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Efficient Subframe Video Alignment
Using Short Descriptors
Georgios D. Evangelidis* and Christian Bauckhage‡

Abstract— This paper addresses the problem of video align-
ment. We present efficient approaches that allow for spatiotem-
poral alignment of two sequences. Unlike most related works, we
consider independently moving cameras that capture a 3D scene
at different times. The novelty of the proposed method lies in
the adaptation and extension of an efficient information retrieval
framework that casts the sequences as an image database and
a set of query frames, respectively. The efficient retrieval builds
on the recently proposed quad descriptor. In this context, we
define the 3D Vote Space (VS) by aggregating votes through a
multiquerying (multiscale) scheme and we present two solutions
based on VS entries; a causal solution that permits online
synchronization and a global solution through multiscale dynamic
programming. In addition, we extend the recently introduced
ECC image-alignment algorithm to the temporal dimension that
allows for spatial registration and synchronization refinement
with subframe accuracy. We investigate full search and quantiza-
tion methods for short descriptors and we compare the proposed
schemes with the state of the art. Experiments with real videos
by moving or static cameras demonstrate the efficiency of the
proposed method and verify its effectiveness with respect to
spatio-temporal alignment accuracy.

Index Terms— Video synchronization, spatio-temporal align-
ment, image/video retrieval, short image descriptors

I. INTRODUCTION

Video alignment aims at finding point correspondences between
two video sequences, namely a reference and an input sequence.
It, therefore, extends the image alignment problem because cor-
respondences have to be established in both space and time. That
is, if x = [x, y, t]! and x̂ = [x̂, ŷ, t̂]! denote corresponding
spatiotemporal input and reference points, henceforth called vixels
(Video Picture Elements), a mapping has to be determined such
that x = Φ(x̂;ps,pt), with ps and pt being the spatial and
temporal parameters, respectively. Accordingly, video alignment
can be cast as a parameter estimation problem, but, in contrast to
the related 3D alignment problem, it merges spatial and temporal
aspects, which should be treated differently [1].

Fig. 1a summarizes assumptions and constraints that are com-
monly adopted in video alignment applications. A critical dis-
tinction is whether or not a temporal overlap between the two
recorded sequences exists. If reference and input sequence show
the same event and are recorded simultaneously (same event),
there will be a global affine temporal transformation t = αt̂ + τ
that determines correspondences between the indices t and t̂, re-
gardless of scene content or camera motion. In addition, for static
or jointly moving cameras there will be a spatial transformation
between pixels of temporally corresponding frames that remains
fixed for the duration of the videos. If there is no spatial overlap
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Fig. 1: (a) Taxonomy of assumptions (internal nodes) and con-
straints (leaves) in video alignment. Paths to red leaves are cov-
ered by the proposed algorithm. Note that if videos are recorded
simultaneously (shadowed area), the temporal mapping between
two sequences is linear; if videos are recorded at different points
in time, frame-wise mapping is required. (b) Rigidity of spatial
and temporal parameters ps and pt of the vixel-correspondence
model x = Φ(x̂;ps,pt) along the sequences (see text).

between the fields of view (FOV) of the cameras, e.g. because
they are facing each other or observe adjacent non-overlapping
FOVs [2], any alignment algorithm has to track moving scene
objects or ego-motion in order to be able to align the sequences.

Video alignment becomes more challenging if the two se-
quences are recorded at different points in time (temporally
different events). In this case, there is no rigid temporal mapping
between frames anymore. Nevertheless, as long as both videos
show similar content and egomotion, they can still be synchro-
nized based on an identification of similar frames.

A. Objective

In this paper, we address the problem of aligning videos of
the same scene, which are captured by independently moving
cameras that follow similar trajectories at different times. A
canonical example for this setting are videos obtained from in-
vehicle cameras mounted behind the windshield (see Fig. 2).
Our goal is a vixel-wise alignment of videos for which a pixel-
wise alignment of corresponding frames is technically possible
because they were recorded from cameras of comparable FOV
and viewing direction. This essentially generalizes the case of
simultaneously recording the same scene but is critically different
in that temporally unrelated videos may show different scene
objects so that corresponding frames can actually look rather
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Fig. 2: (Left) An example of two video sequences (Backroad dataset [8]). Due to non-overlap in capture time, different moving objects
appear in sequences. (Right) Corresponding frames of substantially distinct visual appearance.

different. For moving cameras, this problem can be addressed by
considering the static background in order to guide the alignment;
for stationary cameras, it is the motion of scene objects that
informs the solution. Note that in the pathological case of a static
scene and unrelated cameras trajectories, a reasonable spatio-
temporal alignment cannot be expected to be obtained.

In what follows, we assume uncalibrated cameras with fixed but
unknown internal parameters. While the technical specification
of the cameras might differ, they should be comparable in the
sense that videos which they record are of comparable quality
and appearance. Moreover, we do not consider any calibration
step and the computation of temporal alignments disregards time-
stamp information and is guided solely by visual similarities
between frames. Our prerequisite of similar trajectories guarantees
that frames which are captured from similar viewpoints have
sufficient overlap in their FOVs; the extent of this overlap is
discussed in section VII.

In addition to subpixel accuracy in spatial alignment, a temporal
alignment with subframe accuracy is an important goal in video
alignment [1]. In order to register two sequences with sub-vixel
accuracy (subpixel in space and subframe in time), we present an
approach that extends a gradient-based image alignment scheme
to spatiotemporal dimensions [3]. Although, under certain circum-
stances, direct methods may provide accurately aligned videos,
they generally cannot cope with very large temporal displace-
ments even if a multi-resolution scheme is used. Moreover, in our
scenario, the temporal aspect is particularly important because
the common FOV of cameras inherently initializes the spatial
transformation and the initialization of pt essentially provides
the initialization of the parameters ps. Furthermore, even though
pt and ps will vary over time and thus may require frequent
(re-)estimation, we aim at real-time capability where, given a
prerecorded reference video, we want to align each frame of the
input video just after its acquisition. Consequently, we investigate
the possibilities of very efficient schemes.

B. Overview

We formulate the synchronization of two temporally unrelated
video sequences as an Information Retrieval (IR) problem where
the reference sequence is preprocessed and indexed before the
input sequence becomes available. This way, we make efficient
use of the time that elapses between the two recordings; computa-
tions are pushed back to an offline procedure thus rendering the
online task considerably less demanding [4]–[7]. Our approach
is inspired by recent work of Lang et al. [7] who introduced
a geometric hashing method to encode the relative position of
neighboring stars for satellite imagery. Here, we apply a similar
coding scheme to encode and characterize sets of neighboring
interest points within a video frame. This coding enables us
to efficiently index the reference sequence, to store the indices

appropriately, and, finally, to synchronize the videos by querying
the reference sequence using individual frames of the input
sequence.

Furthermore, we extend this novel IR approach to synchroniza-
tion towards a multiscale (multi-level) framework that provides
high synchronization accuracy. In short, we aggregate votes for
correspondences obtained from multiple queries (each per scale)
and build a 3D Vote Space (VS). An appropriate temporal
synchronization is then determined from VS entries either by
investigating VS slices that consider only the input (query) frame
or by taking into account the whole VS. By considering VS slices
and counting only on the query frame, we obtain a causal (online)
solution which is useful for real-time application. On the other
hand, the consideration of the whole VS implies a global solution
which is preferable for offline applications.

Having obtained a rough solution for the synchronization
problem, we proceed toward the spatiotemporal alignment of the
sequences with sub-vixel accuracy. That is, each input frame
is spatially registered with a subframe of the reference video.
Since similar sets of interest points may be visible in several
successive reference frames, the best frame retrieved in the
synchronization step may not be the visually closest reference
frame. In addition, since video acquisition takes place at different
times (e.g. different days) so that variations in visual appearance
are to be expected, we refine the retrieval result by adopting a
recently proposed image alignment scheme (ECC algorithm) [3].
The ECC algorithm offers the desired robustness and we extend
it towards the space-time dimension to obtain an approach that
allows for simultaneous spatial registration and synchronization
refinement with subframe accuracy.

C. Contribution
The video alignment problem arises in many applications of

computer vision. Examples include vehicle detection for advanced
driver assistance systems (ADAS) [8], high dynamic range video
and video matting [9], frame dropping prevention [10], action
recognition and sensor fusion [11], video-copy detection [12],
and wide baseline matching [1], [13]. Moreover, spatiotemporal
alignment can resolve several ambiguities of standard image
alignment techniques [1] and, although we focus on registering
similar videos captured at different times (e.g. captured by in-
vehicle cameras that follow similar trajectories on different days
(Fig. 2)), our solutions can be adopted to various other settings
that require the spatiotemporal alignment of video sequences.

Our contributions in this paper are summarized as follows:
1) The proposed causal solution for video alignment can

deal with dynamic camera motion. Unlike [8], we do not
require assumptions or prior information as to the motion
of cameras except for roughly similar trajectories. Since we
synchronize each frame separately, our approach allows for
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cameras to stop at any time or even to move backwards.
Moreover, our approach enables online synchronization
since the reference sequence can be queried while the input
sequence is still being recorded.

2) We apply the recent quad descriptor [7] for rough video
synchronization. This expressive, low dimensional local
feature descriptor allows for very efficient retrieval schemes
based on kD-trees and thus establishes frame correspon-
dences much faster than standard bag-of-words (BoW)
approaches with high-dimensional descriptors [5], [6], [12].

3) In contrast to the spatiotemporal extension of [1] which
leads to a sequence-to-sequence alignment scheme, we also
investigate an extension in the parameter space only. This
is to say that the mapping Φ() applies temporal parameters
determined from just a single frame and its temporal
gradient. In other words, we develop a frame-to-subframe
alignment scheme of low computational complexity since it
supersedes considering many frames from each sequence.

4) The proposed scheme can easily be adopted as is to com-
puter vision applications such as video copy detection [12]
or object transfer (augmented reality) [9] which require
spatiotemporal alignment. In addition, it provides a new
retrieval solution for various systems (e.g. [6]) through
application of multi-querying frameworks that fuse retrieval
results obtained with different parameter settings. Finally,
given pre-recorded reference videos, our framework can
assist visual detection [14] by automatically marking areas
of interest for further processing.

A preliminary solution to the problem in question was pre-
sented in [15]. Unlike the new multiscale approach, the quad
descriptor was tested under a naive single-scale retrieval scheme.
A local solution was only presented and tested on three driving
sequences. Despite the non-in-depth evaluation in [15], the limi-
tation of the single-scale framework becomes evident.

The remainder of this paper is organized as follows. In the next
section, we review related approaches. Then, in Section III, we
formulate the video alignment problem. In Section IV, we cast
the video synchronization problem as an IR task and, based on
this idea, we present a multiscale framework and two solutions
in Section V. Section VI presents our spatiotemporal extension
of the ECC alignment algorithm. In Section VII, we evaluate
our scheme on several real world video sequences and compare
the proposed solutions to standard methods. Finally, Section VIII
concludes this work.

II. RELATED WORK

Most related contributions either assume stationary cameras
or consider settings where cameras move jointly and are rigidly
attached to each other [1], [2], [10], [11], [13], [16], [17]. Such
scenarios are simpler than our setting, because a fixed spatial
transformation between corresponding frames is guaranteed and
need not be re-estimated at runtime. Once an event has been
identified in two such videos, a temporal mapping between the
sequences can be globally described by simple parametric models.
Examples include a time offset model [1], [2], [10] to cope with
unsynchronized acquisition, or a 1D affine model to account
for different frame rates [1], [11], [13], [17], [18]. Assuming
simultaneous recording [18]–[20], this kind of temporal rigidity
is preserved even for independently moving cameras. If the
acquisition of related videos takes place at different points in

time, previous work was concerned with nearly coincident camera
trajectories [8], [9], [21], while in outdoor scenarios GPS data are
integrated [8], [21].

Video synchronization of temporally independent recordings
is an important problem, because, once synchronized sequences
are available, the problem of video alignment reduces to sev-
eral spatial image alignment tasks. Here, offline solutions align
trajectories of tracked interest points along the sequences [1],
[13], [16], [19], [20]. Feature-based matching [9], [18], [21] or
direct methods [1], [2], [8], [11], too, have been extended to
video matching. Typically, corresponding approaches consider a
spatial mapping model such as a 2D homography [1], [2], [21],
a fundamental matrix [1], [2], [10], [16], [20], affine transforms
[11], 3D rotations [8], or the trifocal tensor [19] to describe the
relation between corresponding frames.

Our scenario is most closely related to the work in [8], [9]. Sand
and Teller [9] proposed an exhaustive search between frames by
looking for motion-consistent pixel matches using a regression
model and Diego et al. [8] cast video synchronization as a MAP
inference problem. The latter adopts the Lucas-Kanade alignment
algorithm to spatially register synchronized frames. In a similar
manner, Caspi and Irani [1] extended feature-based and area-
based image alignment schemes to the space-time dimension,
and, in [2], they used intra-sequence transformations to recover
spatial and temporal parameters in non-overlapping sequences.
Our framework differs from these approaches in that it provides
a more efficient scheme for (online) sub-vixel video alignment.

Video alignment scenarios where cameras are moving bear
a certain similarity to the problem of robot localization based
on video data. In essence, video synchronization can be viewed
as a by-product of vision-based simultaneous localization and
mapping (SLAM) [22], [23]. Approaches to video-based SLAM
attempt to link novel frames to previously recorded ones that
were captured from nearby viewpoints. The methods in [22]
and [23] use visual words representations [6] to extract similar
frames from a database of landmark images. The BoW paradigm
is also used in [12] where the video alignment is applied to
detect copied video material, and in [5] in order to retrieve
images of similar but different scenes. In particular, the latter
proposes a flow-based alignment, called SIFT-flow, to spatially
register corresponding frames. However, while SIFT-flow and
similar methods can be used for computing general non-rigid
alignment between two images [5], they are sensitive to visual
occlusions and too computationally demanding to allow for robust
and fast video alignment.

III. PROBLEM FORMULATION

Suppose we are given a reference sequence Ir(x̂) and an input
sequence Iq(x) contained within the reference one, where x̂ =
[x̂, ŷ, t̂n]

!, x = [x, y, tm]! are their vixel coordinates and n =
1, .., N and m = 1, ...,M are their frame indices respectively.
Further suppose that vixel correspondences are described by a
mapping x = Φ(x̂;p), p = [p!

s , p!
t ]!, which fuses the spatial

and temporal warps parameterized by ps and pt, respectively.
Since we permit an irregular motion for the cameras, both ps

and pt vary along the sequences and must be re-estimated for all
input frames. For simplicity, we consider for the integer frames
that tm = m and tn = n, and we refer to the mth input and nth

reference frame as Im and In, respectively.
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Fig. 3: (a) Geometry hashing via the quad structure and (b) a query frame with its extracted Harris points. (c) The valid quads of
the query and (d) the reference corresponding frame; red dots denote the centroids of the quads.

We assume that the temporal mapping with subframe accuracy
is expressed in terms of a discrete-time signal T : N → R,
such that (m,T (m)) is an assignment of an input frame to a
reference subframe. Given Im, our primary goal is to find the
frame In whose index n is as close as possible to the non-integer
value T (m), and then to recover the subframe index through
the model Φ(). To efficiently address the former, the task of
roughly synchronizing two videos is cast as a retrieval problem.
In particular, the reference frames define an image database
and each input frame represents a query image. By querying
the database with Im, we retrieve the visually closest reference
frame In (Sec. IV, V). Such a solution does not guarantee that
|n − T (m)| < 1, since the visual features we use for indexing
may be visible in several successive frames and we may not
retrieve the correct frame. We address this issue by means of
a subsequent spatiotemporal alignment step which refines the
mapping (Sec. VI).

Given a pair (m,n), we consider the temporally-local subse-
quence In−µ, ..., In+µ where µ is a small integer. After defining
Φ() we look for the image warped in space and time from the
above subsequence that aligns with Im. To this end, we extend
the ECC alignment algorithm [3] to the space-time dimensions,
i.e. the extended scheme estimates the spatiotemporal parameters
p that maximize the correlation coefficient between the input
frame Iq(x) and the warped reference subframe Ir(Φ(x̂;p)).
It is important to note that such an extension can yield an
image-to-sequence alignment rather than a sequence-to-sequence
alignment as proposed by Caspi and Irani [1]. The extension in [1]
considers both the pixel and the parameter domains, thus linking
many input frames to many reference subframes. Our image-to-
sequence extension, however, regards only the parameter domain
since it considers pixels contained in one input frame only, which
is linked to a subframe of the subsequence. This way, we do not
sensibly increase the complexity of the image alignment problem.
If the cameras have different frame rates, we have to appropriately
scale the reference temporal axis with the ratio of the rates. Note,
however, that if the input frames are weakly-textured, sequence-
to-sequence schemes may be preferable to image-to-sequence
counterparts.

To summarize, once a temporal registration has been initialized
by means of the efficient retrieval step, the ECC algorithm
converges to that subframe that maximizes the value of the
enhanced correlation coefficient [3]. In other words, the highest
number of feature matches provides a rough synchronization, and
the maximum similarity defines the final corresponding reference
frame.

IV. AN INFORMATION RETRIEVAL APPROACH TO VIDEO
SYNCHRONIZATION

In this section, we adopt an IR approach to address the video
synchronization problem. This approach allows us to preprocess
the reference data in an offline step that does not require any
knowledge as to the input sequence. Once the input sequence is
available, this idea allows for fast yet reliable synchronization. In
specific, the proposed method mainly critically depends on sets
of short descriptors of the content of individual video frames.
We adopt a geometric hashing method introduced in [7] for
applications in astronomy. Instead of clusters of stars, we use
the method to represent sets of spatially adjacent interest points.
Such points are determined using the Harris detector [25] because
of its favorable behaviour with respect to speed and repeatability
[27]. That is, given a grayscale image I(y), y = [x, y]!, we
determine local maxima of the cornerness measure C(y;σD) =
det(Σ(y;σD)) − 0.04 · trace(Σ(y;σD)), where Σ is a matrix of
second order moments computed at pixel y where moments are
parameterized by the differentiation scale σD [28], [29].1

Once interest points have been computed, we determine
quadruples of nearest neighbors of such points in order to describe
local image structures. This is done as follows: Suppose a
quadruple (“quad”) of interest points yi, i = {1, 2, 3, 4} as shown
in Fig. 3. The points y1,y2 are the control points defined as the
most widely separated pair of points. Let d denote the distance
(diameter) between the control points, ϕ the orientation of the
diameter and c the centroid of this quad, that is

d=‖y1 − y2‖, ϕ=tan−1 y2 − y1
x2 − x1

, c=
1
4

∑

i

yi , (1a-c)

where ‖ · ‖ denotes the L2 norm. We then consider a local
coordinate system OXY oriented and centered with respect to
the control points y1, y2, so that they coincide with the points
(0, 0) and (1, 1), respectively. This allows us to encode the quad
structure in terms of the new coordinates of the remaining points
y3,y4. Accordingly, any quad of four points can be represented
by means of a 4D vector q which is called a quad descriptor,
or simply a quad. In essence, such a coding realizes a similarity
normalization transform, i.e. the descriptor is invariant to any
scale, rotation and translation of points. We refer the reader to
Appendix I for the detailed definition of this transform.

Similar to [7], we only regard quadruples where y3,y4 lie
inside the circle of diameter d. Any permutation of the order
of points in the pairs (y1,y2) and (y3,y4) creates a symmetry
that can be easily resolved. In addition, any location error of
the interest point detector yields a small error in the position of

1The second-moment matrix is parameterized by an integration scale as
well, but the scale ratio is usually constant and only one independent scale
can be considered.



5

800 1000 1200 1400 1600 1800 2000 2200 2400
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Query frames

R
ef

er
en

ce
 fr

am
es

1120 1220
1440

1530

800 1000 1200 1400 1600 1800 2000 2200 2400
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Query frames

R
ef

er
en

ce
 fr

am
es

1120 1220
1440

1530

800 1000 1200 1400 1600 1800 2000 2200 2400
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Query frames

R
ef

er
en

ce
 fr

am
es

1120 1220
1440

1530

Fig. 4: (a) Synchronization for the Campus sequences [8] based on the initial votes and (b) after filtering for spatiotemporal consistency
(Rc = 100, frame resolution: 720 × 540). In (c), the temporal mapping obtained by the proposed multiscale approach (Sec. V) is
shown; the zoom-ins also show the bounds of the available ground-truth for this data.

the code inside the 4D quad space. Finally, note that geometric
hashing based on quads benefits from uniformly distributed de-
scriptors [7]; applying non-maximum suppression during interest
point computation leads to well distributed interest points [30]
and thus to well distributed quads. Fig. 3 shows the quads of two
corresponding frames.

A. Indexing, Structure and Retrieval
In order to be able to determine reference frames that are

similar to a given input frame, we compute Harris points (for
a given scale σD) for all reference frames In and extract all valid
quads. We denote by qnj the jth descriptor of In, where j =
1, 2, · · · , Ln, and by rnj = {n, cnj , dnj ,ϕnj} its characteristics.
Since the discriminative power of the quad descriptor is low, we
do not apply any vector quantization step [6] but work with all
available continuous hash codes. This is feasible, because the
short length of descriptor length allows us to actually store all
quads qnj and their characteristics rnj .

Any interest point detector will inevitably produce location and
repeatability errors [27]. Therefore, given a query quad, we look
for similar reference quads using a near neighbor (range search)
approach. Since quad descriptors are of low dimensionality, it is
possible to store them in a kD-tree structure so that near neighbor
searches can be done efficiently.

The frame correspondence can be interpreted as a voting
scheme: given frame Im, let qmi, i = 1, 2, . . . , Lm denote its
quads. By querying the database with qmi, any quad qnj which
is ε-close to qmi in terms of the Euclidean distance is retrieved
and votes for the image In. If vnm denotes the votes of In when
the database is queried by Im and is initialized to 0, the vote
score is updated by vnm ← vnm + f(qmi,qnj), where

f(qnj ,qmi) =

{
λw, if ‖qnj − qmi‖2 < ε

0, otherwise.
(2)

and ε is the distance tolerance for similar quads. The score λw
can be chosen according to best practices in IR [24]. Here, we
choose the inverse document frequency (IDF) as very common
quads are not indicative of the image content. That is, we set
λw = log N

Nmi
, where Nmi is the number of retrieved images

after querying qmi.

B. spatiotemporal Coherence
In order to eliminate false positive matches, we enforce a

spatiotemporal coherence constraint during voting that relies on
the assumption of approximately coincident trajectories. If the
cameras do not have too different settings, it is reasonable to reject
matches between quads whose centroids are not spatially close. To

do this, we only accept those qnj that satisfy ‖cmi−cnj‖ < Rc,
where Rc is a radius threshold that defines a valid search area
around cmi. Provided that the FOVs are sufficiently overlapped,
this constraint favors both spatial and temporal coherence due
to camera motion. For instance, the projection of a scene point
undergoes a strong displacement when a vehicle turns, hence the
temporal coherence is a by-product of the spatial one. Moreover,
the constraint is not too strict as it concerns the centroids of
the quads and not the interest points per se. If the images show
partial overlap, this constraint can be replaced by a weak geometry
constraint (Sec. VII-C). Depending on the intended application
scenario, it would be easy to also incorporate scale- and/or
rotation-consistency measures.

Fig. 4a and Fig. 4b show examples of synchronization results
before and after enabling constraints. It is obvious that the spatial
consistency leads to a less erroneous temporal mapping, but
mismatches still remain. Aside from randomly distributed mis-
matches, we observe systematic errors at some intervals like the
one around the 1400-th input frame. Such intervals contain highly-
textured frames that provide a large number of non-discriminative
quads, thus leading to mismatches even after filtering for spatial
consistency. Clearly, the temporal mapping obtained by the local
multiscale approach (Fig. 4c), that is described in the next
section, is more robust and provides a more reliable and smoother
synchronization.

V. A MULTISCALE APPROACH

In the single-scale framework presented in the previous section,
interest points are detected using a Harris detector with a fixed
scale parameter. Accordingly, the corresponding quad descriptors
cannot faithfully describe scene content at different scales be-
cause interest points locations do vary with scales. Obviously,
our framework would perform better if the optimum scale for
each frame was known. Since estimating the optimal scale is a
formidable task, one might resort to using a scale-invariant [31] or
an affine detector [32] thus assigning a characteristic scale to each
interest point. On the other hand, this idea would lead to quad
descriptors containing points of different scales. As we found
experimentally that quads consisting of scale-invariant or affine
points led to a noticeably reduced synchronization accuracy, we
do not consider scale-invariant interest point detectors but propose
the use of a multiscale method.

Given that scene depth and content may drastically vary, dif-
ferent local areas in a frame might be better described at different
scales. However, since a naive implementation of this idea may
lead to different false positives (mismatched query frames) at
different scale levels, we propose to combine the voting results
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Fig. 5: (Left) A multiscale representation of votes in a multi-querying for the Campus dataset and (right) view from the top.

at all levels to improve retrieval precision and synchronization
accuracy.

Suppose that we consider K scale levels with σD = σk, k =
1, . . . ,K, and that Ok and Ik are sets of false (FP) and true
positive (TP) matches at the kth level, respectively. That is

Ok = {m | m ∈M and Im is FP at the kth scale level}

Ik = {m | m ∈M and Im is TP at the kth scale level},

where M = {m | m = 1, · · · ,M}, Ik
⋂

Ok = ∅ and Ik
⋃

Ok =
M. We then would ideally expect that

⋃

k

Ik = M and
⋂

k

Ok = ∅. (3)

Although (3) does not imply that the final synchronization error
will vanish, it provides a straightforward approach to its reduction
and the final error takes into account votes across all scales.

Figure 5 illustrates a 4-level voting. Note that this representa-
tion does not indicate total numbers of votes and only displays
instances where the more than one vote was cast. Apparently,
there are less outliers and less votes in total for larger scales.

A. Vote Space

Having defined a set of σk, k = 1, · · · ,K, we apply the mul-
tiscale Harris detector, compute quad descriptors independently
for each scale, and aggregate the votes per scale. These votes
are stored in a discrete 3D Vote Space (VS). Let V (3) of size
N ×M × K be such a space, so that each entry vnmk defines
the votes for reference frame In when the database is queried by
input frame Im at the kth scale level. We also define a 2D vote
space V (2) of size N ×M , which is essentially a projection of
V (3) in two dimensions such that each element vnm defines the
total support for In given the query frame Im.

To construct the VS, we investigate three different methods:
1) a method where all reference descriptors are stored in a kD-
tree, 2) a visual dictionary (VD) method where each reference
descriptor is assigned to a cluster (visual word), and 3) a bag-
of words (BoW) scheme. Note that in 2) we only make use
of inverted files, without representing images as vectors. By
separately working at each scale, we have to build kD-trees,
inverted indices, visual vocabularies or bag-of-words reference
representations for all scale levels during the preprocessing step.
However, since interest points are more frequently found on lower
scales, the sizes of the corresponding databases or data structures
drastically decrease for growing scale values.

What we describe below for each method is executed K times,
thus setting the corresponding entries of the VS. The tree-based
method is the procedure described in Sec. IV. The VD method
relies on clustering for efficiency reasons, i.e. a k-means algorithm
that uses Euclidean distances clusters the reference quads into
visual words. An inverted file then summarizes the instances

and their characteristics (frame index, location, diameter, and
orientation) of all visual words. Once the query quad is mapped
to the closest visual word, we vote for the linked reference frames
using the inverted file. As with the tree-based method, we again
apply IDF weighting and spatial-consistency checks.

The BoW model [4]–[6], [33] is widely recognized as a state-
of-art retrieval method. Similar to [6], we represent each image by
a weighted histogram of features whose bins correspond to visual
words of the dictionary. The similarity between normalized input
and reference histograms provides the VS entries. The short-list
of the retrieval results is further filtered for spatial consistency,
i.e. the percentage of putative matches between quads that are
spatially consistent is added to the similarity value for the final
vote score. This approach differs from the previous methods,
because, now, the spatial coherence constraint is activated after
voting.

As long as our primary goal is a causal system for rapid
online alignment, we cannot synchronize frames after constructing
the VS. However, if a non-causal solution for more accurate
alignments is appropriate, we can estimate the temporal mapping
once VS is available. Therefore, we also present a global solution
based on the whole VS. In later sections, this enables us to assess
the loss in performance when the synchronization is based on a
single query frame only.

B. A Causal solution

When a causal system is required, we propose to only consider
a subpart of a given VS. Recall that we generally treat each frame
separately, in order to obtain robustness against effects of camera
motion. Accordingly, we choose the subpart of VS to be that
vertical slice of size N ×K that corresponds to the query frame.

Since the number of interest points decreases with scale [30]
and thus also the number of descriptors, we observe fewer votes at
higher scale levels than at lower ones (see again Fig. 5). In order
not to favor lower levels, we apply a scale-adapted voting scheme:
Suppose that we query the databases with the mth

0 frame and
concentrate the votes vnm0k. Then, the total support vnm0 of the
nth reference image is given by the following convex combination
of votes (linear projection of V (3))

vnm0 =
K∑

s=1

ζkvnm0k , n = 1, · · · , N, (4)

where
∑

k ζk = 1, ζk > 0, k = 1, · · · ,K. Convexity implies that
ζk = σk/

∑
k σk, which is the case we consider here. Generally,

we could search more analytically for the optimum weights (e.g.
by mixture models), but this is beyond the scope of this paper. The
votes in the BoW model are, in a sense, scale-invariant because
of the vector normalization. This suggests to only use a simple
summation for this case, i.e. ζk = 1/K. Once the votes vnm0
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have been computed, the optimum reference index no is found to
be

no = argmax
n

vnm0 , (5)

and the same applies to all the other query frames of the input
sequence.

C. A Global solution

When the online capability is not the most important practical
requirement, a global solution can take advantage of the suc-
cessive nature of video frames. Here, we propose a multiscale
Dynamic Programming (mDP) method to estimate the optimal
path (polyline) between reference and query indices.

Assume that each candidate correspondence (m,n) between
Im and In denotes an endpoint ei, i = 1 · · · , NE of a polyline
L, that is L = {e1, e2, · · · , eNE

} in the grid N ×M . Polyline L
ideally contains one endpoint per column, i.e. NE = M , where
there are, theoretically, N candidates. Since we are concerned
with votes here, our DP variant looks for the maximum-vote path
across a vote-plane. If the function Fv(e1, e2, . . . , ei) denotes the
vote-score of the path from e1 to ei, the goal is to estimate the
polyline Lo such that the vote-score is maximized, i.e.,

Lo = argmax
L

Fv(L). (6)

The function Fv(e1, . . . , eNE
), or Fv(e1, eNE

), is defined by
the aggregation of local votes along the path but is penalized by
the inverse distance of subsequent endpoints, i.e.

Fv(e1, eNE
) = v(e1) +

NE∑

i=2

(
v(ei) +

1

d̂(ei, ei−1)

)
(7)

where v(ei) corresponds to the votes of ei and d̂(ei, ei−1) is the
Euclidean distance between ei and ei−1. Based on DP theory
[34], the problem reduces to a sequence of subproblems through
the following recursion mode. Equation (7) can be rewritten as

Fv(e1, eNE
) = Fv(e1, eNE−1) + v(eNE

) +
1

d̂(eNE
, eNE−1)

(8)

and, accordingly, (6) reduces to a multistage problem

Lo=argmax
!

{Fv(()+v(eNE
)+

1

d̂(eNE
, eNE−1)

}, L = {(, eNE
}.

(9)
Our mDP scheme first suggests to project V (3) into a 2D space

V̂ (2) in a non-linear manner and then to search for the maximum-
vote path based on the above recursion. The projection amounts
to the suppression of the scale dimension resulting in a 2D vote
plane, where the above solution applies. This way, each entry
v̂nm of V̂ (2) reflects the support v(ei) of a candidate endpoint.
The non-linear projection of V (3) is given by

v̂nm = max
k

ζkvnmk , k = 1, . . . , N, (10)

where ζk is defined as above. In other words, each candidate
endpoint of the DP matrix is associated with K nodes in the scale
dimension and the mDP algorithm considers the maximum vote
per node (see Fig.6 for a 3-scale example). As a consequence,
the DP matrix is filled based on (10) and the final time mapping
is established by back tracking the optimal path through (9).
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Fig. 6: (Left) A DP matrix with each node assigned to 3 votes
(3-scale VS); the size of circles reflects the relative magnitude
of votes in scale dimension. (Right) mDP enables the maximum
vote assigned to each node towards the maximum-vote path.

D. Complexity - Efficiency
Recent works provide very efficient schemes for the Harris

detector [35] and quads can be computed in linear time. Given N
reference frames and L quads per frame on average, we can then
show that the tree-based method requires O(L

7
4N

3
4 ) for retrieving

a frame. This time amounts to O(LW ) and O(LW
3
4 +NW ) for

the VD-based and BoW-based method respectively, where W is
the length of the visual dictionary. We can easily prove that for
a database of 100K frames and typical values for L and W of,
say, 500 and 1000 respectively, the VD-based method achieves
a 100× speedup compared to the standard BoW scheme that
uses L SIFT features per frame and a dictionary of length W .
Optionally, we can exploit the sequential form of the data, split the
reference sequence into subsets of successive frames, and build a
tree structure for each subset [15]. This way, we would obtain a
forest structure and the query time would be further reduced.

VI. SUBFRAME VIDEO ALIGNMENT

Retrieval-based synchronization provides us with a sequence
of pairs (m,n) that indicate a rough mapping between frame
indices. Yet, our overall goal is to estimate a sequence of pairs
(m,T (m)) where T (m) ∈ R. Both, synchronization refinement
with subframe accuracy and spatial alignment can be obtained
simultaneously. To this end, we propose an extension of a recently
presented image alignment algorithm [3] called ECC (Enhanced
Correlation Coefficient). In its original form, ECC accomplishes
only spatial alignments, here, we extend it to the space-time
dimension.

ECC-based schemes are capable of compensating for illumina-
tion variations that are due to different recording times. Suppose
that A = {xs|s = 1, 2, · · ·S} is the set of vixels in the input image
or sequence. The video alignment task is to find the corresponding
set Â = {x̂s|xs = Φ(x̂s;p), s = 1, 2, · · ·S} in the reference
sequence. The mapping that establishes correspondences cannot
be arbitrary, rather, we need to explicitly define a spatiotemporal
model Φ(). Although the fundamental matrix fits to our scenario,
its use only describes the motion of each pixel up to an epipolar
line and implies extra effort for a pixel-wise correspondence
scheme [36]. Moreover, the computation of the fundamental
matrix is susceptible to errors and, in our scenario, this uncertainty
becomes more severe because of the camera motion. We therefore
approximate the spatial motion using a 2D homography while the
temporal model involves a pure time-offset. If required, an affine
temporal model reduces to a pure temporal translation as the scale
parameter can be determined from the ratio of frame rates [1].

In this context, our spatiotemporal mapping is written as

x′ =

[
H 03

0!2 τ 1

]
x̂′, (11)
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Fig. 7: An example of the proposed method for the Highway dataset. (a) A query frame and (b) the retrieved frame with the best
score. The space-time alignment after (c) 1 and (d) 10 iterations. Differences between query and reference frame are illustrated using
lawn-green and hot-pink colors.

TABLE I: Experimental dataset (pairs of video sequences).

sequence illumination temporal overlap camera camera motion resolution (pixels) frame rate (fps)
Backroad similar no same yes 720× 540 25
Campus similar no same yes 720× 540 25
Highway similar no same yes 720× 540 25
Suburb different no same yes 586× 426 30
PedZone1 similar no same yes 600× 300 25
PedZone2 different no different yes 720× 576 - 600× 300 25-25
Wind similar yes similar no 384× 288 25
Water similar yes similar no 384× 288 25
Inria different* yes different no 812× 612 - 640× 360 12-30

*very different sensors and exposure settings

where H is a 3 × 3 homography, τ is the temporal offset and
x′, x̂′ are vectors containing homogeneous spatial and tempo-
ral coordinates (see Appendix II for details). As a result, the
unknown parameters are gathered in a nine dimensional vector
p = [h1, h2, ..., h8

ps

, τ
pt

]! (h9 = 1) where we tacitly assume that τ

has been initialized via the previous synchronization.
The extended ECC scheme leads to the problem of estimating

the optimal p, so that the correlation coefficient between the query
and the spatiotemporally warped reference frame is maximized.
By stacking the intensities of the points in A and Â and normalize
them to zero-mean, we form the query image vector iq =
[Iq(x1), Iq(x2), · · · , Iq(xS)]

t and the warped reference image
vector, parameterized by p, ip = [Ir(x̂1), Ir(x̂2), · · · , Ir(x̂S)]

t

Then, the objective function to be maximized is the enhanced
correlation coefficient which is given by

ρ(p) =
iq

!ip
‖iq‖‖ip‖

(12)

and inherently involves the spatiotemporal model.
Although the maximization of ρ(p) constitutes a highly non-

linear problem, it has been shown in [3] that, through application
of an iterative scheme, a closed form solution can be obtained in
each iteration. As with the familiar Gauss-Newton optimization,
we assume that a nominal parameter vector p̃ is known, such that
p = p̃ +∆p and we linearize the warped vector so that ρ(p) is
approximated by the function

ρ(∆p; p̃) =
i!q [ip̃ + Jp̃∆p]

‖iq‖
√
‖ip̃‖2 + 2i!p̃ Jp̃∆p+∆p!J!p̃ Jp̃∆p

, (13)

where Jp̃ is the Jacobian of ip with respect to p̃ (see Appendix
II).

Unlike least-squares optimization, the function ρ(∆p; p̃) re-
mains non-linear after linearizing the warped profile. Its maxi-
mization, however, results in an analytic formula and the correc-

tion vector is

∆p = (J!p̃ Jp̃)
−1J!p̃

{
i!p̃PJip̃

i!q PJip̃
iq − ip̃

}
, (14)

where PJ = I− Jp̃(J
!
p̃ Jp̃)

−1J!p̃ is a projection matrix. 2

As a result, ρ(p) is maximized through a chain of secondary
maximization problems whose solution obeys a closed form.
Using successive parameter updates, we obtain the optimal po

while Φ(x̂;po) provides dense spatiotemporal correspondences
with sub-vixel accuracy. The iterative procedure stops when a
maximum number of iterations or a threshold for ‖∆p‖ is met.
Further details on our extension are given in Appendix II.

The complexity of ECC has been analyzed in [3] and was
shown to be O(Sη2), where η is the number of parameters.
Perspectives for lower complexity include a pyramid-based reg-
istration [1], a pixel selection scheme [37], and the inverse
compositional alignment [3], [37]. Figure 7 shows an example of
spatiotemporal alignment using the proposed scheme. Careful in-
spection of this figure confirms the refinement in synchronization
(the adjustment in the dashed road line is not due to homography
fitting only). In order to highlight changes with green and pink
colors, we use a modified RGB representation [1], by replacing
the G channel of the input frame with the G component of the
reference frame, but warped in space and time based on the ECC
outcome.

VII. EXPERIMENTS

In order to evaluate the proposed framework for efficient
video alignment and to compare it with several baseline methods
from the literature, we consider nine pairs of real world video
sequences. Table I lists the characteristics of these datasets. The
sequences Backroad, Campus, Highway [8]3, Suburb have been
captured by cameras attached to the windshield of moving cars.

2In [3], a two-case solution is presented; however, here we consider highly
correlated image profiles and the conditions for the second case do not hold.

3These sequences are referred to as Backroad2, Campus2 and Highway2
in [8]
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Fig. 8: From left to right: Temporally corresponding frames (top-bottom) of the sequences Suburb, Pedzone2, Wind and Inria.

During recordings, the drivers of these cars switched between
driving styles and, in particular, executed frequent sharp acceler-
ations and decelerations so that any temporal mapping between
corresponding videos will be highly non-linear. In addition, the
weather conditions and time of day in the Suburb sequences
differ considerably. The two PedZone1-2 sets were captured at
different times by walking persons with hand-held cameras in
a pedestrian zone. The former is captured by the same camera
while the sequences of the latter are recorded by different cameras
with various settings. The sequences Wind, Water [1] and Inria
were taken by static cameras that capture a flag blowing in the
wind, the water of a small fountain, and a person that moves
a curtain respectively. Despite the cameras’ stationarity and the
absence of occlusions, these sequences are quite challenging
because any alignment has to rely on the non-rigid motion in
the scene. Moreover, the spatial texture in the Wind sequences
is concentrated in a small area while the Inria sequences shows
large variations in appearance due to different sensors. The length
of each of these videos varies between 300 and 2000 frames. In
Fig. 8, corresponding frames from the Suburb, PedZone2, Wind
and Inria sequences are shown. Except for the car sequences,
the spatial overlap is not complete due to the cameras’ pose
and settings. Finally, recall that we intentionally ignore the fixed
spatial and rigid temporal mapping in the case of static cameras.
It is obvious that the online alignment would reflect synchronized
sequences up to frame accuracy.

For our data, synchronization ground-truth is available in the
sense of lower and upper bounds. When the synchronization al-
gorithm computes a reference frame index between the manually
determined bounds we consider the match as true positive and no
error occurs. Otherwise, we define the error to be the distance
from the closest bound. The distance between the bounds is 3
frames on average, except for the PedZone sequences that contain
more frames because of the slow motion. The performance of each
method in our test is quantified using the synchronization error
which is defined by the percentage of the false positives.

In what follows, we will refer to the three versions of the
causal solution with respect to the VS building method, namely
Quad-Tree, Quad-VD, and Quad-BoW. In addition, we shall use
the suffix ”mDP“ to refer to the corresponding global variants
of these methods. As for the baseline methods that are used
for comparison, we consider the Caspi-Irani algorithm [1] which
applies to the same initialization as the Quad-Tree scheme, the

MAP-inference solution proposed by Diego et al. [8], a Dynamic
Time Warping (DTW) algorithm which is a standard solution in
sequence alignment [34], and a bag-of-words model based on the
SIFT descriptor (SIFT-BoW) [5], [6], [22], [23].

We use a 6-scale framework with σD = σk = 1.2
√
1.8

k−1
, k =

1, ..., 6. The distance tolerance ε in (2) is set to 0.1 and the
radius Rc for the spatial constraint is 100 pixels. The size of
the visual dictionary varies from 500 to 3000 with respect to the
length of the sequences. In BoW modeling, a short-list of 50
reference frames is retrieved, where spatial consistency applies
to. Regarding ECC and Caspi-Irani, we follow a coarse-to-fine
framework with a 3-level Gaussian pyramid, permitting algorithm
to execute 7 iterations per resolution level.

As discussed in Sec. I, Caspi-Irani algorithm is a sequence-to-
sequence alignment algorithm. When the spatial transformation
between corresponding frames is not fixed, sequences can be
at most 3 frames long and the reference temporal axis has
to be appropriately scaled to compensate for different frame
rates. Therefore, the Caspi-Irani algorithm applies to 3-frame
subsequences with the temporal mapping being initialized as
in the Quad-Tree method. Below, a more detailed comparison
will address issues due to various length of subsequences. As
far as the SIFT-BoW method is concerned, we use the original
SIFT algorithm, i.e. a DoG detector and SIFT descriptor, in
conjunction with the method of [6]. We tested various distances
between appropriately normalized vectors and –in agreement to
[6]– we found the Bhattacharyya Coefficient to perform best.
In contrast to [6], our experiments with Quad-BoW revealed a
better performance if the L1 distance is used. Similar findings
regarding the BoW-model were earlier pointed out in [4]. Roughly
speaking, our multi-level approach resembles in some sense the
flexibility of [4], but the levels here are independent. The Map-
inference method is implemented as described in [8] while the
DTW implementation builds on a standard 3-step DP algorithm
[34]. Both these methods use the above frame representation
and distance in order to build the necessary similarity matrix
(similarity scores are translated to distances for the DTW method
as it needs a dissimilarity matrix).

The performance of the different algorithms is shown in Ta-
ble II. The upper part of the table presents the causal (local)
algorithms that base their decision on single frames whereas
the Caspi-Irani method considers subsequences of 3 frames to
perform refinement. The bottom part of the table presents results



10

TABLE II: Synchronization results

Synchronization error (%)
Backroad Campus Highway Suburb PedZone1 PedZone2 Wind Water Inria

Lo
ca

l
m

et
ho

ds Quad-Tree 8.52 10.8 6.28 27.6 11.6 19.2 3.18 12.1 16.0
Quad-VD 8.25 10.4 7.82 28.2 13.6 20.9 5.45 24.2 32.9
Quad-BoW 13.2 11.2 15.4 48.8 26.5 36.6 64.2 80.9 76.9
Caspi-Irani 13.9 14.1 10.3 32.9 18.4 32.4 5.45 19.5 26.3
SIFT-BoW 14.5 15.3 11.4 57.1 47.2 62.6 42.3 60.9 63.4

G
lo

ba
l

m
et

ho
ds Quad-Tree-mDP 6.78 8.53 4.68 23.7 5.30 15.4 0.45 0.00 5.96

Quad-VD-mDP 7.61 7.82 5.51 21.9 6.82 14.9 0.45 0.00 14.9
Quad-BoW-mDP 12.6 12.3 11.6 45.2 15.4 32.5 3.64 22.7 60.2
DTW 26.0 18.3 29.2 60.6 41.9 47.1 20.2 77.3 56.2
MAP-Inference 21.3 18.6 28.5 59.5 42.4 46.0 32.6 78.6 76.0

TABLE III: Performance of Quad-Tree algorithm assisted by a temporal window

Synchronization error (%)
Temporal window Backroad Campus Highway Suburb PedZone1 PedZone2 Wind Water Inria
9 frames 8.16 8.06 5.69 23.9 8.84 19.9 0.37 3.14 4.92
15 frames 7.86 7.35 4.99 22.7 6.57 15.2 0.00 2.73 2.29
31 frames 6.54 6.71 2.74 21.4 6.45 13.1 0.00 0.00 1.71
all frames - - - - - - 0.00 0.00 0.00

for global algorithms that exploit the temporal continuity of
whole video sequences. We observe that the proposed schemes
outperform the competitors. The Quad-Tree algorithm is the best
local algorithm on average and even outperforms global solutions.
Except for the Inria and Water videos where a longer dictionary
may be needed, the quantized version Quad-VD gives scores
very close to the Quad-Tree version. Although the Caspi-Irani
method considers more frames, it does not fare better than the
proposed spatiotemporal alignment scheme. SIFT-BoW behaves
similar to Quad-BoW on average, but textured frames favor
Quad-Bow and weakly-textured content favors SIFT-BoW. It is
important to note that the SIFT-BoW model considerably benefits
from spatial consistency [6]. This is also evident in [8] where
SIFT-BoW was reported to fail unless spatial constraints were
enforced. In addition, the spatial consistency of SIFT-BoW seems
to contribute more than the temporal consistency in DTW and
MAP-inference. It is also worth pointing out that our multiscale
framework appears to be so robust that the spatial consistency
becomes sometimes redundant, e.g. the error of the Quad-Tree
method without constraints is 12.7% on the Backroad sequence.
The advantage of the multiscale approach is evident in the global
schemes as well. All versions of the proposed global scheme
achieve better scores than MAP-inference and DTW solutions.
In general, global solutions are more robust than the local ones
in the presence of sparsely distributed outliers. However, isolated
inliers within a chunk of mostly mismatches are wrongly matched
by the global methods, as opposed to the local ones.

As far as the descriptor is concerned, it is obvious that a group
of keypoints presents lower repeatability than the keypoints per
se and therefore quads are less repeatable than SIFT features. On
the other hand, a quad is more discriminative in the sense that
it encodes more points. Since our scenario does not involve very
different viewing angles and strong scale changes, Harris detector
presents high repeatability which makes the quads repeatable too.
SIFT features would contribute more than quads, if there would be
such strong variations. Overall, the multiscale extension improves
the matching accuracy by resolving ambiguities of quad matches
that occur in a single-scale framework [15].

All algorithms show declining performance when the lighting

of scene drastically changes. Errors for the Suburb sequence are
higher than for the other car sequences. The same applies to the
PedZone2 and Inria sequences which contrasts to the performance
for Pedzone1 and Water or Wind, respectively. Since handling
severe illumination variations between two related videos resem-
bles the task of dealing with different modalities, such videos
should probably be synchronized using global offline methods
that align space-time trajectories [1]. Yet, in our experiments, even
the global methods yield considerable temporal misalignments for
the Suburb sequence. Finally, the partial overlap in the PedZone1-
2 and Inria sequences also negatively affects the corresponding
results.

A. Locality Vs Globality

Local algorithms may fail when a single frame does not carry
much information and its corresponding frame is difficult to be
established without using temporal data [1]. This affects the
spatial alignment as well. For example, Wind contains frames
with a large homogeneous area and Inria includes a periodic
scene motion. These properties easily lead to mismatches when
the decision is based on single frames. Global algorithms take into
account the temporal continuity of videos and are more robust.
However, this raises an obvious question: How “global” should
an algorithm be in order to resolve uncertainty? Can a temporal
window compensate for less informative single frames?

To investigate this question, we combine the Quad-Tree ap-
proach with a temporal window of several frames. The mapping
within the window is assumed to be linear and frame-wise
matches are used from a RANSAC-based scheme [38], thus
solving for the line equation that finally matches the central frame
only. This applies to all input frames in turn by shifting the
temporal window. Consequently, isolated outliers are rejected and
the local temporal coherence provides smoother results.

Table III summarizes the performance of the Quad-Tree al-
gorithm assisted by a temporal window of various sizes. The
contribution of the local temporal coherence depends on the
distribution of false positives. As with the global solutions, sparse
false positives are resolved while successive errors may remain.
Overall, the proposed local scheme benefits from the temporal
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Fig. 9: The distribution of the subframe correction for (top) Wind and (bottom) Water sequences. ”Proposed“ stands for the pure
frame–to–subframe alignment scheme while ”Proposed-seq2seq“ and Caspi-Irani are sequence–to–sequence alignment algorithms (the
green distribution is the same for each row and is repeated for comparison).

window and competes with the proposed global solutions. In
addition, when the cameras are static, a RANSAC-based line
fitting that takes into account all frame matches can accurately
align the sequences up to frame accuracy.

B. Proposed Vs Caspi-Irani

To the best of our knowledge, the sequence-to-sequence align-
ment as an extension of the image alignment scheme was first
proposed by Caspi and Irani [1]. Our proposed method is a spa-
tiotemporal alignment scheme as well, but it considers a frame-to-
subframe alignment rather than the sequence-to-sequence problem
in the Caspi-Irani algorithm. In order to compare these schemes,
we consider the sequences Wind and Water provided by [1]. Since
the cameras are static and of the same frame rate, the mapping
is known up to frame accuracy, but even if it is unknown it
can be obtained by a RANSAC-based line fitting. Using this
initialization, we investigate here the ability of the algorithms
to estimate the subframe correction by using subsequences or
single frames in the spatiotemporal alignment framework. We also
extend the proposed algorithm to a sequence-to-sequence mode
by considering more frames (Proposed-seq2seq). The temporal
offset distributions resulting from choosing subsequences of 3, 9,
and 31 frames are shown in Fig. 9. Once again, we decide for the
central frame of each subsequence while the next subsequence
results from a one-frame shifting.

As long as the homography is not the ground transformation,
the motion of the scene causes variations in the estimation of both
spatial and temporal parameters. Apparently, the more frames we
use in the subsequence, the less variance the distribution has.
The comparison shows that the proposed scheme is more robust.
The proposed frame-to-subframe scheme is more robust than even
the Caspi-Irani algorithm with subsequences of 3 frames. The
authors of [1] report that their implementation including all frames
returns the offset 31.43±0.1 for the Wind sequence. However, our
Caspi-Irani implementation with 31-frame subsequences provides
an offset of 31.29 on average (we used the compressed videos
provided on the webpage referred to in [1]). The temporal offset
obtained by the Proposed-seq2seq scheme with 31 frames is
31.27 on average while the frame-to-subframe scheme gives a
translation of 31.17 frames. The superiority of the proposed
algorithm is also shown by the results for the Water sequence.

Our frame-to-subframe scheme is almost equivalent to the Caspi-
Irani algorithm that uses subsequences with 9 frames. In addition,
Proposed-seq2seq outperforms Caspi-Irani in all cases. Overall,
the above comparison verifies the robustness of the spatiotemporal
ECC algorithm in contrast to the least-squares approach of [1].

In order to quantitatively assess the spatial alignment, we
apply a series of known spatiotemporal transformations in the
input frames and investigate the ability of the algorithms to
recover the warp. The deformation is a spatiotemporal model that
smoothly varies with time. We consider the corners of a frame and
find the homography between their coordinates and their noisy
counterparts. The deviation of the point noise reflects the strength
of the deformation. To differently warp each frame, we add to the
2× 2 upper left part of the homography a scaled rotation matrix
whose angle is a function of time, namely the cosine value is
cos(0.04πm),m = 1, 2, ... and the scale is 0.1; the temporal offset
varies as 0.25+ 0.25 sin(0.04πm). To quantify the misalignment,
we use the space-time transfer error of the four corners and
we plot the error curve averaged over 5000 realizations on all
frames as a function of the iteration. We compare our algorithm
with the Caspi-Irani algorithm translated to the frame-to-subframe
framework. Due to the full overlap, both algorithms run in a single
resolution level executing 25 iterations. Before the alignment,
we add zero-mean gaussian noise to the images with standard
deviation equal to eight gray levels. Fig.10 shows the learning
ability of the algorithms for all realizations that both algorithms
have converged, i.e. the final transfer error is below 1 square
vixel. Once a weak deformation occurs, both algorithms behave
similarly but, for strong deformations, the learning rate of ECC is
better. In addition, the proposed scheme converges more often and
faster than its competitor, again, especially if strong deformations
occur (Fig.10c). While these particular results were obtained for
the Backroad footage, similar behavior was observed for the other
sequences.

C. Partial overlap of images
In this subsection, we investigate the effects of lateral dis-

placements between the viewpoints of the cameras. In our car
sequences, the spatial overlap between corresponding frames is
almost complete. We modify the sequences so that they are
horizontally overlapped up to a certain percentage. The extent
of the overlap is defined through the intersection-union area
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Fig. 10: Spatiotemporal transfer error as a function of iterations for (a) weak and (b) strong deformations; (c) the convergence
frequency scores. The point noise is zero-mean gaussian with its deviation equal to 2 in (a) and 10 in (b) (see text).
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Fig. 11: Synchronization error curves (δ = 0) for (a) Backroad, (b) Campus and (c) Highway sequences; the overlap-ratio varies from
50% to 90%.

Fig. 12: Alignment of partially overlapped sequences. Input,
retrieved and aligned frames by the Quad-Tree algorithm for the
(left) Backroad and (right) Campus sequence with 50% and 70%
overlap ratio respectively; the pink window marks the input frame.

ratio, called overlap ratio, with the smallest value being 50%.
The common FOV does not regard near-camera objects and the
current consideration resembles the real world situation (nearly
parallel trajectories of cameras). A change in viewpoint can be
seen as a camera panning causing scene points to move to the
opposite direction in the image plane. Therefore, the space-time
constraint is replaced by a weaker one, i.e. we simply use the
sign consistency for horizontal coordinates while a reasonable
threshold applies to vertical differences. The ground sign is easily
extracted by the majority of matches.

Table IV summarizes observed synchronization errors when
the overlap ratio is 70%. The synchro curves (in terms of the
overlap ratio) of the competing algorithms are shown in Fig.11. As
expected, the error decreases with growing overlap. We observe

TABLE IV: Synchronization results (Overlap Ratio: 70 Percent)

Synchronization Error (%))
Backroad Campus Highway

Lo
ca

l
m

et
ho

ds

Quad-Tree 13.4(12.2*) 16.6 (17.6*) 18.7 (15.6*)
Quad-VD 14.0 16.5 23.1
Quad-BoW 19.5 21.0 34.4
Caspi-Irani 19.3 22.2 19.1
SIFT-BoW 33.5 25.1 37.7

G
lo

ba
l

m
et

ho
ds

Quad-Tree-mDP 13.9 16.3 16.5
Quad-VD-mDP 14.9 15.7 17.0
Quad-BoW-mDP 18.5 20.4 24.2
DTW 45.1 27.4 40.5
MAP-Inference 39.9 26.2 39.8

*with local temporal coherence (15-frame temporal window)

that the proposed framework is more robust than the SIFT-BoW
model. Other than the benefit from the multiscale framework, we
attribute this to the fact that occluded areas resemble overlapping
ones, and, in that sense, the quad descriptor may yield higher
distinctiveness than SIFT as it characterizes groups of interest
points. Fig. 11 also shows that the loss in performance varies
with the image content. For example, the small number of features
(quads) in Highway footage seems to be advantageous when the
frames are fully overlapped, while it is disadvantageous when
a partial overlap occurs. Again, when the temporal mismatches
are randomly distributed, local algorithms benefit from temporal
windowing as introduced above.

Figure 12 displays examples of partially overlapping images
and their alignment. The ability of the proposed algorithm to
produce wide-field videos from narrow-field cameras becomes
apparent from this experiment.

D. Qualitative comparison

Next, we visually compare the algorithms with several align-
ment instances. For actual video results, we refer the reader
to the supplemental material. Apart from the ECC and Caspi-
Irani algorithms, the comparison includes SIFT-flow which is
combined with SIFT-BoW as presented in [5]. SIFT-flow accounts
for alignment of different scenes, but it also allows for pixel-
based image registration [5]. It returns the 2D flow that warps the
reference image with respect to the input frame. Figure 13 shows
alignment results obtained from the algorithms. It also hints at the
ability of these algorithms to be tailored towards change detection
when different scene objects cause occlusions. SIFT-flow creates
artifacts leading to truncated objects when they are not visible
in both FOV and the Caspi-Irani method, too, seems to be more
affected by occlusions than the proposed scheme.

In Fig.14, we visually demonstrate the contribution of more
frames in the estimation of the spatiotemporal transformation.
We depict the spatiotemporal alignment of “integer” temporally
corresponding frames for the challenging sequences Wind and
Inria. It is evident that the Caspi-Irani approach requires more
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Fig. 13: Change detection instances for (top) Backroad and (bottom) Highway sequences. (a) Query and corresponding frames by (b)
proposed and (c) SIFT-BoW. Pixel-wise differences after alignment by (d) proposed, (e) SIFT-flow and (f) Caspi-Irani algorithms.

Fig. 14: Alignment between temporally corresponding frames using various sizes of temporal windows. Challenging frames of the
Wind (top) and the Inria (bottom) sequences are shown. Caspi-Irani algorithm needs more frames than the proposed scheme to
spatiotemporally register subsequences.

frames than ECC in order to correctly estimate the spatial
transformation. Due to partial overlap, we found the initialization
of both algorithms critical, i.e. 4 resolution levels were used. The
piecewise subtraction of the average intensity for the proposed
scheme was helpful as well. Again, we refer the reader to
the supplemental material for more detailed visual comparisons.
Among all sequences, we found more difficult the alignment of
the Suburb sequence.

E. Synchronization and alignment times
All experiments were carried out using Matlab implementations

on a 3GHz Pentium where code was not tuned to the machine.
The following run time measurements assume that the descriptors
(quads or SIFT features) have been pre-computed. When the
resolution of the reference sequence is 720 × 540 × 2000, the
average retrieval time of the corresponding frame was found
to be 0.82, 0.27 and 1.11 seconds for the Quad-Tree, Quad-
VD, and Quad-BoW methods, respectively. On the other hand,
the SIFT-BoW method required an average of 4.93 seconds for
retrieving the synchronized frame because of the more involved

bag-of-words representation. As far as the alignment time is
concerned, ECC takes 1.43 seconds while the Caspi-Irani method
was found to take 7.11 seconds for 3−frame subsequences,
when both methods register half-size images within a 3-level
pyramid with 7 iterations per level. Computing SIFT-flow requires
considerably more time since the approach represents each pixel
as a 128−element vector and estimates the motion in a flow basis.
In our experiments, it took 32.1 seconds on half-size images.
Consequently, a real-time implementation of the proposed causal
solution appears achievable in a C-based environment.

VIII. CONCLUSIONS

A novel video alignment approach is presented in this pa-
per. This approach allows for the spatiotemporal alignment of
similar videos captured from independently moving cameras at
different times. To achieve this, we adopted an efficient infor-
mation retrieval scheme to the video synchronization problem.
The method builds upon short descriptors for frame indexing
and achieves remarkable synchronization results through a multi-
querying (multiscale) scheme. We also presented a global solution
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for offline temporal alignment by developing a multiscale dy-
namic programming method. As for the spatiotemporal alignment,
we extended the ECC image-alignment algorithm to space-time
dimensions for registering videos with subpixel and subframe
accuracy. We tested our method on real video sequences captured
by moving or static cameras and we compared the proposed
methods with the state-of-the-art. The results verified both the
efficiency and the effectiveness of the proposed method.

Although we mainly considered surveillance and driving assis-
tance applications, the proposed scheme can be obviously adopted
to other computer vision applications such as automated 3D map
building, visual odometry and object identification. A reasonable
extension of our work can be conceived w.r.t. incorporation in
annotated databases. This way the system could operate on higher
level problems by extending its capability from change detection
to change (object) recognition.

Supplemental material: Please refer to http:
//perception.inrialpes.fr/˜evangelidis/
video_alignment for video results of the algorithms.
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