality

m ≥ Cs ln2

(
23/4n

ε

)
.

We refer to Section 4.2.1 for the proof of Proposition 3.4. Here, an optimal drawing proba-
bility Π∗ is thus the uniform one over the set {1, . . . ,√n}. It is independent of the horizontal
frequency ℓ ∈ {1, . . . ,√n}. Moreover, this result shows that it is sufficient to acquire no more
than m = O

(
s ln2(n)

)
lines in the 2D Fourier domain for the perfect reconstruction of an

s-sparse image of size
√
n×√

n .

3.2.3 Acquisition in the 2D Fourier domain and sparsity in the 2D wavelet domain

Let A ∈ Cn×n be the 2D Fourier-Wavelet transform, with
√
n = 2J , J ∈ N. In this case, the

signal is sparse in the wavelet domain, and the acquisition is done in the Fourier domain. This is
one of the most common scenario in imaging application. Typical examples include MR imaging
[LDSP08] or radio interferometry. In order to simplify the calculations, we consider the case of
Shannon wavelets [Mal99]. The proposed reasoning could also be applied to Meyer’s wavelets

since they are band-limited. Let Ψ̂j,k be the Fourier transform of the 1D Shannon wavelet at
scale j and location parameter k, with j ∈ {L+ 1, . . . , J}, and k ∈ {1, . . . , nj} where nj = 2j−1

is the number of wavelets at the j-th scale for j > L, and L ∈ {0, . . . , J − 1} is the coarsest level
of resolution (i.e. the maximum level of decomposition of the 2D wavelet transform is J − L).

Note that at scale j = L, we denote by Ψ̂L,k the Fourier transform of the scaling functions

whose number is nL = 2L. For ℓ ∈ {1, . . . ,√n}, the ℓ-th Fourier coefficient of Ψ̂j,k is denoted

by Ψ̂j,k (ℓ). Since Shannon wavelets have disjoint frequency support, for each ℓ ∈ {1, . . . ,√n},
there exists a unique scale j = jℓ such that

Ψ̂jℓ,k (ℓ) 6= 0.

As in Section 3.2.2 we consider M =
√
n blocks (Bℓ)ℓ∈{1,...,√n} ∈ C√

n×n that are lines in

the 2D Fourier domain.

Proposition 3.5. Let A ∈ Cn×n denote the 2D discrete Fourier-Shannon wavelets matrix and
consider a partition in M =

√
n blocks that consist of lines in the 2D Fourier domain. In the

7



(a) (b)

Figure 2: For J = 8 and L = 4, (a): On the left hand side, the 2D Fourier acquisition plane is
laid out. The various colours denote different sets of rows having the same drawing probability.
The corresponding probability density with respect to the row indexes is outlined on the middle
plot. (b) Example of 25 draws according to the probability density described in (a).

same setting as in Theorem 3.2, the required number of measurements for perfect recovery with
probability greater than 1− ε is

m ≥ Cs ln2

(
23/43n

ε

)
max

1≤ℓ≤√
n

1

njℓπℓ
(13)

The drawing probability minimizing (28) is given by

π∗ℓ =
1

njℓ (J − L+ 1)
, ∀ℓ ∈

{
1, . . . ,

√
n
}

and for this particular choice, the required number m of blocks of measurements must satisfy the
following inequality

m ≥ Cs ln2

(
23/43n

ε

)
(J − L+ 1).

The proof of Proposition 3.5 is presented in Section 4.2.2. One can remark that the optimal
drawing probability Π∗ is not the uniform one, as illustrated in Figure 2.

3.2.4 Acquisition in the Dirac basis and sparsity in the 2D Haar domain

In this section, we propose to study sparse signals in the 2D Haar domain, sampled in the 2D
Dirac basis, which could illustrate the photography setting. Let A ∈ Cn×n be the inverse 2D
Haar transform, with

√
n = 2J , J ∈ N. We focus on the case where the blocks (Bℓ)ℓ∈{1,...,√n}

consist in a horizontal line of the 2D spatial domain (i.e. in the Dirac basis). Let Ψj,k be the 1D
Haar wavelet at scale j and location parameter k, with j ∈ {L+ 1, . . . , J}, and k ∈ {1, . . . , nj}
where nj = 2j−1 is the number of wavelets at the j-th scale for j > L, and L ∈ {0, . . . , J − 1}
is the coarsest level of resolution (i.e. the maximum level of decomposition of the 2D wavelet
transform is J − L). Note that at scale j = L, we denote by ΨL,k the scaling functions whose
number is nL = 2L.
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Proposition 3.6. Let A denote the inverse 2D Haar wavelets matrix and consider a partition
in M =

√
n blocks that consist of lines in the 2D Dirac domain. In the same setting as in

Theorem 3.2, the required number of measurements for perfect recovery with probability greater
than 1− ε is

m ≥ Cs ln2

(
23/43n

ε

)
1

2
max

1≤ℓ≤√
n

1

πℓ
. (14)

The drawing probability minimizing (14) is given by

π∗ℓ =
1√
n
=

1

2J
, ∀ℓ ∈

{
1, . . . ,

√
n
}

and for this particular choice, the required number m of blocks of measurements must satisfy the
inequality

m ≥ Cs ln2

(
23/43n

ε

)
2J−1.

The proof of Proposition 3.6 is presented in Section 4.2.3. Now, let us consider the case
of acquisition by isolated measurements. On the one hand, the optimal drawing probability
distribution P∗ in Theorem 1.1 is given by

p∗k =
‖a∗

k‖∞∑n
ℓ=1 ‖a∗

ℓ‖∞
=

1

n
, ∀k ∈ {1, . . . , n} .

It leads to the following required number of measurements

q ≥ CRs ln
2

(
23/43n

ε

)
22J−1. (15)

see Section 4.2.3 for computation details. On the other hand, by Proposition 3.6, it can be seen
that our approach requires an equivalent number of linear measurements

q′ := m
√
n ≥ Cs ln2

(
23/43n

ε

)
22J−1.

In this example, both approaches, based either on blocks acquisition or on isolated measurements,
still lead to comparable results in terms of linear measurements. Note that the Haar wavelet
matrix is little adapted to the use of compressed sensing since 22J = n. Equivalence in terms of
number of isolated measurements by both approaches could be also observed in the case where
A is the Identity matrix Idn. Indeed, sampling lines in the 2D plane will lead to ‖B∗

kBk‖∞ = 1

for all k ∈ {1, . . . ,√n}, and ‖a∗
ℓ‖

2
∞ = 1 for all ℓ ∈ {1, . . . , n} as well.

4 Proofs of the main results

4.1 Proof of Theorem 3.2

We present the proof in the case where ǫ is a Rademacher sequence, but it can be easily extended
to the case of a Steinhaus sequence at the price of changing some constants.

First, let us recall the three following results, that are basics to obtain reconstruction results
in CS, see e.g. [Rau10].
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Proposition 4.1. [Rau10, Proposition 7.1] Let M = (m1, . . . ,mn) ∈ Cq×n and let S ⊂
{1 . . . n} of size Card (S) = s. Assume that MS is injective and

∥∥∥MS†mℓ

∥∥∥
2
≤ α <

1√
2

∀ℓ /∈ S, (16)

where MS† is the Moore-Penrose pseudo-inverse of MS, see Definition A.1. Let ǫ = (ǫj)j∈S ∈Cs be a random Rademacher or Steinhaus sequence, see Definitions A.4 and A.5. Then with
probability at least

1− 23/4(n− s) exp

(
−α

−2

2

)
,

every vector x ∈ Cn with support S and sign
(
xS
)

= ǫ is the unique solution to the ℓ1-
minimization problem (4).

Definition 4.2 (Coherence). Let M =
(
m1, . . . ,mn

)
∈ Cm×n . In order to evaluate the quality

of the measurement matrix M , the coherence is defined by

µ(M) := max
j 6=k

|〈mj,mk〉|
‖mj‖2 ‖mk‖2

Proposition 4.3. [Rau10, Proposition 7.2] Let M ∈ Cq×n with coherence µ(M) and let S ⊂
{1 . . . n} of size Card (S) = s. Assume that

∥∥∥
(
MS

)∗
MS − Ids

∥∥∥
2
≤ δ, (17)

for some δ ∈ ]0, 1[. Then, ∥∥∥MS†mℓ

∥∥∥
2
≤

√
sµ (M)

1− δ
∀ℓ /∈ S.

By Proposition 4.1, we have to control
∥∥∥∥Ãm

S†
ãℓ

∥∥∥∥
2

∀ℓ /∈ S (18)

where ãℓ are the columns of Ãm
S
. To do so, we use Proposition 4.3, which requires an estimate

on

∥∥∥∥
(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

and on µ
(
Ãm

)
= µ to ensure exact reconstruction. The key point

in the proof is to verify the inequality
∥∥∥∥
(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

≤ δ

for small δ. To obtain such a result, we use symmetrization, Khintchine’s inequality and Rudel-
son’s lemma, that we need to extend to the matricial case. Then, we derive a probabilistic
estimate of the coherence of Ãm. Finally, we complete the proof by combining all the previous
developments, and by adjusting all the parameters.

Theorem 4.4. Let Ãm be the sampling matrix (3), let S ⊂ {1 . . . n} be a set of cardinality
Card (S) = s ≥ 2. Let δ ∈ ]0, 1/2].

Then with probability at least

1− 23/4s exp


− mδ2

8κ2 max1≤k≤M
ρSk
πk




for some constant universal κ =
√
17+1
4 , where ρSk is any quantity satisfying ρSk ≥

∥∥(BS
k

)∗
BS

k

∥∥
2
,

for all k ∈ {1, . . . ,M}, the sensing matrix Ãm = 1√
m
Am satisfies

∥∥∥∥
(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

≤ δ.

10



Proof. First, we define H for any p ≥ 2,

H := E [∥∥∥∥(Ãm
S
)∗

Ãm
S − Ids

∥∥∥∥
p

2

]

= E[∥∥∥∥∥ 1

m

m∑

k=1

XS∗
k XS

k − Ids

∥∥∥∥∥

p

2

]

= E[∥∥∥∥∥ 1

m

m∑

k=1

(
XS∗

k XS
k − E (XS∗

k XS
k

))
∥∥∥∥∥

p

2

]
. (19)

We aim at giving an upper bound on H and the result will follow by Markov’s inequality. First
by Lemma A.6, one can deduce that

H ≤
(

2

m

)p E[∥∥∥∥∥ m∑

k=1

ǫk
(
XS∗

k XS
k

)
∥∥∥∥∥

p

2

]
,

where, (ǫk)k=1,...,m is a Rademacher sequence, and we getE[∥∥∥∥∥ m∑

k=1

ǫk
(
XS∗

k XS
k

)
∥∥∥∥∥

p

2

]
≤ E∥∥∥∥∥ m∑

k=1

ǫk
(
XS∗

k XS
k

)
∥∥∥∥∥

p

Sp


 ,

where ‖.‖Sp
is the Schatten p-norm, see Definition A.2. Indeed, by Proposition A.3 (i), for any

matrix M ,
‖M‖p2 ≤ ‖M‖pSp

, ∀p ≥ 2.

From now on, we do calculations by conditioning to X1, . . . ,Xm, so as to apply Rudelson’s
lemma. Let EX denote the expectation conditionally to X1, . . . ,Xm.

Since the matrix XS∗
k XS

k is a matrix of size s×s, its rank is at most s. Applying Rudelson’s

lemma A.8 to the sensing matrix Ãm brings

(EX

[∥∥∥∥∥
m∑

k=1

ǫk
(
XS∗

k XS
k

)
∥∥∥∥∥

p

2

])1/p

≤ 23/4ps1/p
√
pe−1/2

∥∥AS
m

∥∥
2

max
k=1..M

√∥∥∥∥
BS∗

k BS
k

πk

∥∥∥∥
2

, (20)

where Am =
√
mÃm =




X1
...

Xm


.

In order to finish the proof, we have to decondition on X1, . . . ,Xm, to finally obtain an
upper bound on H. By applying expectation on both sides of (20) and then Cauchy-Schwarz’s
inequality, one can deduce that

H ≤
(

2

m

)p

23/4spp/2e−p/2E∥∥AS
m

∥∥p
2

max
k=1..M

√∥∥∥∥
BS∗

k BS
k

πk

∥∥∥∥
p

2




≤
(

2

m

)p

23/4spp/2e−p/2

√√√√E [‖AS
m‖2p2

]E[ max
k=1..M

∥∥∥∥
BS∗

k BS
k

πk

∥∥∥∥
2p/2

2

]
. (21)

We recall that

ρSk ≥
∥∥BS∗

k BS
k

∥∥
2
, ∀k ∈ {1, . . . ,M} . (22)
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Then, one can write

H ≤
(

2

m

)p

23/4spp/2e−p/2

√E [‖AS
m‖2p2

](
max

k=1..M

ρSk
πk

)2p/2

≤
(

2

m

)p

23/4spp/2e−p/2

√E [∥∥∥√mÃm
S
∥∥∥
2p

2

](
max

k=1..M

ρSk
πk

)2p/2

≤
(

2

m

)p

23/4spp/2e−p/2√mp
(

max
k=1..M

ρSk
πk

)2p/2
√E [∥∥∥Ãm

S
∥∥∥
2p

2

]

≤



2

√√√√√ max
k=1..M

ρSk
πk

m




p

23/4spp/2e−p/2

︸ ︷︷ ︸
Dp

√E [(∥∥∥∥(Ãm
S
)∗

Ãm
S − Ids

∥∥∥∥
2

+ 1

)p]

≤ Dp

((E [∥∥∥∥(Ãm
S
)∗

Ãm
S − Ids

∥∥∥∥
p

2

])1/p

+ 1

)p/2

,

which implies

⇒H1/p ≤ D
√
H1/p + 1 ⇒H2/p ≤ D2

(
H1/p + 1

)

⇒H2/p −H1/pD2 ≤ D2 ⇒
(
H1/p −1

2
D2

)2

− 1

4
D4 ≤ D2

⇒H1/p ≤
√
D2 +D4/4 +D2/2.

If D ≤ 1/2, this comes to

H1/p ≤
√

1 + 1/16D +
1

4
D = κD,

with κ =
√
17+1
4 . Hence, we can write to cover both cases : D ≤ 1/2 and D > 1/2, that

(Emin

(
(1/2)p,

∥∥∥∥
(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
p

2

))1/p

≤ min

(
1/2,

(E∥∥∥∥(Ãm
S
)∗

Ãm
S − Ids

∥∥∥∥
p

2

)1/p
)

≤ κD.

By Proposition A.9, we can control the tail of random variables by the mean of their moments.
Considering (21), we set

α = 2e−1/2κ

√
maxk=1..M

ρSk
πk

m
, β = 23/4s,

and
γ = 2, p0 = 2.

Then, Proposition A.9 with the previous values leads to, for all u ≥
√
2,Pmin

(
1/2,

∥∥∥∥
(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

)
≥ 2κ

√
maxk=1..M

ρSk
πk

m
u


 ≤ 23/4se−u2/2.

12



Then for 2κ

√

2
maxk=1..M

ρS
k

πk
m ≤ δ ≤ 1/2, we have thatP(∥∥∥∥(Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

≥ δ

)
≤ 23/4s exp


 mδ2

8κ2 maxk=1..M
ρSk
πk


 . (23)

The right hand side of (23) is less than ε if

m ≥ 8κ2

δ2
ln
(
23/4s/ε

)
max

k=1..M

ρSk
πk
. (24)

One can notice that (24) directly implies that 2κ

√

2
maxk=1..M

ρS
k

πk
m ≤ δ, if ε is relevant, i.e. ε < 1.

We can conclude that (23) is valid also for 0 < δ < 2κ

√

2
maxk=1..M

ρS
k

πk
m . �

To go forward in the proof of Theorem 3.2, an estimation of the coherence µ = µ
(
Ãm

)
is

still missing. To overcome it, we derive a corollary of Theorem 4.4.

Corollary 4.5. Let Ãm be the sampling matrix. Then the coherence µ = µ
(
Ãm

)
satisfies

µ ≤

√√√√√16κ2 max
k=1..M

‖B∗
kBk‖∞
πk

ln(23/4n2/ε)

m

with probability at least 1− ε provided the right hand side is at most 1/2.

Proof. Let (ãj)1≤j≤n be the set of columns of Ãm. Let S = (j, k) ⊂ {1, . . . , n} be of cardinality

2. Then the matrix
(
Ãm

S
)∗

Ãm
S − Ids contains 〈ãj, ãk〉 as a matrix entry off the diagonal. We

have

|〈ãj, ãk〉| ≤
∥∥∥∥
(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

.

By Theorem 4.4, the probability that the operator norm on the right is not bounded by t ∈
]0, 1/2] is at most

23/42 exp


− mt2

8κ2 max1≤k≤M
ρ2k
πk


 ,

where ρ2k = max S⊂{1..n}
Card(S)=2

∥∥BS∗
k BS

k

∥∥
2
≤ 2 ‖B∗

kBk‖∞, for all k ∈ {1, . . . ,M}. Taking the union

bound over all n(n− 1)/2 ≤ n2/2 two element sets S ⊂ {1..n} shows thatP(µ ≥ t) ≤ 23/4n2 exp


− mt2

8κ22max1≤k≤M
‖B∗

kBk‖∞
πk


 .

Requiring that the right hand side is at most ε leads to the desired solution. �

Now we can end the proof of Theorem 3.2. Set α =
√
st

1−δ , for some t, δ ∈ ]0, 1/2] to be chosen
later. By Propositions 4.1 and 4.3, the probability that the recovery by ℓ1-minimization fails is
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bounded from above by

23/4(n − s)e−α−2/2 + P( max
j∈{1..n} S

∥∥∥Ãm
S†
aℓ

∥∥∥
2
≥ α

)

≤ 23/4(n− s)e−α−2/2 + P(∥∥∥∥(Ãm
S
)∗

Ãm
S − Ids

∥∥∥∥
2

≥ δ

)
+ P (µ ≥ t) (25)

By bounding above the right hand side in (25) by 3ε, one can write




δ ∈ ]0, 1/2]
t ∈ ]0, 1/2]

α =
√
st

1−δ ≤ 1√
2P (µ ≥ t) ≤ εP (∥∥∥∥

(
Ãm

S
)∗

Ãm
S − Ids

∥∥∥∥
2

≥ δ

)
≤ ε

23/4 (n− s)e−α−2/2 ≤ ε

By Theorem 4.4, we get P(∥∥∥∥(Ãm
S
)∗

Ãm
S − Ids

∥∥∥∥
2

≥ δ

)
is less than ε provided that

m ≥ 1

δ2
ln

(
23/4s

ε

)
8κ2 max

1≤k≤M

ρSk
πk
, (26)

and Corollary 4.5 asserts that P(µ ≥ t) ≤ ε provided that

m ≥ 1

t2
ln

(
23/4n2

ε

)
16κ2 max

1≤k≤M

‖B∗
kBk‖∞
πk

.

We can bound from above the right hand side of Inequation (26), by

1

δ2
ln

(
23/4s

ε

)
8κ2s max

1≤k≤M

∥∥BS∗
k BS

k

∥∥
∞

πk

Therefore, the probability that the exact recovery by ℓ1-minimization fails is less than 3ε, if




δ ∈ ]0, 1/2]
t ∈ ]0, 1/2]

α =
√
st

1−δ ≤ 1√
2

m ≥ 1
t2 ln

(
23/4n2

ε

)
16κ2 max1≤k≤M

‖B∗
kBk‖∞
πk

m ≥ 1
δ2

ln
(
23/4s
ε

)
8κ2smax1≤k≤M

‖BS∗
k B

S
k ‖∞

πk

α−2 ≥ 2 ln
(
23/4(n−s)

ε

)
.

By choosing t = (1−δ)

√
s

√

2 ln

(

23/4(n−s)
ε

)

, the required number of measurements should satisfy





δ ∈ ]0, 1/2]

m ≥ 1
(1−δ)2

s ln
(
23/4(n−s)

ε

)
ln
(
23/4n2

ε

)
32κ2 max1≤k≤M

‖B∗
kBk‖∞
πk

m ≥ 1
δ2

ln
(
23/4s
ε

)
8κ2smax1≤k≤M

‖BS∗
k BS

k ‖∞
πk

.

Considering that

ln

(
23/4(n− s)

ε

)(
ln

(
23/4n

ε

)
+ ln(n)

)
≤ 2 ln2

(
23/4n

ε

)
,
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leads to 



δ ∈ ]0, 1/2]

m ≥ 1
(1−δ)2

s ln2
(
23/4n

ε

)
64κ2 max1≤k≤M

‖B∗
kBk‖∞
πk

m ≥ 1
δ2

ln
(
23/4s
ε

)
8κ2smax1≤k≤M

‖BS∗
k BS

k ‖∞
πk

.

By choosing δ = 1/5, the bounds become





m ≥ 200κ2s ln2
(
23/4n

ε

)
max1≤k≤M

‖B∗
kBk‖∞
πk

m ≥ 200κ2s ln
(
23/4s
ε

)
max1≤k≤M

‖BS∗
k BS

k ‖∞
πk

.

Therefore, if

m ≥ Cs ln2

(
23/4n

ε

)
max

1≤k≤M

‖B∗
kBk‖∞
πk

with C = 200κ2, the exact recovery by ℓ1-minimization fails with probability 1 − 3ε. We end
the proof of Theorem 3.2 replacing ε by ε/3.

The proof of Proposition 3.3 easily follows the result of Theorem 3.2.

4.2 Proofs of the results in 3.2

4.2.1 Acquisition in the 2D Fourier domain and sparsity in the 2D spatial domain

We consider blocks that consist of discrete lines in the 2D Fourier space as in Fig 1(b). We
assume that

√
n ∈ N and that A is the 2D Fourier matrix applicable on

√
n×√

n images. For
all p1 ∈ {1, . . . ,√n},

Bp1 =

[
1√
n
exp

(
2iπ

(
p1ℓ1 + p2ℓ2√

n

))]

(p1, p2)(ℓ1, ℓ2)
(27)

with 1 ≤ p2 ≤ √
n, 1 ≤ ℓ1, ℓ2 ≤ √

n. Let S ⊂ {1, . . . ,√n} × {1, . . . ,√n} denote the support of
x, with Card (S) = s. By definition of the 2D Fourier matrix of size n× n, ‖B∗

kBk‖∞ = 1/
√
n,

for all k ∈ {1, . . . ,√n}. Thus, Theorem 3.2 leads to

m ≥ Cs ln2

(
23/4n

ε

)
1√
n

max
1≤k≤M

1

πk
.

Therefore, the choice of an optimal drawing probability, regarding the number of measurements,
is given by

π∗k =
1√
n
, ∀k ∈

{
1, . . . ,

√
n
}

and the number of measurements can be written as follows

m ≥ Cs ln2

(
23/4n

ε

)
,

which ends the proof of Proposition 3.4.
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4.2.2 Acquisition in the 2D Fourier domain, sparsity in the 2D wavelet domain

Let F2D be the 2D Fourier matrix, let F be the 1D Fourier matrix, let Ψ be the inverse of the
Shannon wavelet decomposition matrix, and let Ψ2D be the inverse of the 2D Shannon wavelet
decomposition matrix. We have

F2D = F ⊗ F and Ψ2D = Ψ⊗Ψ

with ⊗ denoting the Kronecker product. We recall that
√
n = 2J , and that L denotes the

coarsest level of resolution. Therefore, we have that

A = F∗
2DΨ2D

= (F ⊗ F)∗ (Ψ⊗Ψ)

= (F∗ ⊗F∗) (Ψ⊗Ψ)

= (F∗Ψ)⊗ (F∗Ψ)

We define φ = F∗Ψ ∈ C√
n×√

n, note that φ∗φ = φφ∗ = Id√n. Thus, we can write

A =



φ1,1φ . . . φ1,

√
nφ

...
. . .

...
φ√n,1φ . . . φ√n,

√
nφ




Drawing horizontal lines in the 2D Fourier space corresponds to forming the blocks of measure-
ments

Bℓ =
(
φℓ,1φ . . . φℓ,

√
nφ
)
, ∀ℓ ∈

{
1, . . . ,

√
n
}
.

Note that Bℓ ∈ C√
n×n. We may also consider that φℓ,i can be renumbered using two indexes

i = (j, k) where (j, k) specifies the wavelet at scale j ∈ {L+ 1, . . . , J} or the scaling function at
scale j = L with location parameter k, i.e.

(φℓ,i)i=1..
√
n =

(
φℓ,(j,k)

)
j=L..J
k=1...nj

.

We recall that nj is defined as

nj =

{
2j−1 if j > L,
2L if j = L.

Now let us remark that
φℓ,(j,k) = ψ̂j,k(ℓ), ℓ ∈

{
1, . . . ,

√
n
}
,

is the ℓ-th Fourier coefficient of the Fourier transform of the wavelet ψj,k (with the conven-
tion that

(
ψ(L,k)

)
k=1..nL

denote the scaling functions). Since Shannon’s wavelets have compact

supports in the Fourier domain that are disjoint at different scales, one has that

supp ψ̂j,k =

{
[nj + 1 ; 2nj] if j ≥ L+ 1
[1 ; nL] if j = L.

For a given ℓ ∈ {1, . . . ,√n},

Card
(
{(j, k), ψ̂j,k(ℓ) 6= 0}

)
= njℓ

where jℓ is the unique scale verifying

ψ̂jℓ,k(ℓ) 6= 0.
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Furthermore, since φ is an orthogonal matrix, and thanks to the fact that

∣∣φℓ,(jℓ,k)
∣∣ = 1

√
njℓ

, k ∈ {1, . . . , njℓ} , and φℓ,(j,k) = 0 for j 6= jℓ,

it follows that

B∗
ℓBℓ =



φ∗ℓ,1φ

∗

...
φ∗
ℓ,
√
n
φ∗



(
φℓ,1φ . . . φℓ,

√
nφ
)
=



0 0 0
0 χjℓ 0
0 0 0




with

χjℓ =




∣∣φℓ,(jℓ,1)
∣∣2 Id√n φ∗ℓ,(jℓ,2)φℓ,(jℓ,1)Id

√
n . . . φ∗ℓ,(jℓ,1)φℓ,(jℓ,njℓ

)Id√n

φ∗ℓ,(jℓ,2)φℓ,(jℓ,1)Id
√
n

. . . φ∗ℓ,(jℓ,2)φℓ,(jℓ,njℓ
)Id√n

. . .

φ∗ℓ,(jℓ,njℓ
)φℓ,(jℓ,1)Id

√
n

∣∣∣φℓ,(jℓ,njℓ
)

∣∣∣
2
Id√n




which is a hermitian matrix of size njℓ
√
n× njℓ

√
n, satisfying ‖χjℓ‖∞ = 1

njℓ
. Then

‖B∗
ℓBℓ‖∞ = ‖χjℓ‖∞ =

1

njℓ
, ∀ℓ ∈

{
1, . . . ,

√
n
}
.

Therefore, by Theorem 3.2, we can deduce that the required number of blocks of measurements
should satisfy

m ≥ Cs ln2

(
23/43n

ε

)
max

1≤ℓ≤√
n

1

njℓπℓ
. (28)

Consequently, by Proposition 3.3, the optimal drawing probability Π∗ is given by

π∗ℓ =
1/njℓ√
n∑

ℓ′=1

1/njℓ′

=
1

njℓ (J − L+ 1)
, ∀ℓ ∈

{
1, . . . ,

√
n
}
.

Such a choice for the drawing probability distribution implies the following requirement on the
number m of blocks of measurements

m ≥ Cs ln2

(
23/43n

ε

)
(J − L+ 1),

which ends the proof of Proposition 3.5.

4.2.3 Acquisition in the dirac basis and sparsity in the 2D Haar domain

Let φ ∈ C√
n×√

n be the inverse 1D Haar wavelet decomposition matrix, and let A ∈ Cn×n be
the inverse 2D Haar wavelet decomposition matrix. We have

A = φ⊗ φ

with ⊗ denoting the Kronecker product. Note that φ∗φ = φφ∗ = Id√n. Thus

A =



φ1,1φ . . . φ1,

√
nφ

...
. . .

...
φ√n,1φ . . . φ√n,

√
nφ



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By drawing horizontal lines in the 2D Dirac space, we form the blocks ∀ℓ ∈ {1, . . . ,√n}
Bℓ =

(
φℓ,1φ . . . φℓ,

√
nφ
)

where Bℓ ∈ C√
n×n.

As in the previous section, we may also consider that φℓ,i can be renumbered using two
indexes i = (j, k) where (j, k) specifies the wavelet at scale j (or the scaling functions) and with
translation parameter k, such that

(φℓ,i)i=1..
√
n =

(
φℓ,(j,k)

)
j=L..J
k=1...nj

.

We recall that nj is defined as follows

nj =

{
2j−1 if j > L,
2L if j = L.

It should be remarked that

supp
(
φ:,(j,k)

)
=

[
(k − 1)

√
n

nj
+ 1 , k

√
n

nj

]
,

with φ:,(j,k) denoting the discrete wavelet at scale j (or the scaling functions for j = L), location
parameter k. By the orthogonality of φ and the fact that

∣∣φℓ,(j,k)
∣∣ =

√
nj

n1/4
if ℓ ∈ supp

(
φ:,(j,k)

)
, and 0 otherwise,

it follows

B∗
ℓBℓ =




|φℓ,1|2 Id√n φ∗ℓ,1φℓ,2Id
√
n . . . φ∗ℓ,1φℓ,

√
nId

√
n

φ∗ℓ,2φℓ,1Id
√
n

. . . φ∗ℓ,2φℓ,
√
nId

√
n

. . .

φ∗
ℓ,
√
n
φℓ,1Id√n

∣∣∣φℓ,√n

∣∣∣
2
Id√n




from which we can deduce that ‖B∗
ℓBℓ‖∞ = nJ√

n
= 2J−1

2J
= 1

2 for all ℓ ∈ {1, . . . ,√n}, Theorem
3.2 gives

m ≥ Cs ln2

(
23/43n

ε

)
1

2
max

1≤ℓ≤√
n

1

πℓ
. (29)

Therefore, by Proposition 3.3, the optimal drawing probability Π∗ is defined such that

π∗ℓ =
1√
n
=

1

2J
, ∀ℓ ∈

{
1, . . . ,

√
n
}
.

Such a choice for the drawing probability distribution implies the following requirement on the
number of blocks of measurements

m ≥ Cs ln2

(
23/43n

ε

)
2J−1,

which ends the proof of Proposition 3.6.
Since for all k ∈ {1, . . . , n}, ‖a∗

k‖
2
∞ = nJ√

n
= 1/2, Theorem 1.1 leads to the following number

of isolated measurements

q ≥ CRs ln
2

(
23/43n

ε

)
n∑

k=1

‖a∗
k‖2∞ ,

≥ CRs ln
2

(
23/43n

ε

)
22J−1,

which provides Inequality (15).

18



5 Extension to overlapping blocks

5.1 Statement

Theorem 3.2 only holds for non-overlapping blocks. Allowing blocks to overlap allows to design
sampling patterns with much more degrees of freedom and might be valuable in applications.
For instance the crossing paths in Figure 1 (c) could have an important practical interest in
MRI.

In this section we assume that blocks are defined ∀k ∈ {1, . . . ,M} by

Bk =
(
αk
i a

∗
i

)
i∈Ik

where (Ik)k=1,...,M is a cover of {1, . . . , n}. The coefficients αk
i ∈ C are weights such that αk

i = 0

if i /∈ Ik and αk
i 6= 0 if i ∈ Ik.

We randomly select m blocks among (Bj)1≤j≤M , according to the discrete probability distri-
bution Π = (π1, . . . , πM ). This leads to consider the sequence of i.i.d. random blocks (Xk)1≤k≤m

defined by

Xk =
1

√
πJk

BJk , k = 1 . . . m

where (Jk)k=1...m are i.i.d. random variables of probability distribution Π. We consider the
following random sampling matrix

Ãm =
1√
m



X1
...

Xm


 . (30)

The following condition
M∑

ℓ=1

∣∣∣αℓ
i

∣∣∣
2
= 1, ∀i ∈ {1, . . . , n} (31)

ensures that E [(XS
k

)∗
XS

k

]
= Ids, ∀k ∈ {1, . . . ,m} , (32)

which is the crucial assumption to write (19) and prove Theorem 3.2. Indeed,E [X∗
kXk] =

M∑

ℓ=1

B∗
ℓBℓ =

M∑

ℓ=1

∑

i∈Iℓ

∣∣∣αℓ
i

∣∣∣
2
aia

∗
i

=

n∑

i=1

M∑

ℓ=1

∣∣∣αℓ
i

∣∣∣
2
aia

∗
i = Idn.

For instance, condition (31) is verified if

αℓ
i =

1√
mi
, ∀i ∈ Iℓ, (33)

where mi = Card ({k, i ∈ Ik}) is the multiplicity of a∗
i , i.e. the number of occurrences of a∗

i in
different blocks. Under the above hypotheses we can derive the following theorem.

Theorem 5.1. Let S ⊂ {1 . . . n} be a set of cardinality Card (S) = s and let ǫ = (ǫℓ)ℓ∈S ∈ Cs

be a sequence of independent random variables that are uniformly distributed on {−1; 1} (or on
the torus {z ∈ C , |z| = 1}). Let x be an s-sparse vector with support S and sign(xS) = ǫ. Let

Ãm be the sampling matrix defined in (30) verifying Condition (31).
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Assume that

m ≥ Cs ln2

(
23/43n

ε

)
max

1≤k≤M

‖B∗
kBk‖∞
πk

, (34)

where C = 200κ2, and κ2 =
(√

17+1
4

)2
.

Then with probability at least 1−ε the vector x is the unique solution of the ℓ1-minimization
problem (4).

The proof of Theorem 5.1 is the same as that of Theorem 3.2. Indeed, Condition (31) implies
Condition (32), which allows to write the key step (19) and to unwind the proof.

5.2 Example: sampling by overlapping blocks in the 2D Fourier domain

Let us illustrate the overlapping setting, in the case of blocks that consist in rows and columns
in the 2D Fourier domain. Matrix A ∈ Cn×n is the 2D Fourier transform matrix. We set

Irowk =
{
i ∈ {1, . . . , n} , (k − 1)

√
n ≤ i ≤ k

√
n
}

Icolk =
{
k,
√
n+ k, . . . , (

√
n− 1)

√
n+ k

}

the sets of indexes of (a∗
i )i∈{1,...,n} that respectively correspond to the k-th row and the k-column

in the 2D Fourier plane. Then, we can write the blocks as follows:

Bk =





(
1√
2
a∗
i

)
i∈Irowk

if k ∈ {1, . . . ,√n}
(

1√
2
a∗
i

)
i∈Icol

k−√
n

if k ∈ {√n+ 1, . . . , 2
√
n} .

We have chosen the normalization factor equal to 1/
√
2, as suggested in (33), since each pixel

of the image belongs to two blocks: one row and one column. According to Theorem 5.1, we
conclude that the required number of blocks of measurements must satisfy

m ≥ Cs ln2

(
23/43n

ε

)
1

2
√
n

max
1≤k≤M

1

πk
. (35)

Choosing the uniform probability for Π∗, i.e. π∗k = 1
2
√
n
for all k ∈ {1, . . . , 2√n} leads to the

following number of blocks of measurements

m ≥ Cs ln2

(
23/43n

ε

)
, (36)

which is the same requirement in the 2D Fourier domain without overlapping, see Proposition
3.4.

6 Conclusion

We have introduced new sensing matrices that are constructed by randomly selecting pre-defined
blocks of measurements. Such matrices are amenable to implementation in many imaging sys-
tems. We have derived theorems that guarantee exact reconstruction using these matrices via
ℓ1-minimization algorithms and outlined the crucial role of one quantity: the block-coherence
introduced in Definition 3.1. Our theorems state that if this quantity is low, then CS can be
successfully applied. We have illustrated the wide applicability of this theory on time-frequency
bases. A typical result states that acquiring lines of the 2D Fourier domain drawn uniformly at
random requires no more than O

(
s ln2(n)

)
blocks of measurements for perfect reconstruction.

Similar results hold for Fourier-Wavelet or Dirac-Wavelet bases. These are probably the most
common sampling bases in imaging applications.
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A Technical background

In this appendix, we recall tools that are necessary to prove our results. We gather well-known
results in algebra and in probability theory. Furthermore, we prove the extension of some
probabilistic tools set up in the vector case to the matrix one.

A.1 Matrix tools

Definition A.1 (The Moore-Penrose pseudo-inverse). If M is a matrix of full rank (i.e. injec-
tive) then its Moore Penrose pseudo-inverse is

M † = (M∗M)−1
M∗.

Definition A.2 (Schatten p-norm). For a matrix M we let σ(M) = (σ1(M), . . . , σn(M)) be
its sequence of singular values. Then the Schatten p-norm is defined as

‖M‖Sp
:= ‖σ(M)‖p 1 ≤ p ≤ ∞.

We can show triangle inequalities for Schatten p-norm [Bha97].

Proposition A.3 (Nice inequalities on matrix norms). For any matrix M

(i)
‖M‖2 ≤ ‖M‖Sp

1 ≤ p ≤ ∞,

(ii)

‖M‖Sp
≤ rk [M ]1/p ‖M‖2 .

For any square symmetric matrix M ∈ Cn×n ,

(iii)
‖M‖2 ≤ ‖M‖1 ,

where ‖M‖1 = max1≤j≤n
∑n

i=1 |Mi,j|. Note that ‖M‖1 = max1≤i≤n
∑n

j=1 |Mi,j| when the
matrix is symmetric.

Proof. (i) Since a singular value is always positive, and the 2-norm corresponds to the largest
singular value, we obtain the first inequality by definition of ‖.‖Sp

.

(ii) Let σ(M) = (σ1(M), . . . , σn(M)) be the sequence of singular values of M , we know that
if r = rk [M ] then M has r non-zero singular values. We deduce that

‖M‖Sp
= (σ1(M)p + . . .+ σn(M)p)1/p ≤ rk [M ]1/p ‖M‖2 .

�

A.2 Probabilistic tools

Definition A.4 (Rademacher random variable). A Rademacher random variable is uniformly
distributed on {−1; 1}.

Definition A.5 (Steinhaus random variable). A Steinhaus random variable is uniformly dis-
tributed on the torus {z ∈ C; |z| = 1} .

Now, we focus on symmetrization, which allow to derive nice estimates on Rademacher
sums. Initial symmetrization Lemma can be found in [LT11], [DlPG99]. Here, we develop a
symmetrization lemma in the case of matrices.
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Lemma A.6 (Symmetrization ). Assume that ξ = (ξj)
m
j=1 is a sequence of independent random

matrices in Cs×s equiped with a norm ‖.‖ and having expectation Mj = E(ξj ).
Then for 1 ≤ p <∞,


E∥∥∥∥∥∥ m∑

j=1

(ξj −Mj)

∥∥∥∥∥∥

p




1/p

≤ 2


E∥∥∥∥∥∥ m∑

j=1

ǫjξj

∥∥∥∥∥∥

p


1/p

where ǫ = (ǫj)
m
j=1 is a Rademacher sequence.

Proof. Let ξ′ denote an independent copy of ξ. Since E [ξ′j] = Mj, an application of Jensen’s

inequality leads to E∥∥∥∥∥∥ m∑

j=1

(ξj −Mj)

∥∥∥∥∥∥

p
 = E∥∥∥∥∥∥ m∑

j=1

(
ξj − E [ξ′j])∥∥∥∥∥∥p ,

≤ E∥∥∥∥∥∥ m∑

j=1

(
ξj − ξ′j

)
∥∥∥∥∥∥

p
 . (37)

Note that
(
ξj − ξ′j

)m
j=1

is a vector of independent symmetric random variables. Hence, it has

the same distribution as
(
ǫj

(
ξj − ξ′j

))m
j=1

. By (37) and the triangle inequality, we can deduce

that


E∥∥∥∥∥∥ m∑

j=1

(ξj −Mj)

∥∥∥∥∥∥

p




1/p

≤


E∥∥∥∥∥∥ m∑

j=1

ǫj
(
ξj − ξ′j

)
∥∥∥∥∥∥

p


1/p

≤


E∥∥∥∥∥∥ m∑

j=1

ǫjξj

∥∥∥∥∥∥

p


1/p

+


E∥∥∥∥∥∥ m∑

j=1

ǫjξ
′
j

∥∥∥∥∥∥

p


1/p

≤ 2


E∥∥∥∥∥∥ m∑

j=1

ǫjξj

∥∥∥∥∥∥

p


1/p

.

�

The next statement is due to Buchholz [Buc01], and see [Tro08] to link the first result to our
context.

Lemma A.7 (Non-commutative Khintchine’s inequality for matrix valued Rademacher sums).
Let ǫ = (ǫ1, . . . , ǫm) be a Rademacher sequence and let Mj, j = 1 . . . m be complex matrices of
the same dimension. Choose n ∈ N, thenE ∥∥∥∥∥∥ m∑

j=1

ǫjMj

∥∥∥∥∥∥

2n

S2n




≤ 2n

2nn!
max




∥∥∥∥∥∥∥




m∑

j=1

MjM
∗
j




1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥




m∑

j=1

M∗
j Mj




1/2
∥∥∥∥∥∥∥

2n

S2n


 . (38)

The next statement is an extension of Rudelson’s lemma [Rud99] in the case of vectors. In
this paper, we extend it to the case of block-structure matrices.
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Lemma A.8 (Rudelson’s lemma). Let M be a matrix with a block structure, such that M =


M1
...

Mm


. Let ǫ = (ǫ1, . . . , ǫm) be a Rademacher sequence. Then for 2 ≤ p <∞,E (∥∥∥∥∥ m∑

k=1

ǫkM
∗
kMk

∥∥∥∥∥

p

2

)1/p

≤ 23/4pr1/p
√
pe−1/2 ‖M‖2 max

k=1..m

√∥∥M∗
kMk

∥∥
2
, (39)

with

r = rk



(

m∑

k=1

‖M∗
kMk‖2 (M∗

kMk)

)1/2

 .

Proof. We consider that p = 2q + 2θ, with q ∈ N∗ and θ ∈ [0, 1], and we apply Holder’s
inequality for θ ∈ [0, 1], then the majoration of the 2-norm by the Schatten p-norm for any
p ≥ 1, see Proposition A.3(ii). Therefore,E[∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

p

2

]
= E∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q+2θ

2




= E∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

(1−θ)2q

2

∥∥∥∥∥
m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

θ(2q+2)

2




≤


E∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q

2






1−θ
E∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q+2

2






θ

.

(40)

Using Khintchine’s inequality (38) in Lemma A.7 leads toE ∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q

2




≤ (2q)!

2qq!
max




∥∥∥∥∥∥

(
m∑

k=1

(M∗
kMk)

∗ (M∗
kMk)

)1/2
∥∥∥∥∥∥

2q

S2q

,

∥∥∥∥∥∥

(
m∑

k=1

(M∗
kMk) (M

∗
kMk)

∗
)1/2

∥∥∥∥∥∥

2q

S2q




≤ (2q)!

2qq!

∥∥∥∥∥∥

(
m∑

k=1

(M∗
kMk)

2

)1/2
∥∥∥∥∥∥

2q

S2q

, q ∈ N∗ . (41)

Let Wk be the matrix such that Wk = M∗
kMk.Matrix Wk is hermitian and then, diagonalisable

by a unitary matrix Uk into a real diagonal matrix Dk. Therefore,

(Wk)
2 = UkDkU

−1
k Wk

� Uk (‖Wk‖2 Id)U−1
k Wk

� ‖Wk‖2 Wk (42)

where � represents the partial order on the set of Hermitian matrices, by writing

A � B ⇐⇒ B −A is positive semidefinite.
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Step (42) can be rewritten as

(M∗
kMk)

2 � λmax (M
∗
kMk) (M

∗
kMk) .

Since ‖M∗
kMk‖2 (M∗

kMk) − (M∗
kMk)

2 is a semi-definite positive matrix, and (M∗
kMk)

2 and
λmax (M

∗
kMk) (M

∗
kMk) are two diagonalisable matrices into the same bases, we can assert

that for a given eigenvector, the associated (positive) eigenvalue of (M∗
kMk)

2 is inferior to the
associated (positive) eigenvalue of λmax (M

∗
kMk) (M

∗
kMk). Then, we can deduce that

∥∥∥(M∗
kMk)

2
∥∥∥
Sp

≤ ‖‖M∗
kMk‖2 (M∗

kMk)‖Sp
, ∀p ∈ [1,∞[ . (43)

Applying (43) to (41), we can writeE∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q

2


 ≤ 2q!

2qq!

∥∥∥∥∥∥

(
m∑

k=1

(M∗
kMk)

2

)1/2
∥∥∥∥∥∥

2q

S2q

≤ 2q!

2qq!

∥∥∥∥∥∥

(
m∑

k=1

‖M∗
kMk‖2 (M∗

kMk)

)1/2
∥∥∥∥∥∥

2q

S2q

, q ∈ N∗ .

By Proposition A.3(ii)), for a matrix M of rank rk [M ],

‖M‖Sp
≤ rk [M ]1/p ‖M‖2 , ∀p ∈ [1,∞[ .

Then, by defining

r = rk



(

m∑

k=1

‖M∗
kMk‖2 (M∗

kMk)

)1/2

 ,

it follows thatE ∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q

2




≤ (2q)!

2qq!
rk



(

m∑

k=1

‖M∗
kMk‖2 (M∗

kMk)

)1/2


∥∥∥∥∥∥

(
m∑

k=1

‖M∗
kMk‖2 (M∗

kMk)

)1/2
∥∥∥∥∥∥

2q

2

≤ (2q)!

2qq!
r

∥∥∥∥∥
m∑

k=1

M∗
kMk

∥∥∥∥∥

q

2

max
k=1..m

(√∥∥M∗
kMk

∥∥
2

)2q

≤ (2q)!

2qq!
r ‖M∗M‖q2 max

k=1..m

(√∥∥M∗
kMk

∥∥
2

)2q

≤ (2q)!

2qq!
r ‖M‖2q2 max

k=1..m

(√∥∥M∗
kMk

∥∥
2

)2q

. (44)

Therefore, combining (40) and (44) givesE[∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

p

2

]
≤


E∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q

2






1−θ
E∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

2q+2

2






θ

≤
(
(2q)!

2qq!

)1−θ ( (2q + 2)!

2q+1(q + 1)!

)θ

r1−θrθ ‖M‖2q(1−θ)
2 ‖M‖2(q+1)θ

2

max
k=1..m

(√∥∥M∗
kMk

∥∥
2

)2q(1−θ)

max
k=1..m

(√∥∥M∗
kMk

∥∥
2

)2(q+1)θ

≤
(
(2q)!

2qq!

)1−θ ( (2q + 2)!

2q+1(q + 1)!

)θ

r ‖M‖p2 max
k=1..m

√∥∥M∗
kMk

∥∥
2

p

,
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since p = 2q + 2θ. We recall Stirling’s formula

q! =
√

2πqqqe−qλq

with 1
12q+1 ≤ λq ≤ 1

12q , from which it can be deduced that

(2q)!

2qq!
≤

√
2

(
2

e

)q

qq.

Combining the two previous inequalities leads toE[∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

p

2

]
≤ 23/4

(
2

e

)q+θ

(q + θ)q+θ r ‖M‖p2 max
k=1..m

√∥∥M∗
kMk

∥∥
2

p

,

which implies

(E[∥∥∥∥∥ m∑

k=1

ǫk (M
∗
kMk)

∥∥∥∥∥

p

2

])1/p

≤ 23/4pr1/p
√
pe−1/2 ‖M‖2 max

k=1..m

√∥∥M∗
kMk

∥∥
2

since p = 2q + 2θ. �

Proposition A.9 (Subgaussian tail bound [LT11], [Tro08]). Let Z be a random variable such
that

E (|Z|p)1/p ≤ αβ1/pp1/γ ∀p ≥ p0

for some constants α, β, γ, p0 > 0, thenP(|Z| ≥ e1/γαu
)
≤ βe−

uγ

γ ∀u ≥ p
1/γ
0

Proof. By Markov’s inequality, and for some arbitrary K, we haveP(|Z| ≥ e1/γαu
)
≤ E (|Z|p)

(eKαu)
p ≤ β

(
αp1/γ

eKαu

)p

p = uγ and K = 1/γ gives the result. �
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