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A variational formulation for higher order macroscopic traffic

flow models: numerical investigation

G. Costeseque ∗∗†, J.P. Lebacque†

September 17, 2013

Abstract

This paper deals with numerical methods providing semi-analytic solutions to a wide
class of macroscopic traffic flow models for piecewise affine initial and boundary conditions.
In a very recent paper, a variational principle has been proved for models of the Generic
Second Order Modeling (GSOM) family, yielding an adequate framework for effective
numerical methods. Any model of the GSOM family can be recast into its Lagrangian
form as a Hamilton-Jacobi equation (HJ) for which the solution is interpreted as the
position of vehicles. This solution can be computed thanks to Lax-Hopf like formulas
and a generalization of the inf-morphism property. The efficiency of this computational
method is illustrated through a numerical example and finally a discussion about future
developments is provided.

Keywords: Traffic flow, Hamilton-Jacobi equation, Lax-Hopf algorithm, Lagrangian.

1 Introduction

1.1 General background

Macroscopic traffic flow modeling. In order to get a realistic estimation of the real-time
traffic states on networks, traffic operators and managers need macroscopic traffic flow mod-
els. These models must be simple, robust, allowing to get solutions at a low computational
cost. The main macroscopic models are based on conservation laws or hyperbolic systems
(see [30, 19] for a review). The seminal LWR model (for Lighthill-Whitham and Richards)
was proposed in [42, 51] as a single conservation law with unknown the vehicles density. This
model based on a first order Partial Differential Equation (PDE) is very simple and robust but
it fails to recapture some empirical features of traffic. In particular, it does not allow to take
into account non-equilibrium traffic states mainly in congested situation. More sophisticated
models referred to as higher order models were developed to encompass kinematic constraints
of real vehicles or also the wide variety of driver behaviors, even at the macroscopic level. In
this paper we deal with models of the Generic Second Order Modeling (GSOM) family. Even
if these models are more complicated to deal with, they permit to reproduce traffic instabilities
(such as the so-called stop-and-go waves, the hysteresis phenomenon or capacity drop) which
move at the traffic speed and differ from kinematic waves [53] (see also [36] and references
therein).
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Champs sur Marne, 77455 Marne la Vallée Cedex 2, France
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Traffic flow monitoring. Before the wide propagation of internet handsets, traffic monitor-
ing has mainly been built on dedicated infrastructure which imply quite important installation
and maintenance costs. Traffic flow monitoring and management has been deeply modified
with the development of new technologies in mobile sensing aiming to provide a quite im-
portant quantity of floating car data. Traffic flow models are needed to be well suited such
that managers could use both Eulerian and Lagrangian data for improving traffic state esti-
mation. The term Eulerian refers to “classical” fixed equipment giving records of occupancy
or flow of vehicles on a freeway section. This kind of measurements come from e.g. fixed in-
ductive loop detectors, Radio Frequency Identification (RFID) transponders, radars or video
cameras. By opposite, the term Lagrangian is used to characterize data coming from sen-
sors which move within the measured field of interest. Lagrangian data are provided by on
board mobile sensors such as Global Positioning Systems (GPS) or GPS-enabled smartphones.

Data assimilation. While the idea of monitoring traffic using mobile sensors appeared less
than ten years ago with the popularization of the mobile internet devices, there exists a fast
growing literature about how to integrate Lagrangian data into classical macroscopic traffic
flow models. The process of incorporating Eulerian and Lagrangian data into a mathematical
model to improve the modeling is called data estimation or equivalently inverse modeling.
According to the major UC Berkeley field experiment named Mobile Century and then Mobile
Millennium [54], it has been shown that even a 2% to 5% penetration rate of probe vehicles into
the driver population, Lagrangian sensing provides sufficient and accurate data for estimating
traffic velocity or density on highways [22, 23, 52]. Nevertheless, it has been demonstrated
in [49] that the quality of estimation for higher-order traffic quantities including vehicles
acceleration/deceleration, emission and fuel consumption rates is dramatically affected when
the penetration rate of probe vehicles or the sampling frequency of the current mobile sensors
decrease. However on board devices propose a real breakthrough in traffic monitoring by
providing a very cheap and efficient way to collect traffic data.

1.2 Motivation

In order to improve traffic states estimation from Lagrangian data, we propose to deal with
macroscopic traffic flow models of the GSOM family. As these models combine the simplicity
of the LWR model with the dynamics of driver specific attributes, we are able to recapture
more specific phenomenon with a higher accuracy. While methods of data assimilation have
been only developed for first order models up to now, this work presents a new algorithm
to reconstruct traffic states from both Eulerian and Lagrangian data. We take advantage of
a very recent article [34] in which a variational principle has been proved for models of the
GSOM family.

1.3 Organization of the paper

The rest of this paper is structured as follows. Section 2 presents more in detail the GSOM
models and sheds a specific light on the LWR model which is widely used in traffic engineering.
The variational principle for the GSOM models is briefly recalled in Section 3. Section 4 is
devoted to the presentation of the main elements of our computational method. Finally,
Section 5 proposes some numerical examples and a cross-comparison of our numerical method
and a more classical one based on finite differences.
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2 GSOM traffic flow models

2.1 Formulation of GSOM models

In [35, 36], the authors introduce a general class of macroscopic traffic flow models called the
Generic Second Order Models (GSOM) family. Any model of the GSOM family can be stated
in conservation form as follows











∂tρ+ ∂x(ρv) = 0 Conservation of vehicles,

∂t(ρI) + ∂x(ρvI) = ρϕ(I) Dynamics of the driver attribute I,

v = I(ρ, I) Fundamental diagram,

(2.1)

where ρ stands for the density of vehicles, v for the flow speed (equal to the mean spatial
velocity of vehicles), x and t for position and time. The variable I is a specific driver attribute
which can represent for example the driver aggressiveness, the driver destination or the vehicle
class. The flow-density fundamental diagram (FD) is defined by

F : (ρ, I) 7→ ρI(ρ, I).

Notice moreover that it was shown in [36] that the notions of Supply and Demand functions
defined in [30, 31] for the classical LWR model could be extended to the GSOM family. The
GSOM models admit two kinds of waves:

• Kinematic waves or 1-waves as in the seminal LWR model: a wave propagates density
variations at speed ν = ∂ρI(ρ, I) while the driver attribute I is continuous across such
a wave.

• Contact discontinuities or 2-waves: a wave propagates variations of driver attribute I at
speed ν = I(ρ, I) while the flow speed is constant across such a wave.

2.2 Examples

The GSOM family recovers a wide range of existing models:

• The LWR model [42, 51] itself is simply a GSOM model with no specific driver attribute,
expressed as follows

{

∂tρ+ ∂x(ρv) = 0 Conservation of vehicles,

v = I(ρ, x) Fundamental diagram.
(2.2)

The fundamental diagram (FD) for the LWR model states that traffic flow is always at
an equilibrium state. It is commonly assumed that the flow is an increasing function
of density between zero (corresponding to an empty section) and a critical density and
then the flow decreases until the maximal density (corresponding to a bumper to bumper
situation). However the FD shape is always a subject of debates and there exists a wide
variety in the literature encompassing concave and triangular flow functions (see Figure 1
and also Chapter 3 of [19] for additional examples).

• The LWR model with bounded acceleration proposed in [32, 33, 39] is also a GSOM
model in which the propagated driver attribute is simply the speed of vehicles.

• The ARZ model (standing for Aw, Rascle [1] and Zhang [53]) for which the driver
attribute is taken as I = v − Ve(ρ) that is I(ρ, I) = I + Ve(ρ).

• Multi-commodity models (multi-class, multi-lanes) of Jin and Zhang [26], Bagnerini and
Rascle [4] or Herty, Kirchner, Moutari and Rascle [24]. It encompasses also the model
of Klar, Greenberg and Rascle [27].
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Figure 1: Illustrations of some flow functions F for the LWR model: Greenshields (left),
triangular (center) and exponential (right).

• The Colombo 1-phase model deduced in [36] from the 2-phase model of Colombo [9]. In
this case, the driver attribute I is a scalar which is non-trivial in congested situation. In
fluid area, the model follows the classical LWR model.

• The stochastic GSOM model of Khoshyaran and Lebacque [28]. The driver attribute I
is a random variable depending on the vehicle index N and on the random event ω such
that I = I(N, t, ω). The random perturbations do not affect the vehicle dynamics but
affect the driver perception and its behaviour.

The interested reader is referred to [34] and references therein for more details on examples.

3 Variational principles in traffic flow modeling

In traffic flow literature, the variational formulation was first conjectured by Newell in [47] for
the LWR first-order traffic flow model. It was then properly established and generalized by
Daganzo in [13, 14, 15, 16]. In this section, we first present the three dimensional representation
of traffic flow or the so-called Moskowitz function [46, 44] and the Hamilton-Jacobi formulation
of the LWR model (see also [29] and references therein). The numerical methods for this scalar
case are then described. Finally we introduce the variational formulation of the GSOM family
lead by the ideas developed for the LWR model.

3.1 Variational formulation of the LWR model

If one assumes that traffic flow on a section could be represented by a continuum of vehicles,
we can define the cumulative vehicles count (CVC) by interpolating the count of each passing
vehicle at a location as a continuous function of space and time N(x, t) which can be repre-
sented as a surface in space t−x−n often referred to as the Moskowitz surface. The function
N(x, t) allows to compute useful traffic variables such as

• the individual trajectory of vehicle nj by projection on the Eulerian plane t− x.

• the traffic flow f := ∂tN at a location xi or the travel time between two locations xi and
xi+1 by projection on the Lagrangian plane t− n.

• the vehicles density ρ = −∂xN at time ti or the traveled distance by a vehicle between
times ti and ti+1 by projection on the plane x− n.

If the density ρ solves the LWR model (2.2) then it is well known that the function N solves
the following Hamilton-Jacobi equation

∂tN − F(−∂xN) = 0. (3.3)
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Under suitable assumptions, the (viscosity) solution to the HJ equation (3.3) could be deter-
mined thanks to a variational formulation, known as Lax-Hopf formula in the mathematics
literature [18]. There exist different methods to obtain the variational formulation of this
problem, including calculus of variations and viability theory.
Let us study the variations of the function N from the initial trajectory data J which syn-
thesizes the initial conditions and the boundaries conditions in the case of a finite section.

3.1.1 Eulerian setting

Consider the Eulerian frame with t− x fixed. A fictitious observer referenced by its position
X(t) moving in the traffic flow at a given speed Ẋ(t) is overtaken by a number of vehicles
given by

M(Ẋ(t)) = sup
ρ

[

F(ρ(t,X(t))) − ρ(t,X(t))Ẋ(t)
]

,

with F the flow, linked to the density ρ by the fundamental diagram. The evolution of the
flow through a trajectory X(t) is then described by the functionM(Ẋ). This function refers
to the relative capacity in traffic and it matches the Lagrangian of the system. Thus knowing
the function N at a point A of J , it is possible to compute the value of N at a point B by
estimatingM along the path PAB followed by the observer from A to B

∆NAB =

∫

PAB

{

F(ρ(t,X(t))) − ρ(t,X(t))Ẋ(t)
}

dt.

As the differential of N(t, x) is a total and exact differential, it does not depend on the
followed path. However ∆NAB depends on the density and the flow of the chosen path
which are unknown. The solution N between A and B is computed by the following dynamic
programming equation which states that the variation of N comply to the Maupertuis minimal
action principle

N(T, xT ) = min
Ẋ(.),(t0,x0)

∫ T

t0

M(Ẋ(τ))dτ +N(t0, x0),

∣

∣

∣

∣

∣

∣

X(.) ∈ U
X(t0) = x0, X(T ) = xT
(t0, x0) ∈ J

(3.4)

where U denotes the set of admissible paths (smooth enough) connecting the initial locus J
to the “target” final point (T, xT ).
The conditions for the problem (3.4) to solve (3.3) are the following ones [13, 14]:

• The flow-density fundamental diagram F(ρ) is concave with respect to ρ such that the
Hamiltonian defined as H(t,X, ρ) :=M(Ẋ)+ ρẊ = F(ρ(t,X(t))) is itself concave w.r.t.
its argument ρ.

• The optimal path maximizes the relative capacity. On the optimal trajectory X∗, we
define the maximal relative capacity (or the maximal overflow according to Daganzo)
defines the path cost and matches the Legendre transform of F

M =M(Ẋ∗) = sup
ρ

[

F(ρ)− ρẊ∗
]

.

• As solutions of (3.4) must solve the LWR model (2.2), the admissible speeds need to
comply to Ẋ = ∂ρF and be equal to the speed of kinematic waves for which the (constant)
density solves the LWR model (2.2).

• The optimal trajectory leading to the value N at every point (t, x) is a straight line
coming from the initial and boundaries conditions J .

5



• The solutions agree the boundaries conditions J .

In the particular case of a triangular flow-density fundamental diagram, there are only two
kinds of waves that can reach the target point: either shock wave moving forward from point
xu at speed u or rarefaction wave moving backward from position xw at speed w (see Figure
2). Then we can recover that the solution is given by

N(t, x) = min

[

N

(

t−
x− xu

u
, xu

)

, N

(

t−
x− xw

w
, xw

)

+ ρmax(xw − x)

]

, (3.5)

where u and w are respectively the free flow speed and the congested speed. This formulation
was stated by Newell [47] and properly proved by Daganzo [13, 14].

F low,F

w

u

0 ρmax

Density, ρ

u

x

w

t

T ime

Space

(t, x)

Figure 2: Optimal paths candidates with a triangular flow function F for LWR model.

3.1.2 Lagrangian setting

Consider the Lagrangian framework with t − n fixed (see also [40] for a presentation of La-
grangian setting in traffic flow). The function X(t, n) represents the trajectory of vehicle n
when it is an integer. The initial and boundary conditions J are given respectively by the
trajectory of the first vehicle, by the times when the other vehicles enter the section and by the
initial positions of vehicles. Let us define the spacing r := 1/ρ and we set the speed-spacing
fundamental diagram V as follows

V : r 7→ I (1/r) .

As in the Eulerian setting, it is well known that the function X(t, n) solves the following
Hamilton-Jacobi equation

∂tX − V(−∂nX) = 0. (3.6)

Notice that from a mathematical point of view it was rigorously established in [20] that the
viscosity solutions of (3.3) and (3.6) are strictly equivalent.

The study of the evolution of X between points A and B in the plane t− n is identical to the
previous one in the Eulerian setting. We define the Lagrangian such that

M(Ṅ (t)) = sup
r

[

V(r(t,N(t))) − r(t,N(t))Ṅ (t)
]

.

The functional expression of the associate problem is given by (3.7) which is the dual formu-
lation of (3.4)

X(T, nT ) = min
Ṅ(.),(t0,n0)

∫ T

t0

M(Ṅ(τ))dτ +X(t0, n0),

∣

∣

∣

∣

∣

∣

N(.) ∈ N
N(t0) = n0, N(T ) = nT

(t0, n0) ∈ J

(3.7)
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where N denotes the set of admissible paths (smooth enough) connecting the initial locus J
to the “target” final point (T, nT ).
The conditions for the problem (3.7) to solve (3.6) are similar to the ones for the Eulerian
case. We then can consider a restricted number of possible paths in t−n. Especially, we have
that

• The fist condition giving that Hamiltonian is maximal conduces to set M(Ṅ) as the
Legendre transform of V (the speed-spacing FD) which is concave w.r.t. r.

• The Hamilton-Jacobi equation is satisfied along the optimal trajectory N∗(t) and

Ṅ = ∂rV and ṙ = −∂nV. (3.8)

• The optimal paths are straight lines which slopes are ∂rV and they satisfy the boundary
conditions J .

In the particular case of the piecewise affine speed-spacing fundamental diagram (see Figure 3)
corresponding to the triangular flow-density fundamental diagram, the formula (3.7) becomes

X(t, n) = min [X(t0, n) + u(t− t0), X(t0, n+ wρmax(t− t0)) + w(t− t0)] . (3.9)

We recover the microscopic follow-the-leader model of Newell [48], expressed in Lagrangian
coordinates. This model states that the trajectory of a vehicle is given by the minimum
between the vehicle trajectory at the free speed u (under-critical situation) and a translation
of the leader vehicle (over-critical situation).

1/ρcrit

Speed,V

u

−wρmax

Spacing, r

1/ρmax

−wρmax

n

t

(t, n)

T ime

Label

Figure 3: Optimal paths candidates with a triangular flow function V for LWR model.

3.2 Computational aspects for the LWR model

The LWR model is built on a first order scalar conservation law for which there generally
does not exists a unique and explicit solution for infinite time horizon due to discontinuities
as shock waves for example. However the physical meaningful solution known as the entropy
solution can be computed by numerical non-variational methods that encompass:

• finite volume schemes such as the Godunov scheme which was translated into traffic in
[12, 30, 31]. These schemes need a computational grid and except for very specific cases,
they are non-exact.

• the wave tracking method [21, 25] which simplifies the calculations by only following the
meaningful kinematic waves that is shocks or rarefaction waves. However this method
is event-based since it needs to evaluate each time when two kinematic waves meet
and in practice it is restricted to piecewise linear flow-density fundamental diagrams
(and piecewise initial and boundary conditions) for dealing with a finite number of wave
speeds.
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3.2.1 Motivation of Lax-Hopf algorithms

The variational formulation of the LWR model has found many interesting applications since
it was discovered. Among others, it allows to improve modeling flexibility e.g. taking into ac-
count moving bottlenecks [14, 15] and it provides accurate algorithms for numerical treatment
and data assimilation [7, 8, 20, 45].
Up to our best knowledge, existing numerical procedures relying on variational formulation
of the LWR model use the seminal paper of Claudel and Bayen [6] which proposes a semi-
explicit form of the solution to Hamilton-Jacobi equations using control techniques based on
viability theory [2, 3]. They define the proper lower semi-continuous solution (in the Barron-
Jensen / Frankowska sense) to the Hamilton-Jacobi equation (3.3) with concave flow-density
fundamental diagrams. Moreover this solution satisfies an initial condition, upstream and
downstream boundary conditions (Eulerian data) and additional internal boundary conditions
to take into account Lagrangian data.
For this aim, Claudel and Bayen [6] use a generalized Lax-Hopf formula (which allows to easily
prove the well-posedness of the problem with internal boundary data) and the inf-morphism
property [2, 3] to compute the solution by taking the infimum of all solutions associated with
simpler sub-problems. It follows computational methods [7] that are commonly referenced as
“grid free” schemes in the sense that they do not need a two-dimensional discretization of the
domain as opposed to classical finite difference schemes. Indeed Lax-Hopf algorithm allows to
avoid the use of a computational grid (whatever its shape). The inf-morphism property goes
back to sup-morphism property obtained in [2, 3] from the viability theory. It allows to divide
the general problem involving multiple value conditions into several independent and simpler
problems involving a single value condition. Numerically, the inf-morphism property permits
a low computational cost thanks to the increasing power of parallel computing.
Unlike dynamic programming methods [13], Lax-Hopf algorithms have been proved to be exact
in general cases of concave flow-density fundamental diagrams (or convex Hamiltonians) [6].

3.2.2 Eulerian setting

Thanks to the Lax-Hopf algorithm [6] which is not event-based and does not use a grid
of the space-time domain, the authors in [7, 45] solve the LWR model restated under its
Hamilton-Jacobi formulation. They can deal with any concave fundamental diagram (essential
to properly define the convex transform) and any piecewise constant initial and boundary
conditions in terms of density, that is equivalent to consider any piecewise affine (PWA)
initial and boundary conditions for the Moskowitz function. Eventually Lagrangian data
could be assimilated as internal boundary conditions. Notice that the flow-density function
(and its convex transform) could be non-differentiable at a finite number of points. That will
only modify the value of the computed solution at these points where the exact solution is
discontinuous anyway and it is not defined.
The method is exact and allows to compute exactly the derivative of the (unique viscosity)
solution of the HJ equation which matches the (unique entropy) solution of the LWR model.
Some elements of comparison are given in [45] between dynamic programming, Lax-Hopf al-
gorithm and more classical methods such as Godunov scheme and wave tracking algorithm.
Globally, Lax-Hopf algorithm seems to provide the best method compared to the others be-
cause it gives the exact solutions at a weaker computation cost than the other methods.

3.2.3 Lagrangian setting

The proposed algorithm in [45] has been extended to the Lagrangian counterpart of the prob-
lem in [20]. This paper underlines that Lagrangian coordinates have the advantage of providing
information associated with a given vehicle. Moreover it is worth noticing that in the Eule-
rian setting, one need to take into account forward and backward fans for determining the
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domain of influence of any value condition. In the Lagrangian setting, one needs to look after
the forward fan, since the wave propagation speeds are necessarily non negative. Indeed the
speed-spacing fundamental diagram is monotonically increasing. This implies that any value
condition can only influence the solution X for larger labels N . From a traffic point of view, it
means that the perturbation generated by a vehicle can only affect vehicles that come behind.
As the problem in Lagrangian coordinates involves a similar Hamilton-Jacobi equation to
the one in Eulerian coordinates, the authors in [20] provide semi-analytical solutions for a
triangular flow-density FD and for piecewise affine initial and boundary conditions. The
upstream and downstream boundary conditions refer to the trajectories of the first and last
vehicles which are within the scope. Internal conditions such as Eulerian data from fixed
sensors can also be taken into consideration. The comparison between the numerical results
and the real observations carried out from the Mobile Century field experiment [54] shows the
accuracy of the algorithm.

3.3 Variational formulation of the GSOM family

The ability of the LWR model to reproduce certain complicated macroscopic traffic phenomena
such that capacity drop or stop-and-go waves is known to be weak. For this reason we have
focused on developing variational methods for GSOM models. Guided by the ideas developed
for the LWR model, variational formulations have been recently developed and proved for
models of the GSOM family in both Eulerian [41] and Lagrangian frameworks [34].

3.3.1 Eulerian setting

In [41], the authors prove the existence of a variational formulation of a class of models from the
GSOM family. Unlike the paper of Lebacque and Khoshyaran [34] which will be discussed just
after, these models are expressed from the Eulerian viewpoint as a system of two conservation
laws (the first one for the conservation of vehicles and the second one for the behavioral motion
of traffic flow around an equilibrium state)

{

∂tρ+ ∂xf(ρ, s) = 0 Conservation of vehicles,

∂ts+ ∂xg(ρ, s) = 0 Dynamics around the equilibrium.
(3.10)

The first conservation law is obviously satisfied by the vehicles density ρ and the corresponding
flux f is the product of density times speed f(ρ, v) = ρv. The second conservation law is
satisfied by a variable s (a non-equilibrium measure) which can be replaced by s = ρI yielding
to the GSOM family without source terms. The corresponding flux g needs to comply some
specific conditions to ensure that the wave speed is less or equal to traffic speed. The authors
assume that f is concave with respect to ρ for any s and g is convex in s for any ρ.
The paper [41] particularly deals with the generic formulation of GSOM models without the
source term that is ϕ(I) = 0. This is equivalent to say that the driver attribute I is invariant
along vehicles trajectories which seems to be corroborated for instance by the work of Duret
et al. [17] on the NGSIM I-80 trajectories data-set (in congested situation). For the models
(3.10), the authors show in [41] a variational formulation based on Lax-Hopf like formulas
(i.e. the value function at a point is equal to the minimum of the sum of the initial value and
a trajectory cost over every possible paths from initial and boundary data reaching the final
point) for both Nρ and Ns defined as the cumulative quantity of respectively ρ and s.
When taking into account a non trivial relaxation term (ϕ(I) 6= 0), the authors assume that
the problem reduces to solving a LWR model in large time because the relaxation term induces
an exponential decay in time of the difference between (3.10) and a regular LWR model.
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3.3.2 Lagrangian setting

In [34], the authors prove the existence of a variational principle for the GSOM models family.
In a first step, the article gives the Hamilton-Jacobi formulation of GSOM models. Consider
one GSOM model described by (3.10) and let us express it under its Lagrangian form with r
the spacing and N the vehicle label











∂tr + ∂Nv = 0 Conservation of vehicles,

∂tI = ϕ(N, I, t) Dynamics of the driver attribute I,

v = V(r, I) = I(1/r, I) Fundamental diagram.

(3.11)

Considering the position X (N, t) =

∫ t

−∞

v(N, τ)dτ , we obviously have that

v = ∂tX and r = −∂NX . (3.12)

Hence the system (3.11) could be written as a Hamilton-Jacobi equation satisfied by X :

∂tX −W(N,−∂NX , t) = 0, (3.13)

whereW denotes the speed-spacing fundamental diagram of vehicle N at time t. It is defined
such that

W(N, r, t) := V(r, I(N, t)) = I(1/r, I(N, t)),

where the driver attribute I(N, t) solves the following nonlinear first order ODE
∣

∣

∣

∣

∣

∂tI(N, t) = ϕ(N, I, t),

I(N, 0) = i0(N), for any N.

By classical results on optimal control problems i.e. dynamic programming on Hamilton-
Jacobi-Bellman equations, we can check that:

X (NT , T ) = min
u,(N0,t0)

∫ T

t0

M(N,u, t)dt + ξ(N0, t0),

∣

∣

∣

∣

∣

∣

Ṅ = u
N(t0) = N0, N(T ) = NT

(N0, t0) ∈ J

(3.14)

whereM is the Legendre-Fenchel transform of W according to its second variable (see Figure
4 for an illustration of the Legendre-Fenchel transform), defined such that

M(N,u, t) = sup
r∈R

{W(N, r, t) − ur}. (3.15)

Notice that the variational formulation of GSOM models (3.14) is only available if and only
if r 7→ W(N, r, t) is concave such that the Legendre-Fenchel transform of M gives back the
function W.
In the previous formulation (3.14), J is the locus of initial and boundary conditions and
ξ(N0, t0) is the initial data of the position of vehicle N0 at time t0 for all (N0, t0) ∈ J .
The advantage of the variational formulation (3.14) is that it expresses the position of the
vehicle indexed N at time T as an optimal control problem which only depends on the initial
position at time t0. To find the optimal trajectories of such a problem, it suffices to use the
minimum principle of Pontryagin. Moreover, notice that the optimal trajectories are given by
the characteristics (Eulerian and Lagrangian characteristics are equal). We have:

{

Ṅ = ∂rW(N, r, t),

ṙ = −∂NW(N, r, t),
(3.16)
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Figure 4: Legendre transformM of function W.

where u = Ṅ is the command of the optimal control problem (3.14). The system (3.16) is a
simple system of ODEs in the (N, r) plane.

Notice that in what follows, we will restrict ourselves to the variational formulation of GSOM
models in Lagrangian setting. Indeed as the driver attribute I is propagated at the traffic
speed, the Lagrangian point of view seems the most well-suited framework to deal with the
specific dynamics of I. Moreover it is easier to deal with trajectories data given by mobile
sensing devices.

3.4 Review of computational methods for GSOM models

There already exists some works on computational methods for models of the GSOM family
[41, 50]. However these existing methods are developed in the Eulerian framework which does
not seem to be the best one to deal with Lagrangian data. Moreover the paper [50] deals
with the LWR model with bounded acceleration which is a very specific GSOM model. The
algorithm is very similar to the ones developed in [7, 45] but it is not applicable to general
models of the GSOM family.
In [41] the authors underline that the variational formulation has the advantage of developing
efficient numerical schemes that provide solutions for problems which incorporate moving
elements in traffic flow models such as moving bottlenecks or probe vehicles. This remark
shows also the interest of the Lagrangian setting (compared to the Eulerian viewpoint) which
moves within the traffic stream. However their numerical scheme is based on a discretization
of Eulerian time and space domain. The idea of the scheme (close to dynamic programming)
is then to update the cumulative quantities

Nρ :=

∫ +∞

x

ρ(y, t)dy and Ns :=

∫ +∞

x

s(y, t)dy,

on the vertexes of a mesh (whatever its shape if this mesh is dense enough) following the
optimal paths in an iterative way because of the coupling of the equations to solve. The
values of ρ (resp. s) are deduced from a first order approximation of the derivative of Nρ

(resp. Ns). Notice that this computational method is exact only for special cases.
Up to our best knowledge, there is no existing work on computational methods for models of
the GSOM family in the Lagrangian framework.

4 Computational aspects

We are now interested in numerical methods to efficiently recover the solution of the Hamilton-
Jacobi problem (3.13). The computation of numerical solutions of the HJ equation has already
attracted an important interest in the mathematical community. The majority of numerical
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schemes which were proposed to solve HJ equations are based on finite difference methods,
Semi-Lagrangian schemes and discontinuous Galerkin methods (the interested reader is re-
ferred to [7, 11] and references therein).

4.1 A finite difference scheme

We first describe a numerical scheme based on particle and time discretization which was
originally presented in [34]. It introduces a uniform grid of the t − n domain based on fixed
time and label steps ∆t and ∆n. We define for any n, t ≥ 0

X t
n := X (n∆n, tδt).

As usual with finite difference scheme, we need to introduce a Courant-Friedrichs-Lewy (CFL)
condition to ensure the scheme to be monotone and convergent

∆n

∆t
≥ max

r,N,t
W (N, r, t) .

Then we consider the classical first order finite difference scheme as follows

X t+1
n = X t

n +∆t W

(

n∆n,
X t
n+1 − X

t
n

∆n
, t∆t

)

. (4.17)

By construction the above scheme can be interpreted as the seminal Godunov (finite volume)
scheme (4.18) for the Lagrangian formulation of the GSOM model (see [11])

rt+1
n = rtn +

∆t

∆n

[

Wt
n −W

t
n+1

]

, (4.18)

where we have defined the discrete spacing and respectively the numerical speed as follows















rtn :=
X t
n+1 − X

t
n

∆n
,

Wt
n :=W

(

n∆n, rtn, t∆t
)

.

The upstream and downstream boundary conditions for the finite difference scheme (4.17) are
fully described in [34]. They match the Bardos-LeRoux-Nedelec or Dubois-LeFloch boundary
conditions and it was already shown that such conditions are equivalent to prescribe supply
and demand conditions (see [34] and references therein).

The method of finite differences does not enjoy the semi-analytical expression of the solution of
the HJ equation (3.13) thanks to Lax-Hopf formula (4.19). We then provide a semi-analytical
algorithm to compute the solution based on that representation formula.

4.2 A “grid free” scheme

The idea to compute the solution of the Eulerian GSOM model (3.10) is to recast it in its
Lagrangian form (3.11). As it was shown in the previous section, the position X of vehicle
N at time t solves the Hamilton-Jacobi equation (3.13). As explained in [34], the Initial and
Boundary Value Problem (3.13) admits a quite simple representation formula (3.14), very
similar to the Hopf-Lax formula presented for the LWR model.
The Hopf-Lax formula (3.14) can be simplified because as it is well-known in optimal control
theory, the optimal trajectories for which the minimum is attained are the characteristics
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(3.16). Hence we have to solve the following system of coupled ODEs (3.16). Then the
generalized Hopf-Lax formulation (3.14) can be recast as follows

X (NT , T ) = min
(N0,r0,t0)

∫ T

t0

M(N, ∂rW(N, r, t), t)dt + ξ(N0, t0),

∣

∣

∣

∣

∣

∣

∣

∣

Ṅ(t) = ∂rW(N, r, t)
ṙ(t) = −∂NW(N, r, t)
N(t0) = N0, r(t0) = r0, N(T ) = NT

(N0, r0, t0) ∈ K

(4.19)

where K is the set of initial/boundary values obtained by combining the initial values of J
with the initial/boundary value r0 deduced from the initial values ξ(N0, t0).
According to the principle of inf-morphism property [2, 3, 6, 7], if the initial/boundary condi-
tion data ξ are located on a union (non necessarily disjoint) of sets

K =
⋃

l

Kl,

it suffices to solve partial problems on each set Kl and to compute the minimum of the solutions
of these sub-problems

X (NT , T ) = min
l
Xl(NT , T ), (4.20)

with

Xl(NT , T ) := min
(N0,r0,t0)

∫ T

t0

M(N, ∂rW(N, r, t), t)dt + ξ(N0, t0).

∣

∣

∣

∣

∣

∣

∣

∣

Ṅl(t) = ∂rW(Nl, rl, t)
ṙl(t) = −∂NW(Nl, rl, t)
Nl(t0) = N0, rl(t0) = r0, Nl(T ) = NT

(N0, r0, t0) ∈ Kl

(4.21)

In the remaining of this article, we will apply the inf-morphism property by considering initial
and boundary conditions which are piecewise affine (PWA). Thus we will calculate the solution
generated by each piece using (4.21) and then apply (4.20) in order to obtain the solution of
(3.14).

4.3 Algorithm for piecewise affine value conditions

Hereafter, we study separately the different elements which contribute to the value of the
solution of (3.13) in its Lagrangian setting. We distinguish

• the initial condition at time t = t0,

• the “upstream” boundary condition that is the trajectory of the first vehicle N = N0

traveling on the section,

• and internal boundary conditions given by cumulative vehicles counts at fixed location
X = x0.

While the Lax-Hopf algorithm can handle infinite horizon problems either in the Eulerian or
in the Lagrangian framework, we restrict ourselves to finite values for a convenient numerical
implementation. We then assume that N ∈ [N0, Nmax] with Nmax < +∞ and similarly
t ∈ [t0, tmax] with tmax < +∞. This restriction to a finite horizon implies to not consider the
whole domain of influence generated by the initial and boundaries conditions.
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4.3.1 Initial conditions

In this case, at t = t0, the positions ξ(n, t0) of vehicles n are given. We have that

r0(N) = −∂Nξ(N, t0), for any N.

The initial conditions for the characteristics are the couples (N, r0(N)).
First, we need to discretize the set of vehicles labels into intervals [np, np+1] of length ∆n, for
p = 1, ..., P , in such a way that the dynamics ϕ of the driver attribute I can be approximated
by ϕp in the interval [np, np+1]

ϕ(N, I, t) = ϕp(I, t), for any N ∈ [np, np+1].

If the discrete step ∆n is small enough, we could also assume that for any N ∈ [np, np+1] the
initial data are piecewise constant

{

I(N, t0) = I0,p,

r(N, t0) = r0,p.

We will now first define properly the initial condition and then we calculate the solution
generated by the pth component (p = 1, ..., P ).

Definition 4.1 (PWA initial condition)
Let t0 ≥ 0 be fixed. Then the pth component of the initial condition (p = 1, ..., P ) is given by

X ini(N, t0) = r0,pN + αp, for any N ∈ [np, np+1].

To ensure continuity of the initial data X ini on [N0, Nmax], we require that

αp = −r0,pnp +

p−1
∑

l=1

r0,l(nl+1 − nl), for any p = 1, ..., P.

To considerably simplify the presentation, we will restrict ourselves to the case of systems with
no relaxation that is the dynamics ϕp of driver attributes is trivial on any interval [np, np+1]
with p = 1, ..., P . In a first step, we want to compute the characteristics generated by the
initial conditions (I(N, t0) = i0,p and r(N, t0) = r0,p given on the interval [np, np+1] at time
t0). In the general case, we would have

I(N, t) = ip(t) for any N ∈ [np, np+1].

In the following, we consider a characteristic denoted by N(t) for t ∈ [t0, tmax] and we distin-
guish two cases according to the location of this characteristic.
On the interval N ∈]np,np+1[.
Consider Ωp := {t | N(t) ∈]np, np+1[} for any p = 1, ..., P . We then have to solve the following
nonlinear first order ODE

{

İp(t) = ϕp(Ip(t)), for t ∈ Ωp,

Ip(t0) = I0,p.

If we assume that the dynamics is null, then it obviously follows that İp = 0 which leads to

Ip(t) = I0,p for any t ∈ Ωp.

In traffic modeling, this choice is relevant if the driver attribute I represents for example some
origin-destination (OD) information or if it characterizes vehicles kind. The driver attribute
is conserved at any time and along any characteristic inside each strip [np, np+1] of length ∆n.
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On the interval ]np, np+1[, we have that I(N, t) = ip(t) is independent of N . Then from (3.16),
we deduce

ṙ = −∂NW(N, r, t)

= −∂IV(N, I(N, t)) ∂N I(N, t)

= 0.

Thus r(N, t) = r0,p for any t ∈ Ωp. Hence it simply suffices to solve the other ODE in (3.16)
that is

Ṅ = ∂rW(N, r, t)

to get the equation of the characteristic on the interval

N(t)−N(u) =

∫ t

u

∂rW(N, r, τ)dτ for any t, u ∈ Ωp.

At the edge N = np.
The edge N = np separates two different traffic states that rely on two different speed-spacing
fundamental diagrams. We need to take care of the kinematic waves that can appear at this
locus. As illustrated on Figure 5, we set the characteristic speed related to the spacing r0,p as
follows

νp := ∂rV (r0,p, I0,p) ,

and we also define the speed of the refracted” characteristic wave through the discontinuity
of I such that

ν∗p := ∂rV
(

r∗0,p, I0,p
)

.

This characteristic speed is related to a new spacing value

r∗0,p =

{

V−1 (V (r0,p−1, I0,p−1) , I0,p) if V (r0,p−1, I0,p−1) < max
r
V (r, I0,p) ,

+∞ else.

np

I0,p
r0,pr0,p−1

I0,p−1

νp−1

ν∗
p

N
np+1np−1

νp

Figure 5: Schematic view of what happens for the characteristic wave generating from the
edge N = np and passing through a discontinuity of I.

Regarding the values of the initial spacing r0,p and r0,p−1, we can distinguish two cases that
could occur starting to an edge N = np:

• either ν∗p > νp and in this case there will be a shock wave. The characteristics carrying
respectively the initial states r0,p−1 and r0,p will cross each other, offering a partial
superposition of both characteristics domains (see (a) on Figure 6). The solution is
then simply computed thanks to the inf-morphism property. Hence we only consider the
two characteristics (indicated as 1© and 2© on Figures 8, 9 and 11) that encompass the
domain of influence generated by the initial spacing r0,p.
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• or ν∗p < νp and in this case there will be a rarefaction fan. The characteristics waves
carrying the initial states r0,p−1 and r0,p diverge (see (b) on Figure 6). The solution on
the area between both extreme characteristics may not be computed and even the inf-
morphism property will not be able to recover it. That is why we need to consider the first
two characteristics (as above) and a third wave corresponding to the first characteristic
matching with the initial state r0,p−1 (labeled 0© on Figures 8, 9 and 11).

t

N

I0,p−1

r0,p−1

np−1 np np+1

I0,p

r0,p

t

N

I0,p−1

r0,p−1

np−1 np np+1

I0,p

r0,p

(a) Case of a shock wave (b) Case of a rarefaction fan

Figure 6: Characteristics through a discontinuity of I of r.

Notice that by convention we add the rarefaction wave 0© to the solution generated by the
initial condition on [np, np+1] for any p = 1, ..., P .

Remark 4.2 (Degenerated case for characteristics through a discontinuity of I)
When passing through a discontinuity of I (assume (a) and (b) the states on both sides of the
discontinuity as illustrated on Figure 7), the characteristics speed may be changed. Neverthe-
less it is well known (Rankine-Hugoniot jump condition) that through such a discontinuity,
the traffic speed should be unmodified

v(a) := V(r(a), I(a)) = V(r(b), I(b)) =: v(b).

In case of v(a) > v
(b)
max := max

r
V(r, I(b)), it is obvious that the equality between these two

speeds cannot be complied. In an Eulerian setting, it means that the group of upstream vehi-

cles (b) cannot accelerate enough (even increasing their speeds to v
(b)
max) to catch up with the

downstream vehicles (a). This induces the apparition of a vacuum area between both groups of
vehicles. There is a rarefaction wave as vehicles (b) accelerate to attain their top speed and a
shock wave following the last vehicle of type (a). Notice that the states (a∞) and (b∞) defined
on Figure 7) coincide for r = +∞ (or equivalently at ρ = 0).

The contributions of the initial condition defined on [np, np+1] × {t0} for any 1 ≤ p ≤ P are
then computed as follows:

(i) Initialize the values of the solution X at +∞ on the whole computational domain.

(ii) Determine the number of characteristics to compute (two or three) according to what
could occur at the edge N = np.

(iii) Compute the equation N(t) of each characteristic while t ≤ tmax and N ≤ Nmax.

(iv) Calculate the (exact) solution Xp all along each computed characteristic generated by the
interval [np, np+1] × {t0}, namely characteristics 1© and 2© and 0© whenever it appears
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(a) Speed-spacing fundamental diagram (b) Some characteristics in Lagrangian viewpoint

ρ
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max

v(a)

F t

x

(a)

(b)
(a∞

) =
(b∞

)

(a) Flow-density fundamental diagram (b) Some characteristics in Eulerian viewpoint

Figure 7: Critical “vacuum” case appearing from special condition values.

(see Figure 8). In this aim we use the generalized Lax-Hopf formula (4.21) which gives
that

Ẋ (t) =M
(

N(t), Ṅ (t), t
)

.

The interested reader is referred to [5, 10, 43] for additional information about the
Legendre-Fenchel transform and fast algorithms for its numerical computation.

(v) Compute the exact value at any point within the characteristics fan (delimited by char-
acteristics 1© and 2© on Figure 8) using the fact that for any point (N, t) belonging to
the characteristic fan, the position at this point can be deduced by a simple translation
of the position on characteristic 1© (see Figure 8). Indeed we have for any N ∈ [np, np+1]
and any t ∈ Ωp

X (N, t) = X (N, t
(1)
N ) +

∫ t

t
(1)
N

V (r(N, τ), I(N, τ)) dτ

= X (N, t
(1)
N ) + V (r0,p, I0,p) (t− t

(1)
N ),

where we recall that ϕp(I) = 0. The time t
(1)
N corresponds to the time when the charac-

teristic 1© crosses the line N .

(vi) In the case of a rarefaction fan, evaluate the value of X at each point within the influence
domain of the considered initial condition (illustrated on Figure 8) by an interpolation
technique based on triangular meshes (the value at each triangle vertex is exact).

4.3.2 “Upstream” boundary conditions

In the Lagrangian setting, boundary conditions describe floating vehicles conditions in Eulerian
setting. Indeed such a condition is equivalent to consider the trajectory t 7→ ξ(N0, t) of a given
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r0,p

0

I0,p

N0

N
np np+1 Nmax

t

tmax

2

1

t0

Figure 8: Domain of influence of the initial data [np, np+1]× {t0}.

vehicle N0. Then we have that

µ0(t) := ∂tξ(N0, t) = V(r0(N0, t), I(N0, t)), for any t ≥ t0,

which can be solved and yields a unique solution (because V is strictly increasing)

r0(t) = V
−1(µ0(t), I(N0, t)), for any t ≥ t0.

The initial conditions for the characteristics are the couples (N0, r0(t)).
As for initial condition, we introduce a discrete time step ∆t and we consider a full discretiza-
tion of the time domain [t0, tmax] into segments [tq, tq+1] with q = 1, ..., Q.

Definition 4.3 (PWA upstream boundary condition)
Let N0 ≥ 0 be fixed. Then the qth component of the upstream boundary condition (q = 1, ..., Q)
is given by

X up(N0, t) = v0,qt+ βq, for any t ∈ [tq, tq+1].

To ensure continuity of the upstream boundary data X ini on [t0, tmax], we require that

βq = −v0,qtq +

q−1
∑

l=1

v0,l(tl+1 − tl), for any q = 1, ..., Q.

The contributions of upstream boundary conditions are computed in a similar way than those
of initial condition. The domain of influence of upstream boundary conditions seems to be
simply the reverse of the one of initial condition (see Figure 9).

Remark 4.4 (Extension to any individual trajectory condition) Any Lagrangian data
giving the trajectory of a vehicle N∗ with N∗ ∈ [N0, Nmax] will strictly generate the same type
of calculations than the ones described for the upstream boundary condition. It is then easy to
deal with data coming from mobile sensors moving within the traffic stream.

4.3.3 Internal boundary conditions

Internal boundary condition is here understood in the Lagrangian framework. It does not cor-
respond to internal vehicle trajectories which can also be incorporated in the algorithm (see
the previous subsection). Notice that internal boundary condition is called mixed condition
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Figure 9: Domain of influence of the upstream boundary data {N = N0} × [tq, tq+1].

in [34] to avoid any misunderstanding.

We assume that the data comes from vehicles N(t) located at a point ξ(N(t), t) at time t.
Thus we get that

d

dt
ξ(N(t), t) = −Ṅ(t)r0(t) +W(N(t), r0(t), t).

As not all data are compatible, we need to introduce compatibility conditions. As we have

max
r

{

−Ṅ(t)r +W(N(t), r, t)
}

=M(N(t), Ṅ (t), t),

hence the equation yielding r0(t) admits a solution only if

d

dt
ξ(N(t), t) ≤M(N(t), Ṅ (t), t).

Let us describe the specific situation of ξ̇(t) = 0 and Ṅ(t) ≥ 0 for any time t. This case
occurs if the data originates at a fixed measurement point x0 like a fixed detector data that is
ξ(N(t), t) = x0 for all time t. Then N(t) represents the cumulative flow at point x0. In this
case the above compatibility condition is satisfied, there are two solutions, one under-critical
and the other over-critical. Recall that the speed-spacing fundamental diagram W depends
on the vehicle N .
If we propagate both pairs of characteristics, then the inf-morphism property will automat-
ically select a single solution which matches the over-critical situation (because the speed
is lower than in the under-critical situation). It may happen that the congested solution is
not the good one. Then to avoid any mistake, we assume that the fixed detector gives the
cumulative flow and also the traffic flow speed. In this way, we can select one traffic state
only.
In our case, we are interested in including some Eulerian data coming from classical fixed
sensors like inductive loop detectors. In this aim, Eulerian data become internal boundary
condition into the Lagrangian framework. We assume that a Eulerian sensor located at a fixed
position x0 gives us the incremental cumulative vehicles count which is then interpolated in a
piecewise affine function N(t) for t ∈ [t0, tmax].

Definition 4.5 (PWA internal boundary condition)
Let x0 ≥ 0 be fixed. Then the pth component of the internal boundary condition (p = 1, ..., P )
is given by

X int(n, t) = x0, for n = f0,pt+ γp and t ∈ [t̂p, t̂p+1],
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W(N, r, t)
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runder0,prover0,p
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r

Ṅ > 0

0 ρmax
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Ṅ

1/rover0,p

Flow,F

1/runder0,p

Density, ρ
νoverνunder

(a) Speed-spacing fundamental diagram (b) Flow-density fundamental diagram

Figure 10: Existence of two solutions corresponding to a condition ξ̇(t) = 0 and Ṅ(t) ≥ 0.

where we define t̂p for any p as the time such that n = np. To ensure continuity of the
trajectory t 7→ n(t) on which the internal boundary data X int is prescribed, we require that

γp = −f0,pt̂p +

p−1
∑

l=1

f0,l (t̂l+1 − t̂l), for any p = 1, ..., P.

We assume that N is piecewise affine on each discrete segments [np, np+1] that is equivalent
to say that Ṅ is piecewise constant (i.e. constant in each strip [np, np+1] for p = 1, ..., P ). It
is easy to deal with this case for the algorithm because the computational steps are similar to
both previous cases for initial and upstream boundary conditions.

The only difference resides in the fact that we have a characteristic fan that matches either
the under-critical or the over-critical traffic state. It is simple to verify that in the first (under-
critical) case, the pth component generates characteristics which are emitted with speeds
νunder > Ṅ while it is the inverse in the other case (see Figure 11). From a traffic point
of view it is relevant with observations stating that a congestion wave will spread backward
at a slower speed than a decompression wave.

r0,p

1

0

2

np np+1N0

N
Nmax

t

tmax

t0

r0,p

2

0

1

np np+1N0

N
Nmax

t

tmax

t0

(a) Generation by the over-critical value (b) Generation by the under-critical value

Figure 11: Domain of influence of the internal boundary data.

4.4 Recapitulation of the algorithm

The different elements of the computations for piecewise affine value conditions are recapitu-
lated in the following pseudo-code (see Algorithm 1).
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Algorithm 1 Pseudo-code implementation for the Lax-Hopf based computation of the posi-
tion function X on the computational domain [N0, Nmax]× [t0, tmax] prescribed by the user.

Require: N0, Nmax], t0 and tmax {Input label domain, time domain}
1: X ← +∞ {Initialization of the position function to infinity}
2: for p = 1 to P do {Iteration on the initial conditions}
3: compute Xini

p (NT , T )
4: if Xini

p (NT , T ) < X then
5: X ← Xini

p (NT , T ) {Update the position function}
6: end if
7: end for
8: for q = 1 to Q do {Iteration on upstream boundary conditions}
9: compute Xup

q (NT , T )
10: if Xup

q (NT , T ) < X then
11: X ← Xup

q (NT , T ) {Update the position function}
12: end if
13: end for
14: for p = 1 to P do {Iteration on internal boundary conditions}
15: compute Xint

p (NT , T )
16: if Xint

p (NT , T ) < X then
17: X ← Xint

p (NT , T ) {Update the position function}
18: end if
19: end for
Ensure: X(., .) over [N0, Nmax]× [t0, tmax]

Remark 4.6 This pseudo-code underlines the property of the Lax-Hopf algorithm to treat in a
parallel way the different value conditions (initial, upstream boundary and internal boundary).

5 Numerical example

In order to simplify the computations and to ease the presentation of the following example,
we consider that the driver attribute I is piecewise constant with respect to N at initial time
t = t0. It means that there exist some platoons of vehicles which share the same driver at-
tribute. It could be for example some vehicles of the same kind (cars and trucks), or vehicles
that go to the same destination, or vehicles that have the same desired maximal speeds.

We consider for this numerical example three classes of drivers according to the value taken
by the driver attribute I, from 1 to 3. The corresponding fundamental diagrams are given on
Figure 12. The driver attribute I = 1 can match with trucks as the maximal speed 25 m.s−1 is
lower than in the two other cases and the sensitivity to variations of spacing is less important
as well. The driver attributes I = 2 and 3 can represent cars with different desired maximal
speeds (resp. 35 m.s−1 and 30 m.s−1) and different characteristics of acceleration, due to
sensitivity to variations of spacing.
We consider piecewise affine initial conditions that is we prescribe each vehicle position X(t, n)
at time t = t0 for n ∈ [N0, Nmax]. The initial condition for this numerical test are plotted on
Figure 13.
Moreover we prescribe piecewise affine upstream boundary condition that is the trajectory
X(t, n) of the first vehicle N = N0 for t ∈ [t0, tmax]. This upstream boundary condition is
illustrated on Figure 14.
The solution is thus given by applying the computation algorithm described in Algorithm 1.
The simulations deal with 30 vehicles during 5 minutes. The numerical results are plotted on
Figure 15.
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Figure 12: Speed-spacing fundamental diagram V(r, I) (left) and initial values of driver at-
tribute I(N, t0) (right).
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Figure 13: Initial conditions for the GSOM PDE at t = t0.
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Figure 14: Boundary conditions for the GSOM PDE at N = N0.

In the numerical example above, we do not consider real data assimilation. The next step for
numerical results should be the assimilation of real data in a model of the GSOM family. As
it was described in the previous section, vehicles trajectories and fixed detector measurements
can be easily incorporated in the algorithm. However we need to define a driver attribute I
and to know how it evolves on the computational domain. That is the tough point because
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Figure 15: Numerical solution for GSOM PDE obtained on the computation domain
[N0, Nmax]× [t0, tmax].

it is hard to measure or to evaluate. Notice that an example of speed data assimilation with
the ARZ model which is a model of the GSOM family can be found in [38].

6 Discussion and conclusion

In this paper, we are interested in the assimilation of different kinds of data into a generic
class of macroscopic traffic flow models for improving traffic state estimation. The data come
from mixed sources including Lagrangian vehicles trajectories and Eulerian cumulative vehi-
cles counts obtained from fixed detectors. We then consider the models in the Lagrangian
system of coordinates which seems to be the most adapted framework for dealing with such
data. We describe a computational method providing solutions to macroscopic traffic flow
models of the Generic Second Order Modeling (GSOM) family under piecewise affine initial
and boundary conditions. The numerical method is based on the variational theory which has
been extended to the GSOM family very recently [34]. Solution can be computed thanks to
Lax-Hopf like formula and a generalization of the inf-morphism property [6]. It is possible to
considerably reduce the number of integral curves by following only the characteristics which
are the optimal trajectories. Another computational trick is to solve separately many partial
problems (by discretizing initial and boundary conditions) instead of the general problem.

Extensions of this work could include more general assumptions on the dynamics ϕ 6= 0 of
drivers attribute, always beyond piecewise affine value conditions. The computational benefits
of the variational method over the finite difference method which is also presented in the paper
need to be illustrated on several comparisons. We expect that the variational method has a
lower computational cost and a globally higher accuracy compared the other method.

A still open but interesting question is the application of the algorithm to data assimilation
on road networks. The challenging point is to deal with fundamental diagrams which will
depend on the drivers attribute but also on the spatial position. To our best knowledge Lax-
Hopf formula is not available in that framework because Legendre-Fenchel transform does not
apply for space dependent Hamiltonians. One considered possibility is to use the extended
concepts of supply and demand functions to models of the GSOM family [37]. This subject is
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being currently investigated by the authors.
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