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Efficient Multi-GPU Algorithm for All-Pairs Shortest Paths

ABSTRACT

I. INTRODUCTION

The shortest-path problem is a fundamental computer
science problem with applications in diverse areas such as
transportation, robotics, network routing, and VLSI design.
The problem is to find paths of minimum weight between
pairs of nodes in edge-weighted graphs, where the weight
of a path p is defined as the sum of the weights of all edges
of p. The distance between two nodes v and w is defined as
the minimum cost of a path between v and w.

There are two basic versions of the shortest-path problem.
In the single-source shortest-path (SSSP) version given a
source node s, the goal is to find all distances between s
and the other nodes of the graph. In the all-pairs shortest-
path (APSP) version, the goal is to compute the distances
between all pairs of nodes of the graph. While the SSSP
problem can be solved very efficiently in nearly linear time
by using Dijkstra’s algorithm [1], the APSP problem is much
harder computationally.

Two main families of algorithms exist to solve the APSP
problem exactly. The first family derives from the Floyd-
Warshall algorithm, while the second derives from Dijk-
stra’s algorithm. The Floyd-Warshall approach consists in
considering going through every vertex vk of the graph
to improve the best known distance between every pair of
vertices (vi, vj) - see Algorithm 1. The complexity of this
approach is O(|V |3), regardless of the density of the input
graph. The algorithm also works for graphs with arbitrary
(including negative) edge weights. The cubic complexity of
the algorithm however, makes it inapplicable to very large
graphs.

The Dijsktra algrithm solves the Single-Source Shortest
Paths (SSSP) problem. For a given graph and a given source
vertex, it returns the shortest distances from that vertex
to all vertices of the graph. Although Dijkstra’s algorithm
does not solve the APSP problem, it is possible to get
the shortest distances for all pairs of vertices by running
Dijkstra’s algorithm for every vertex of the graph. The
Dijkstra algorithm consists in starting from the source vertex
and exploring other vertices from closest to farthest incre-
mentally - see Algorithm 2. When using min-priority queues,
the complexity of this approach is O(|E|+|V |log|V |) for the
SSSP problem. For the APSP problem, the total complexity
is thus O(|V | ∗ |V |+ |V |2log|V |), which becomes O(|V |3)
when the graph is complete. This approach is therefore faster
than Floyd-Warshall for sparse graphs.

Algorithm 1 Floyd-Warshall algorithm.

1 INPUT : A graph G(V, E ) , where V i s a s e t o f
v e r t i c e s

and E a s e t o f w e i g h t e d edges between t h e s e
3 v e r t i c e s .

OUTPUT: The d i s t a n c e o f t h e s h o r t e s t p a t h between
5 any two p a i r s o f v e r t i c e s i n G.

7 f o r each v e r t e x v i n V
d i s t [ v ] [ v ] = 0

9 end f o r
f o r each edge ( u , v ) i n E

11 d i s t [ u ] [ v ] = w( u , v ) / / t h e we i gh t o f t h e edge
( u , v )

end f o r
13 f o r k from 1 t o | V |

f o r i from 1 t o | V |
15 f o r j from 1 t o | V |

d i s t [ i ] [ j ] =
17 min ( d i s t [ i ] [ j ] , d i s t [ i ] [ k ] + d i s t [ k ] [ j ] )

end f o r
19 end f o r

end f o r
21 r e t u r n d i s t

In this paper, we present a new approach to solving
the APSP problem for planar graphs that exploits the
massive on-chip parallelism available in today’s Graphics
Processing Units (GPU). GPUs and other stream processors
were originally developed for intensive media applications
and thus advances in the performance and general purpose
programmability of these processors have hitherto bene-
fited applications that exhibit computational similarities to
graphics applications, namely high data parallelism, high
computational intensity and data locality. However, many
theoretically optimal graph algorithms exhibit few of these
properties. Such algorithms often use efficient data structures
storing as little redundant information as possible, resulting
in highly unstructured data and un-coalesced memory ac-
cess making them less-than-ideal candidates for streaming
processor manipulations. Nevertheless, given the wide appli-
cability of graph-based approaches, the massive parallelism
afforded by today’s graphics processors is too compelling
to ignore; current GPUs support hundreds of cores per chip
and even future CPUs will be many core.

Computing the All-Pairs Shortest Path problem is the first
step to obtaining many graphs measures that are of impor-
tance in many domains such as social network analysis or
in bioninformatics with protein-protein interaction networks.



Algorithm 2 Dijkstra’s Single Source Shortest Path algo-
rithm.

1 INPUT : A graph G(V, E ) , where V i s a s e t o f
v e r t i c e s

and E a s e t o f w e i g h t e d edges between t h e s e
3 v e r t i c e s . A s o u r c e v e r t e x from V.

OUTPUT: The d i s t a n c e o f t h e s h o r t e s t p a t h s between
5 t h e s o u r c e v e r t e x and e v e r y v e r t e x i n V.

7 f o r each v e r t e x v i n V
d i s t [ v ] = i n f i n i t y

9 p r e v i o u s [ v ] = u n d e f i n e d
end f o r

11 d i s t [ s o u r c e ] = 0
Q = V

13 w h i l e Q i s n o t empty
u = v e r t e x i n Q wi th s m a l l e s t d i s t a n c e i n d i s t [ ]

15 Q = Q\ { u}
i f d i s t [ u ] = i n f i n i t y

17 b r e a k

19 f o r each n e i g h b o r v o f u i n Q
a l t = d i s t [ u ] + d i s t _ b e t w e e n ( u , v )

21 i f a l t < d i s t [ v ]
d i s t [ v ] = a l t

23 p r e v i o u s [ v ] = u
d e c r e a s e−key v i n Q

25 end i f
end f o r

27 end w h i l e
r e t u r n d i s t

Furthermore, allowing graphs with negative edge weights
to be computed is crucial for many applications. In online
social networks, negative edges may be used to indicate
antagonism between two individuals [2] or even conflicts
and alliances between two groups [3]. Causal networks in
bioinformatics also use negative edges to represent inhibitory
effects [4].

To harness this computing power for solving path prob-
lems in planar graphs, we exploit the community structure of
input graphs and reformulate the problem in terms of matrix
computations. Our algorithm, based on the Floyd-Warshall
algorithm, has near quadratic complexity with respect to the
number of nodes, while its matrix-based structure is regular
enough to allow for efficient parallel implementation on the
GPUs. By applying a divide-and-conquer approach, we are
able to make use of multi-node GPU clusters, resulting in
more than an order of magnitude speedup over fastest known
Dijkstra-based GPU implementation and a two-fold speedup
over a parallel Dijkstra-based CPU implementation.

The paper is organized as follows. Section II presents re-
cent parallel implementations for solving the APSP problem.
In Section III, we detail the principles of our partitioned
algorithm. Section IV focuses on the struture of the data
and the computations and how the algorithm is implemented
on large multi GPU clusters. Finally, Section V shows the
results of two experiments and possible ways to improve our

implementation.

II. RELATED WORK

When considering a distributed Graphics Processing Units
(GPUs) implementation, both the Floyd-Warshall and Di-
jkstra approaches have advantages and drawbacks. Though
slower for sparse graph, a FLoyd-Warshall approach has the
advantage of having regular data access patterns that are
identical to those of a matrix multiplication. The amount
of computations required for a given graph, using a Floyd-
Warshall approach, solely depends on the number of ver-
tices in the graph; therefore, balancing workloads between
different processing units can be achieved easily. Dijkstra’s
approach is much faster for sparse graphs but requires
complex data structures to achieve the best performance.
Complex data structures can prove difficult to implement
efficiently on a GPU.

Implementing parallel solvers for the APSP problem is an
active field of research. [5] proposed GPU implementations
of both the Dijkstra and Floyd-Warshall algorithms to solve
the APSP problem and compared them to parallel CPU
implementations. Both approaches however require that the
whole graph fit in the GPUs memory. They report solving
APSP for a 100k vertex graph in around 22 minutes on a sin-
gle GPU. [6] proposed a blocked-recursive Floyd-Warshall
approach. Their implementation, running on a single GPU,
shows a speedup of 17-45 when compared to a parallel CPU
implementation and outperforms both GPU implementations
from [5]. Their blocked-recursive implementation also re-
quires that the entire graph fit in the GPU’s global memory;
therefore, they only report timings for graphs with up to
8k vertices. [7] proposed an improvement over the GPU
implementation of Dijkstra for APSP from [5] by caching
data in on-chip memory and exhibiting a higher level of
parallelism. Their approach showed a speedup of 2.8 − 13
over Dijkstra’s SSSP-based method of[5]. [8] also proposed
a blocked Floyd-Warshall algorithm that they implemented
for computations on a single GPU and a multicore CPU si-
multaneously. Their implementation handles graphs with up
to 32k and achieves near peak performance. Only [9] report
solving APSP on large graphs - up to 1024k vertices. Using
an SSSP-based Dijkstra approach, their implementation runs
on a multicore CPU and up to 2 GPUs simultaneously.

We propose a novel algorithm and its parallel implemen-
tation to compute all shortest distances between all pairs
of vertices of a graph with good partitioning properties. The
implementation targets executions on large clusters of GPUs
in order to handle graphs with up to a million vertices.
Experimentations showed that the trillion shortest distances
of a million vertex graph can be found in less than 25
minutes using 64 cluster nodes with 2 GPUs each.



III. ALGORITHM DETAILS

In this section we give the overall structure and the idea of
the algorithm and describe its individual steps, but without
discussing details of the GPU implementation. We start with
an overview of the algorithm and then give details on each
of its steps.

A. Overview

Our algorithm takes as input a weighted directed or undi-
rected graph G with n vertices and computes the distances
between all pairs of vertices of G. We currently do not output
routing information, which can be used to reconstruct the
shortest paths, but computing such an information requires
a minor modification in the algorithm and would increase the
run times and memory requirements by at most a constant
factor of two.

Our algorithm is based on a divide-and-conquer approach
and consists of four steps (see Algorithm 3). In the first
step, the original graph G is partitioned into k components
of roughly equal sizes using a min-cut like heuristic – our
implementation uses a k-way partitioning method from the
METIS library [10]. In the second step, the APSP problem is
solved on each component independently; in the third step
the distance information computed for the components is
used to compute distances between all pairs of boundary
vertices of G (a boundary vertex is one that is adjacent to
a vertex from another component); and in the final step the
information obtained in steps two and three is combined
to compute shortest paths between non-boundary pairs of
vertices of G. We will use the following notation: disti(v, w)
will denote the (approximate) value of the distance between
v and w computed in Step i, for i = 2, 3, 4, and distG(v, w)
will denote the (exact) distance in G. Next we will describe
the steps in more detail.

B. Step 1: Graph decomposition

In Step 1 the input graph G is divided into k compo-
nents of roughly equal sizes. The decomposition is done
be identifying a set of edges (a cut set) whose removal
from G results into a disconnected graph of k parts we call
components. The set of all components is called a partition.
Note that while by the standard definition in graph theory
a component is connected, this is not a requirement in our
case (although in the typical case our components will be
connected). A requirement is that every vertex in G belongs
to exactly one component of the partition. Moreover, in
order for the resulting APSP algorithm to be efficient, the
cut set of edges should be small. Not all classes of graphs
have such partitions, but some mportant classes do. These
include the class of planar graphs, the class of graphs of low
genus, some geometric graphs, and graphs corresponding to
networks with good community structure.

Algorithm 3 Partitioned All-Pairs Shortest Path algorithm

INPUT : A graph G(V, E ) , where V i s a s e t o f
v e r t i c e s and E a s e t o f w e i g h t e d edges between

t h e s e v e r t i c e s .
2 OUTPUT: The d i s t a n c e o f t h e s h o r t e s t p a t h between

any two p a i r s o f v e r t i c e s i n G.

4 f u n c t i o n p a r t i t i o n e d _ A P S P (G)
/ / S t ep 1

6 f o r each Component C i n G
compute_APSP (C)

8 end f o r

10 / / S t ep 2
Graph BG = e x t r a c t _ b o u n d a r y _ g r a p h (G)

12 compute_apsp (BG)
f o r each Component C i n G

14 compute_APSP (C)
end f o r

16

/ / S t ep 3
18 f o r each Component C1 i n G

f o r each Component C2 i n G
20 compute_apsp_be tween_components ( C1 , C2 )

end f o r
22 end f o r

end f u n c t i o n

C. Step 2: Computing distances within each graph compo-
nent

Step 2 involves computing the distances in each compo-
nent of the partition P of G using a conventional algorithm,
e.g., the Floyd-Warshall’s or Dijkstra’s algorithm. For each
component C ∈ P and any two vertices s and t of C, the
output of this step is the minimum length of a path between
s and t that is restricted to lie entirely in C. Hence, the
distance computed between s and t may be larger that the
distances between s and t in G, if there is a shorter path
between them that goes out of C. Nevertheless, as we will
show in the next subsections, the computed approximate
distances can be used to efficiently compute the accurate
distances in G.

In order to implement this step, for each component
C ∈ P , a subgraph is extracted containing vertices from
the current component and existing edges between these
vertices. Any APSP algorithm can then be applied in order
to compute distances in each of these sub-graphs. This step
thus has k independent tasks–one for each sub-graph–that
can be computed in parallel. Since each component contains
roughly n/k vertices, using an algorithm whose complexity
solely depends on the number of vertices allows these tasks
to be computed in roughly the same number of operations.
This property can be advantageous depending on the type
of parallelism that we want to exploit.



D. Step 3: Computing distances in the boundary graph

In step 3, we first extract the boundary graph BG of
G with respect to the partition P . The vertices of BG are
defined to be all boundary vertices of G. There are two
types of edges of BG. The first type of edges are edges
in G between boundary vertices from different components.
The weights on these edges are the same as their weights in
G. The second type of edges, which we call virtual edges,
are between boundary vertices in the same components – for
any two boundary vertices v and w belonging to the same
component C there is an edge (v, w) in BG with weight
equal to the distance between v and w computed in Step 2.
Hence, BG is a compressed version of the original graph,
where all non-boundary vertices have been removed, and
instead of them shortest path information encoded in the
weights of the new edges of BG. Having constructed BG,
we then solve for it the APSP problem using a conventional
APSP algorithm.

Despite the fact that the distances encoded in the weights
of the new edges of BG are only approximate, the distances
between the boundary nodes of BG computed at the end of
Step 3 are exact. The next lemma formally establishes this
fact.

Lemma 1. For any two boundary vertices v and w, the
distance between v and w in BG is equal to their distance
in G.

Proof: Let p = (v = x1, x2, . . . , xl = w) be a shortest
path in G and let (xb1 , xb2 , . . . , xbj ) be the subsequence of
all boundary vertices in p, i.e., 1 = b1 < · · · < bj = l
and there are no boundary vertices on p between xbi

and
xbi+1 . Hence p′ = (xb1 , xb2 , . . . , xbj

) is a path in BG. We
are going to estimate the length of p′.

Let h = (xbi , xbi+1) be an edge of p′. If xbi and xbi+1 are
from different components, then, by the definition of BG,
h is also an edge of G with the same weight as in BG. If
xbi

and xbi+1 are from the same component C (Figure 1),
then h corresponds to a subpath q = (xbi , xbi+1, . . . , xbi+1)
of p consisting of vertices from only C, by the assumption
that p′ contains all the boundary vertices of p. Hence, the
weight of h and the length of q are the same. By induction
on the number of the edges of p′, p and p′ have the same
length, which implies that the distance between v and w in
BG is no greater than the distance between them in G. The
reverse inequality is obtained in the same way, namely, by
showing that any path in BG can be transformed into a path
of the same length in G by replacing each virtual edge of
the former with the corresponding shortest path computed
in Step 2. The claim follows.

This step presents no apparent parallelism, since only
one task needs to be computed. This absence of parallelism
at this step may be a major bottleneck for a coarse-grain
parallel implementation as boundary graphs can be very

Cxbi

xbi+1

xbi−1

xbi+2

xbi+1

xbi+2

boundary vertices

non-boundary vertices

q

Figure 1. Illustration to the proof of Lemma 1. The shaded region
illustrates component C with the subpath q = (xbi

, xbi+1, . . . , xbi+1 )
of p inside it.

large. This issue can however be mitigated by applying
our current algorithm recursively on the boundary graph.
Boundary graphs are nevertheless denser than the original
graph with the addition of virtual edges at step 1. Boundary
graphs are therefore less easily partitioned than input graphs
- the number of edges cut per node for a given number of
components will be higher.

E. Step 4: Distances between non-boundary vertices

In Step 4 we compute distances where at least one
vertex is non-boundary using the information computed in
Steps 2 and 3. In order to compute the distance between
two non-boundary vertices vi and vj from (not necessarily
different) components Ci and Cj respectively, we need
to find boundary vertices bi and bj from components Ci

and Cj , respectively, that minimize the sum dist2(vi, bi) +
dist3(bi, bj) + dist2(bj , vj), where dist2 and dist3 are the
distances computed in Step 2 and Step 3, respectively. By
our analysis above, dist3 is the same as the distance in G, but
dist2 is not. We need therefore to prove that such a method
produces accurate distances in G.

Lemma 2. Let vi and vj be two vertices from different
components Ci and Cj , respectively. Define Bi = Ci ∩ B,
Bj = Cj ∩B, and

dist4(vi, vj) = min{dist2(vi, bi)+dist3(bi, bj)+dist2(bj , vj)
| bi ∈ Bi, bj ∈ Bj}. (1)

Then dist4(vi, vj) is equal to the distance in G between vi

and vj .

Proof: Let p be a shortest path in G between vi and
vj . Since vi and vj belong to different components, then p
will contain at least one vertex from Bi and at least one
vertex from Bj . Let bi be the first vertex on p from Bi



vi

bi

bj

vj

Ci Cj

p

Figure 2. Illustration to the proof of Lemma 2. Note that while in the
figure both vi and vj are non-boundary, the proof does not make such an
assumption.

and bj be the last vertex on Bj (Figure 2). Let p1 be the
portion of p between vi and bi, p2 be the portion between bi

and bj , and p3 – the portion between bj and vj . Since any
subpath of a shortest path is also a shortest path between
the corresponding endpoints, p1 is a shortest path in G
between vi and bi, i.e., |p1| = distG(vi, bi). Moreover, by
the definition of bi as the first boundary point of Ci on p,
p1 is entirely in Ci and hence |p1| = dist2(vi, bi). In the
same way one can prove that |p2| = dist2(bj , vj). Finally,
|p3| = distG(bi, bj) = dist3(bi, bj) by Lemma 1. Hence

|p| = |p1|+|p2|+|p3| = dist2(vi, bi)+dist3(bi, bj)+dist2(bj , vj).

By the definition of dist4(vi, vj) as a minimum over all
bi ∈ Bi, bj ∈ Bj , the last equality implies dist4(vi, vj) ≤
distG(vi, vj). But since dist4(vi, vj) is a length of a path
between vi and vj , while distG(vi, vj) is the length of a
shortest path, then dist4(vi, vj) ≥ distG(vi, vj). Combining
the last two inequalities we infer that none of them can be
a strict inequality, i.e., dist4(vi, vj) = distG(vi, vj).

Lemma 3. Let vi and vj be two vertices from component Ci.
Then distG(vi, vj) = min{dist2(vi, vj), dist4(vi, vj)}, where
dist4 is as defined in Lemma 2.

Proof: Consider the following two cases. If p leaves Ci,
then p should cross the boundary Bi at least twice. Define bi

and bj as the first and last vertex from Bi on p. Then exactly
the same arguments as in Lemma 2 apply to the three paths
into which bi and bj divide p. In this case distG(vi, vj) =
dist4(vi, vj). If p does not leave p, then Step 2 will compute
the accurate distance in G between vi and vj , and therefore
distG(vi, vj) = dist2(vi, vj).

The lemmas imply that the distances in G between all
pairs of vertices where at least one of the vertices is non-
boundary can be computed by using (eq:step4). Since we
don’t know which pair (bi, bj) of boundary nodes corre-
sponds to the minimum in (eq:step4), we have to try all
such pairs, resulting in total of |Bi||Bj | operations needed
for computing distG(vi, vj). For a graph with k components,
we need to compute the distances between pairs in any pair
of components; we therefore have k2−k independent tasks.
Components being of roughly equal sizes, these tasks also
represent the same amount of computations. This step is

Part 1

Part 2

Part 3

Part 4

Part 3
3

1

3

1

Other
 vertices

Boundary 
vertices

Boundary

Other

Other vertices

Figure 3. Adjacency matrix after reordering of the vertices. Vertices from
the same component are stored contiguously starting with boundary vertices
(in red).

the most computationally intensive, but presents massive,
already balanced, coarse-grain parallelism.

IV. METHOD

In this section, we first focus on how operations described
in the previous section translate in terms of data structure.
We then detail the two-level parallel aspect of our imple-
mentation. We finally describe the current main memory
bottleneck of our approach.

A. Relation to data structure

A simple way to represent a weighted graph is to use
an adjacency matrix. For very large graphs however, such
a memory intensive representation cannot be considered.
Instead, large sparse graphs are stored using lists; sub-
matrices, corresponding to sub-graphs, are extracted from
these lists. For simplicity reasons, we can however assume
that a large adjacency matrix representation is available
and keep in mind that sub-matrix extraction operations are
slightly more costly than they appear.

Partitioning the graph is performed using a k-way parti-
tioning routine from the METIS library [10]. Vertices are
then reordered so that vertices belonging to a same com-
ponent are numbered consecutively starting with boundary
vertices - see Figure 3.

Diagonal sub-matrices contain information about sub-
graphs for each component; non-diagonal sub-matrices con-
tain known shortest distances between components. Within
each diagonal sub-matrix, the top left sub-matrix contains
information about the sub-graph induces by boundary ver-
tices of the component; the bottom right sub_matrix contains
information about the sub-graph induced by non-boundary
vertices of the component and the rest of the diagonal sub-
matrix contains known shortest distances between boundary
and non-boundary vertices.

For step 1, diagonal sub-matrices are extracted; a Floyd-
Warshall approach is then used to compute shortest dis-
tances. The Floyd-Warshall algorithm guarantees that the
total number of operations for a single matrix solely depends
on the size of the matrix. Since all components of the graph



Figure 4. The boundary matrix, here in red, is scattered over the adjacency
matrix. Step 2 consits in reconstituting the boundary matrix and computing
shortest distances.

have roughly the same number of vertices, all diagonal sub-
matrices represent roughly the same amount of operations.

For step 2, the boundary matrix is extracted - see Figure 4.
We then apply the same algorithm recursively reducing the
number k of component at each iteration. Recursion stops
when k = 1.

For step 3, we compute shortest distances between every
pair of distinct components. This process corresponds to
filling non-diagonal sub-matrices. For two components I and
J , filling the associated, I to J , non-diagonal sub-matrix
requires information from three sub-matrices:
• the non-diagonal sub-matrix being filled. We are partic-

ularly interested in the part of the sub-matrix contain-
ing shortest distances between boundary vertices from
component I to boundary vertices from component J .

• the diagonal sub-matrix corresponding to component
I - located in the same row as the non-diagonal sub-
matrix being filled. We are particularly interested in the
part of this diagonal sub-matrix that contains shortest
distances from any vertex of component I to boundary
vertices.

• the diagonal sub-matrix corresponding to component J
- located in the same column as the non-diagonal sub-
matrix being filled. We are particularly interested in the
part of this diagonal sub-matrix that contains shortest
distances from boundary vertex of component J to any
vertex - see left of Figure 5.

Shortest distances from vertices from component I to
vertices from component J are obtained by multiplying
the three parts of sub-matrices - as shown on the right
of Figure 5 - where (+, ∗) operations are replaced with
(min, +) operations.

B. Parallel implementation

Our implementation specifically targets large clusters of
hybrid systems - possessing both a multicore CPU and

Part I

Part J

.

.

.

.  .  .
I

J

* *

d b2, j 

d b1,b2 d i , b1

Figure 5. Computations associated to each non-diagonal sub-matrix uses
data from 2 diagonal sub-matrices and part of the non-diagonal sub-matrix
itself. Computations are similar to matrix multiplications.

manycore GPUs. This implementation exploits parallelism
at two levels. At a coarse-grain level, large independent
tasks - corresponding to computations of diagonal and non-
daigonal sub-matrices - can be performed simultaneously on
different nodes of a cluster. At a fine-grain level, each task
is computed on a massively parallel GPU. Remaining CPU
cores handle tasks that are not suited for GPUs: input/output
file operations and communication with other nodes.

Coarse-grain parallelism: Steps 1 and 3 of our algorithm
exhibit interesting parallel properties: a large number of
balanced, independent tasks; k tasks for step 1 and k2 − k
for step 3. Using the MPI standard [11], these tasks are
distributed accross nodes of the cluster for simultaneous
computations. One master node is in charge of reading the
input graph file, calling the partitioning routine and sending
tasks to a number of slave nodes equal to the number of
available GPUs on the cluster. Depending on the cluster’s
topology, the number of master and slave nodes will not
match the number of physical nodes used on the cluster if
each cluster node contains more than one GPU.

For step 2, the large initial boundary matrix is computed
recursively using the same algorithm with decreasing values
for the number k of components. The amount of independent
tasks therefore decreases with k, until a single, smaller
boundary matrix is obtained and computed by a single slave
node.

Fine grain parallelism: Upon receiving a task from the
master node, each slave node then sends the corresponding
data to its GPU for computations, retrieves results and send
them back to the master node. Tasks are of two different
kinds: diagonal workloads, which consist in computing
shortest distances over a small subgraph, and non-diagonal
workloads, which consist in multiplying three matrices.

Computations of diagonal workloads are implemented
on the GPU using a blocked-recursive, Floyd-Warshall
approach developped by [6] and adapted for non-power
of 2 matrices. Non-diagonal workloads require less syn-
chronization and can be implemented using a fast matrix-
multiplication approach derived from [12] and adapted for
(min, +) operations.



In this configuration, each physical node on the cluster
makes use of as many CPU cores as there are available
GPUs. If more CPU cores are available than GPUs, compu-
tational power is still available. On slave nodes, remaining
CPU cores are used for outputting final results to disk. On
large clusters, communication between the master node and
slave nodes can become a bottleneck, leaving slave nodes
idle while waiting for the master node to be available. In
order to increase the availability of the master node, a single
CPU thread is used to initiate communications with slave
nodes while remaining CPU cores handle the rest of the
communications, updating data structures with temporary
results and outputting final results to disk.

C. Memory limitations

For very large input graphs, memory usage becomes an
issue. As stated previously, an entire adjacency matrix for
the graph cannot be allocated; the graph is instead kept in
memory as a list of edges, a much more memory-efficient
representation. Even with this efficient representation, tem-
porary sub-matrices need to be kept in memory: diagonal
sub-matrices and boundary matrices. When recursively com-
puting step 2, boundary matrices are output to files so as to
only keep a single boundary matrix in memory.

Final results for diagonal sub-matrices are only obtained
at the end of step 2. As soon as final values for these diagonal
sub-matrices are obtained, they are output to files; only
relevant parts are kept in memory for step 3; namely, parts of
these sub-matrices containing shortest distances from and to
boundary vertices. Shortest distances between non-boundary
vertices are thus discarded from main memory at the end of
step 2.

The current limiting factor in terms of memory usage
is the initial boundary matrix. The first boundary matrix
has to fit in main CPU memory. Section V discusses ways
to overcome this limitation. It is however probable that
prohibitive run-times or an amount of results too large to
process may become the limiting factor before main memory
usage does.

V. RESULTS AND PERSPECTIVES

In this section, we compare our implementation to two
parallel Dijkstra implementations. It is important to note that
our implementation allows graphs with negative edges - but
no negative cycles -, unlike Dijkstra based approaches.

In order to test our implementation, we generated random
graphs with increasing numbers of vertices, ranging from
1024 to 1024k. These graphs, generated using the LEDA
library [13], were made planar to ensure good partitioning
properties.

Computations were run on a cluster of more than 300
computer nodes; each node is equipped with two NVIDIA
C2090 GPUs, a 16 core Intel(R) Xeon(R) CPU E5-2670 0
@ 2.60GHz and 32 GB of RAM.
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Figure 6. Evolution of run times with respect to the number of vertices.
Two implementations are compared: our implementation using external
memory and the GPU Dijkstra implementation from [9]. Computations were
run using two GPUs on a single cluster node.

Our implementation handles instances up to 512k vertices
without using external memory. For the very last instance,
the use of external memory was required to fit in the 32
GB of main memory. We later refer to our implementation
without using external memory as “Part. APSP no EM” and
our implementation using external memory as “Part. APSP
EM”.

The GPU Dijkstra implementation from [9] is, to the
best of our knowledge, the only implementation that was
reported to solve APSP for graphs with up to 1024k vertices;
we later refer to this implementation as “GPU Dijkstra”.
This implementation parallelizes SSSP computations on a
single computer using two GPUs and a multicore CPU. In
order to compare this implementation to ours, we restricted
computations of both implementations to using only two
GPUs. Both implementations could therefore run on a single
cluster node; no communication between nodes were there-
fore required.

Figure 6 shows the runtimes for GPU Dijkstra and Part.
APSP EM for graphs with numbers of vertices ranging from
1024 to 1024k using only two GPUs. GPU Dikstra could not
compute the last two instances - 512k and 1024k vertices
- within the 10 hour limit enforced on the cluster. We can
see that our implementation is significantly faster than GPU
Dijkstra.

Figure 7 shows the evolution of the speedup of our
method without using external memory with respect to the
number of GPUs used for the computations. Speedups are
calculated using the run time obtained using only one GPU
as a reference. Computations were done for the 512k vertex
instance using the Part. APSP no I/O implementation. We
can see that coarse-grain parallelism is close to optimal up to
around 31 GPUs; almost no benefit can however be gained
from using more than about 63 GPUs. The reason for this
stagnation of the speedup above 63 GPUs is the saturation
of communication with the master node.

The scalability can be improved using a coarse-grain
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Figure 7. Evolution of speedups with respect to the number of GPUs. The
ideal scaling line is given as a reference.

parallelism approach that would relieve the master node
of some of its communication. A work-stealing approach,
for instance, would reduce the amount of communication
required for the master node by decentralizing some of
the memory transfers. A work-stealing approach is however
difficult to implement, due to the two-sided communication
scheme enforced by the MPI standard. [14] showed that such
an efficient approach was nevertheless feasible. This issue
could also be addressed by creating a hierarchy of master
nodes; some computations would be redundant between the
different master nodes - handling the main data structure -
but this would only represent a negligible fraction of the
overall workload.

Figure 8 shows a comparison between our two implemen-
tations and a distributed Dijkstra approach - later referred to
as CPU Dijkstra - for graphs ranging from 1024 to 1024k
vertices. The distributed Dijkstra approach was implemented
by dynamically distributing SSSP computations for each
vertex of the graph over every core of every available cluster
node. The Dijkstra-based implementation used is that of the
Boost C++ library [15]. This experiment is not intended
to compare directly the performances of 2 GPUs versus a
multicore CPU. Instead, we intend to show that our approach
is competitive with a distributed Dijkstra approach given a
fixed number of heterogeneous cluster nodes. The run times
presented in Figure 8 were obtained using 64 cluster nodes.
We can see that our version using external memory obtains
very similar run times to that of the distributed Dijkstra
version, while allowing graphs with negative edges to be
computed. Our version without external memory is however
significantly faster.
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