
HAL Id: hal-00936932
https://inria.hal.science/hal-00936932v1
Submitted on 27 Jan 2014 (v1), last revised 3 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Choice of Teachers, Learning Strategies and
Goals for a Socially Guided Intrinsic Motivation Learner

Sao Mai Nguyen, Pierre-Yves Oudeyer

To cite this version:
Sao Mai Nguyen, Pierre-Yves Oudeyer. Active Choice of Teachers, Learning Strategies and Goals for
a Socially Guided Intrinsic Motivation Learner. Paladyn: Journal of Behavioral Robotics, 2012, 3 (3),
pp.136-146. �10.2478/s13230-013-0110-z�. �hal-00936932v1�

https://inria.hal.science/hal-00936932v1
https://hal.archives-ouvertes.fr


S. M. Nguyen and P.-Y. Oudeyer. Active Choice of Teachers, Learning Strategies and Goals for a Socially Guided Intrinsic Motivation Learner,

in Paladyn Journal of Behavioral Robotics, September 2012, Volume 3, Issue 3, pp 136-146 .

Active Choice of Teachers, Learning Strategies and Goals for
a Socially Guided Intrinsic Motivation Learner

Sao Mai Nguyen1 ∗,
Pierre-Yves Oudeyer1 †

1 Flowers Team, INRIA and
ENSTA ParisTech, France,

200 avenue de la Vieille Tour ,
33 405 Talence Cedex, France

Abstract
We present an active learning architecture that allows a robot to actively learn which data
collection strategy is most efficient for acquiring motor skills to achieve multiple outcomes,
and generalise over its experience to achieve new outcomes. The robot explores its envi-
ronment both via interactive learning and goal-babbling. It learns at the same time when,
who and what to actively imitate from several available teachers, and learns when not to
use social guidance but use active goal-oriented self-exploration. This is formalised in the
framework of life-long strategic learning.
The proposed architecture, called Socially Guided Intrinsic Motivation with Active Choice of
Teacher and Strategy (SGIM-ACTS), relies on hierarchical active decisions of what and how
to learn driven by empirical evaluation of learning progress for each learning strategy. We
illustrate with an experiment where a simulated robot learns to control its arm for realising
two kinds of different outcomes. It has to choose actively and hierarchically at each learning
episode: 1) what to learn: which outcome is most interesting to select as a goal to focus
on for goal-directed exploration; 2) how to learn: which data collection strategy to use
among self-exploration, mimicry and emulation; 3) once he has decided when and what to
imitate by choosing mimicry or emulation, then he has to choose who to imitate, from a set
of different teachers. We show that SGIM-ACTS learns significantly more efficiently than
using single learning strategies, and coherently selects the best strategy with respect to the
chosen outcome, taking advantage of the available teachers (with different levels of skills).

Keywords
strategic learner · imitation learning · mimicry · emulation · artificial curiosity · intrinsic
motivation · interactive learner · active learning · goal babbling · robot skill learning

1. Strategic Active Learning for Life-
Long Acquisition of Multiple Skills

Life-long learning by robots to acquire multiple skills in un-
structured environments poses challenges of not only predicting

∗E-mail: nguyensmai at gmail.com
†E-mail: pierre-yves.oudeyer at inria.fr

the consequences or outcomes of their actions on the environ-
ment, but also learning the causal effectiveness of their actions
for varied outcomes. The set of outcomes can be in large and
high-dimensional sensorimotor spaces, while the physical em-
bedding of robots allows only limited time for collecting training
data. The learning agent has to decide for instance in which
order he should focus on learning how to achieve the different
outcomes, how much time he can spend to learn to achieve an
outcome or which data collection strategy to use for learning to
achieve a given outcome.
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Figure 1: An arm, described by its angle φ, is controlled by a motor primitive
with 14 continuous parameters (taking bounded values) that determine the

evolution of its acceleration φ̈ . A ball is held by the arm and then released at
the end of the motion. The objective of the robot is to learn the mapping

between the parameters of the motor primitive and two types of outcomes he can
produce: a ball thrown at distance x and height h, or a ball placed at the arm tip

at angle φ with velocity smaller than |vmax |.

1.1. Active Learning for Producing Varied Out-
comes with Multiple Data Collection Strategies
These questions can be formalised under the notion of strategic
learning [27].
One perspective is learning to achieve varied outcomes. It aims
at selecting which outcome to spend time on. A typical classi-
fication was proposed in [35, 36] where active learning methods
improved the overall quality of the learning. In sequential prob-
lems as in robotics, producing an outcome has been modelled as
a local predictive forward model [33], an option [7], or a region
in a parameterised goal/option space [6]. In these works each
sampling of an outcome entails a cost. The learning agent has
to decide which outcome to explore/observe next. However most
studies using this perspective do not consider several strategies.
Another perspective is learning how to learn, by making ex-
plicit the choice and dependence of the learning performance
on the method. For instance, [5] selects among different learn-
ing strategies depending on the results for different outcomes.
However most studies using this perspective consider a single
outcome.
Indeed, these works have not addressed the learning of both how
to learn and what to learn, to select at the same time which out-
come to spend time on, and which learning method to use. Only
[27] studies the framework of these questions, and only exam-
ined a toy example with discrete and finite number of states,
outcomes and strategies. In initial work to address learning for
varied outcomes with multiple methods, we proposed the So-
cially Guided Intrinsic Motivation by Demonstration (SGIM-D)
algorithm which uses both:

· socially guided exploration, especially programming by
demonstration [8], and
· intrinsically motivated exploration, which are active

learning algorithms based on measures of the evolution
of the learning performance [32]

Forward 

Model

Inverse 

Model

Reachable 

Outcome Space 

π!1

π!2 π!3

"1

"2

"3

Space of 
Outcomes

Ϛ1

Ϛ2

"4

Mimicry

Policy Space 
of Learner

Policy Space 
of Teacher

π!4

#

T

#’

Emulation

Figure 2: Representation of the problem. The environment can evolve to an
outcome state τ by means of the learner’s policy of parameter θ or the teacher’s
actions ζ . The learner and the teacher have a priori different policy spaces. The
learner estimates L−1 : T 7→ Π. By emulation or mimicry, the learner can take
advantage of the demonstrations (ζ ,τd) of the teacher to improve its estimation

L−1 .

to reach goals in a continuous outcome space, in the case of
a complex and continuous environment. High-dimensional envi-
ronments can be handled by SGIM-D, designed for multiple out-
comes in a continuous outcome space. In [29], SGIM-D learned
to manipulate a fishing rod with a 6-dof arm, i.e. to place the
float on the surface of the water, which is described as a 2d
continuous outcome space. The robotic arm was controlled by
a motor primitive with 24 continuous parameters that determine
the trajectory of its joint positions. The robot learned which
action a to perform for a given goal position on the surface of
the water yg, where the hook should reach when falling into the
water. However, the outcomes considered belonged to only one
type of outcomes. Moreover, although SGIM-D has 2 learn-
ing strategies, it is a passive learner which only imitates when
the teacher decides to give a demonstration. SGIM-D does not
learn which method enables it to perform best.
In this paper, we address these two limitations. We study how
a learning agent can achieve varied outcomes in structured con-
tinuous outcome spaces, even with outcomes of different types,
and how he can learn for those various outcomes which strat-
egy to adopt among 1) active self-exploration, 2) emulation of a
teacher actively selected among available teachers, 3) mimicry
of an actively selected teacher. We propose an algorithm for ac-
tively choosing the appropriate strategy, among several strate-
gies.

1.2. Formalisation
Let us consider an agent learning motor skills, i.e. the mapping
between an outcome space and a policy space. As an illustra-
tion, let us imagine the agent learning how to play tennis, He
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maps how the ball behaves (outcome) with respect to the move-
ment of his racket (policy). He thus learns a forward model M
to predict where the ball bounces given the movement of his
racket. More importantly, he builds an inverse model L−1 to
control his racket in order to make the ball bounce at a desired
position. A good player knows which outcomes are feasible and
knows at least one policy to produce any possible outcome: he
can place the ball anywhere on the court. Ideally, he builds an
inverse model L−1 such that M(L−1) is identity.
More formally, we define an outcome space which may comprise
of outcomes of different types and different dimensionalities. For
tennis, outcomes can be the bouncing positions, spin angles ...
We only assume that they can be parameterised by parameters
τ ∈ T and that we can define a distance measure J on T × T .
A policy πθ is described by motor primitives parameterised by
θ ∈ Π. Its outcome is M(θ), where the mapping M : Π → T
describes the environment. For the tennis player, the policy
controls the movement of his arm and racket and M represents
the physical equations for the ball trajectory. The performance
of a policy πθ at completing an outcome τ is measured by the
distance between τ and the outcome of πθ : J(τ,M(θ)).
The agent focuses on learning the inverse model and builds its
estimate L−1 : T → Π. We note that M−1, the inverse of M
might not be a function as M might be redundant, whereas our
learner builds a function L−1 that finds at least one adequate
policy to complete every outcome τ . In sum, it endeavours to
minimise with respect to L−1 :

I =
∫

τ∈T

P(τ)J(τ,M(L−1(τ)))dτ (1)

where P(τ) is a probability density distribution over T . A priori
unknown to the learner, P(τ) can describe the probability of τ
occurring or the reachable space or a region of interest.
We assume that T can be partitioned into subspaces where the
outcomes are related, and in these subspaces our parametri-
sation allows a smooth variation of τ 7→ J(τ,M(θ)), ∀θ with
respect to τ most of the time. This partition, initially unknown
to the agent, needs to be learned.
Note that we have described our method without specifying a
particular choice of policy representation, learning algorithm,
action or outcome space properties. These designs can indeed
be decided according to the application at hand. In particu-
lar, outcomes can be of different types and dimensionalities. In
this case, we note Ti the subspaces of T corresponding to the
different types of outcome and T = ∪Ti.

1.3. Our Approach
To solve the problem formalised above, we propose a system,
called Socially Guided Intrinsic Motivation with Active Choice

of Teacher and Strategy (SGIM-ACTS) that allows an on-
line interactive learning of inverse models in continuous high-
dimensional robotic sensorimotor spaces with multiple teachers,
and learning strategies. SGIM-ACTS learns various outcomes
with different types of outcomes, and generalises from sampled
data to continuous sets of outcomes.
Technically, we adopt a method of generalisation of policies for
new outcomes similar to [15, 18]. Whereas in their approaches
the algorithms use a pool of examples given by the teacher pre-
set from the beginning of the experiment to learn outcomes spec-
ified by the engineer of the robot, in a batch learning method; in
our case, the SGIM-ACTS algorithm decides by itself which out-
comes it needs to learn more to better generalise for the whole
outcome space, like in [6, 7, 33]. Moreover, SGIM-ACTS actively
requests the teacher’s demonstrations online, by choosing on-
line the best learning strategy, similarly to [5], except that we do
not learn with a discrete outcome space for a classification prob-
lem, but with a continuous outcome space. SGIM-ACTS also
interacts with several teachers and uses several social learning
methods, in an interactive learning approach.
Our active learning approach is inspired by:

· intrinsic motivation in psychology [38] which triggers
spontaneous exploration and curiosity in humans, which
recently led to novel robotic and machine active learn-
ing methods which outperform traditional active learning
methods [6, 24]

· teleological learning [14] which considers actions as goal-
oriented, and recently led to efficient goal babbling meth-
ods in robotics [6, 37]

· psychological theories for socially guided learning [12,
16, 42], as detailed in the next section.

After this formal description of our approach, we analyse our
point of view on social guidance in section 2. Then, we detail
the proposed algorithm SGIM-ACTS in section 3, before testing
it on a problem to learn how to throw and place a ball (fig. 1)
in section 4.

2. Social Guidance
2.1. Interactive Learning
An interactive learner who not only listens to the teacher, but
actively requests for the information it needs and when it needs
help, has been shown to be a fundamental aspect of social learn-
ing [13, 31, 40]. Under the interactive learning approach, the
robot can combine programming by demonstration, learning by
exploration and tutor guidance. Several works in interactive
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learning have considered extra reinforcement signals [41], ac-
tion requests [17, 25] or disambiguation among actions [13]. In
[10] the comparison of a robot that has the option to ask the
user for feedback, to the passive robot, shows a better accu-
racy and fewer demonstrations. Therefore, requesting demon-
strations when it is needed can lessen the dependence on the
teacher and reduce the quantity of the demonstrations required.
This approach is the most beneficial to the learner, for the infor-
mation arrives as it needs it, and to the teacher who no longer
needs to monitor the learning process.
For an agent learning motor skills, i.e. the mapping between
policies and outcomes, let us examine the type of social guidance
that a learner can get as reviewed in [3, 8, 26, 39] with respect
to: what, how, when and who [16]. In this section, we note siH
the information flow from the human to the robot.

2.2. What?
Let us examine the target of the information given by the teacher,
or mathematically speaking, the space on which he operates.
This can be either the policy or outcome spaces, or combinations
of them.

2.2.1. Policy Space
Many social learning studies target the policy parameter space
Π. For instance, in programming by demonstration (LbD), siH
shows the right policy to perform in order to reach a given goal.
As an illustration, when teaching how to play tennis, your coach
could show you how to hit a backhand by a demonstration, or
even by taking your hand and directing your movement. This
approach relates to two levels of social learning: mimicry, in
which the learner copies the policies of others without an ap-
preciation of their purpose, and imitation, in which the learner
reproduces the policies and the changes in the environment, as
formalised in [12, 26, 43]. The literature often considers that
targeting the policy space is the most directive and efficient
method. However, it relies on the human teacher’s expertise,
which bears limitations such as ambiguity, imprecision, under-
optimality or the correspondence problem.

2.2.2. Outcome Space
The second kind of information is about possible outcomes
τ ∈ T , and is related to goal-directed exploration, where the
learner focuses on discovering different outcomes instead of dif-
ferent ways of entailing the same outcome. Psychologically
speaking, this case pertains to the emulation level of social
learning, where the observer witnesses someone produce a re-
sult on an object, but then employs his own policy repertoire to
reproduce the result, as formalised in [12, 26, 28, 43]. During our
tennis training, your coach could ask you to hit with the ball

the right corner of the court, wherever you received the ball,
whichever shot you use. Goal-directed approaches allow the
teacher to reset goal outcomes [1], to request the execution of
outcomes [40] or to label outcomes [40, 41]. The learner can in-
fer from the demonstrations the goal outcome by positional and
force profiles to iron and open doors [21], or by using inverse
reinforcement learning [23]. This approach is essential to learn
multiple outcomes, and all the more interesting as it is inspired
by psychological behaviours [14, 42, 43]. The drawback is that
the learning needs the actions repertoire to be large enough to
be used to reach various goals, before it improves.
As we want the learner to accomplish not only a single outcome
but to be efficient on a large variety of goals, we choose to boot-
strap its learning with information targeting the outcome space.
Furthermore, we also want the learning process to benefit from
the social interaction early. So that the learner builds its ac-
tion repertoire quickly, we choose to target the policy parameter
space Π too.

2.3. When?
The timing of the interaction varies with respect to its general
activity during the whole learning process. The rhythm of social
interaction varies considerably among studies of social learning:

· At a fixed frequency: In classical imitation learning, the
learner uses a demonstration to improve its learning at
every policy it performs [1, 2, 11]. This solution is ill-
adapted to the teacher’s availability or the needs of the
learner who requires more support in difficult situations.

· Beginning of learning: A limited number of examples are
given to initialise the learning, as a basic behaviours
repertoire [1, 2], or a sample behaviour to be optimised
[20, 34]. The learner is endowed with some basic compe-
tence before self-exploration. Nevertheless, if the inter-
actions are restricted to the beginning, the learner could
face difficulties adapting to changes in the environment.

· At the teacher’s initiative: The teacher alone decides
when he interacts with the robot [40], by for instance
giving corrections when seeing errors [10, 19]. Neverthe-
less, it still is time consuming as he needs to monitor the
robot’s errors to give adequate information to the learner.

· At the learner’s initiative: The interactive learner can re-
quest for the teacher’s help in an ambiguous [10, 13] or
unknown [40] situation, or only reproduces the observa-
tions when the observed outcome matches its goal during
goal-based imitation or mimicking [11]. This approach is
the most beneficial to the learner, for the information ar-
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rives as it needs them, and the teacher needs not monitor
the process.

These 4 types can be classified into 2 larger groups:

· batch learning, where the data provided to the learner
is decided before the learning phase, and is given in-
dependently of the learning progress, generally in the
beginning of the learning phase.

· interactive learning, where the user interacts with the
incrementally learning robot, either at the teacher’s or
the learner’s initiative.

2.4. Who?
While most social guidance studies only consider a single
teacher, in natural environments, a household robot in reality in-
teracts with several users. Moreover, being able to request help
to different experts is also an efficient way to address the prob-
lem of the reliability of the teacher. Imitation learning studies
often rely on the quality of the demonstrations, whereas in re-
ality a teacher can be performant for some outcomes but not for
others. Demonstrations can be ambiguous, unsuccessful or sub-
optimal in certain areas. Like students who learn from different
teachers who are experts in the different topics of a curriculum,
a robot learner should be able to determine its best teacher for
the different outcomes it wants to achieve.
In this work, we consider the possibility of a learner to observe
and imitate from several teachers, as much like a child in a
natural environment would observe and imitate several adults
in his surrounding throughout his development. In this case,
choosing whom to imitate, recognising who is the expert in the
outcomes we need to make progress, constitutes an important
strategy choice.

2.5. Actively Learning When, Who and What
to Imitate
For the model and experiments presented below, our choice of
social guidance among this listing of social learning is:

· What: We opted for an information flow targeting
both policy and outcome spaces, to enable the biggest
progress for the learner. It can imitate to reproduce either
a demonstrated policy or outcome. Therefore, our learner
can decide whether to mimic and emulate by learning
what is the most interesting information.

· When: Interactive learning at the learner’s initiative

seems the most natural interaction approach, the most ef-
ficient for learning and less costly for the teacher than if

he would have to monitor the learner’s progress to adapt
his demonstrations. The robot has to learn when it is
useful to imitate.

· Who: Interactive learning where the learner can choose

who to interact with and to whom to ask for help, is an
important strategy choice in learning.

Thus, it learns to answer the four main questions of imitation
learning: ”what, how, when and who to imitate” [9, 16] at the
same time. We address active learning for varied outcomes with
multiple strategies, multiple teachers, with a structured con-
tinuous outcome space (embedding sub-spaces with different
properties). The strategies we consider are autonomous self-
exploration, emulation and mimicking, by interactive learning
with several teachers. Hereafter we describe the design of our
SGIM-ACTS (Socially Guided Intrinsic Motivation with Ac-
tive Choice of Teacher and Strategy) algorithm. Then we show
through an illustration experiment that SGIM-ACTS efficiently
learns to realise different types of outcomes in continuous out-
come spaces, and it coherently selects the right teacher to learn
from.

3. Algorithm Description
In this section, we describe the SGIM-ACTS architecture by
giving a behavioural outline in section 3.1, before describing its
general structure in section 3.2. We then detail the different
functions in sections 3.3 and 3.4. The overall architecture is
summarised in Algorithm 3.1 and is illustrated in fig. 3 .

3.1. Architecture Outline
SGIM-ACTS is an architecture that merges intrinsically mo-
tivated self-exploration with interactive learning as socially
guided exploration. In the latter case, a teacher performs an
observed trajectory ζ which achieves an outcome τd. Note that
the observed trajectory might be impossible for the learner to
re-execute, and he can only approach it best with a policy πθd .
The agent learns to achieve different types of outcomes by ac-
tively choosing which outcomes to focus on and set as goals,
which data collection strategy to adopt and to which teacher
to ask for help. It learns local inverse and forward models in
complex, redundant and continuous spaces.
SGIM-ACTS learns by episodes during which it actively
chooses simultaneously an outcome τg ∈ T to reach and a
learning strategy with a specific teacher (cf. 3.4.3). Its choice
σ is selected between : intrinsically motivated exploration,
mimicry from teacher 1, emulation of teacher 1, mimicry from
teacher 2, emulation of teacher 2 ....
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Algorithm 3.1 SGIM-ACTS

Input: the different strategies σ1, ...σn.
Initialization: partition of outcome space R ← singleton T
Initialization: episodic memory (collection of produced outcomes)
Memo ← empty
loop

τi, σ ← Select Goal Outcome and Strategy(R)
if σ = Mimic teacher i strategy then

(ζd, τd)← ask and observe demonstration to teacher i.
γ1 ← Competence for τg
Memo ← Mimic Action(ζd)
Update L−1 with collected data Memo
γ2 ← Competence for τg

else if σ = Emulate teacher i strategy then

(ζd, τd)← ask and observe demonstration to teacher i.
Emulation: τg ← τd
γ1 ← Competence for τg
Memo ← Goal-Directed Policy Optimisation(τg)
Update L−1 with collected data Memo
γ2 ← Competence for τg

else

σ = Intrinsic Motivation strategy

τg ← τi
γ1 ← Competence for τg
Memo ← Goal-Directed Policy Optimisation(τg)
Update L−1 with collected data Memo
γ2 ← Competence for τg

end if

nbA ← number of new episodes in Memo
prog ← 2(sig(αp ∗ γ2−γ1|Ti |·nbA

)− 1)
R ← Update Outcome and Strategy Interest Mapping(R,Memo, τg, prog, σ )

end loop

In an episode under a mimicking strategy (fig. 3), our SGIM-
ACTS learner actively self-generates a goal τg where its com-
petence improvement is maximal (cf. 3.4.3). The SGIM-ACTS
learner explores preferentially goal outcomes easy to reach and
where it makes progress the fastest. The selected teacher an-
swers its request with a demonstration [ζd, τd] to produce an
outcome τd that is closest to τg (cf. 3.3.1). The robot mimics
the teacher to reproduce ζd, for a fixed duration, by performing
policies πθ which are small variations of an approximation of ζd.
In an episode under an emulation strategy (fig. 3), our SGIM-
ACTS learner observes from the selected teacher a demonstra-
tion [ζd, τd]. It tries different policies using goal-directed optimi-
sation algorithms to approach the observed outcome τd, without
taking into account the demonstrated policy ζd. It re-uses and
optimises its policy repertoire built through its past autonomous
and socially guided explorations (cf. 3.3.2). The episode ends
after a fixed duration.
In an episode under the intrinsic motivation strategy (fig. 3),
it explores autonomously following the SAGG-RIAC algorithm
[6]. It actively self-generates a goal τg where its competence
improvement is maximal (cf. 3.4.3), as in the mimicking strategy.
Then, it explores which policy πθ can achieve τg best. It tries
different policies to approach the self-determined outcome τg,

as in the emulation strategy (cf. 3.3.2). The episode ends after a
fixed duration. The intrinsic motivation and emulation strategies
differ mainly by the way the goal outcome is chosen.
An extensive study of the role of these different learning strate-
gies can be found in [30]. Thus the mimicry exploration in-
creases the learner’s policy repertoire on which to build up
emulation and self-exploration, while biasing the policy space
exploration. Demonstrations with structured policy sets, similar
policy shapes, bias the policy space exploration to interesting
subspaces, that allow the robot to overcome high-dimensionality
and redundancy issues and interpolate to generalise in contin-
uous outcome spaces. With emulation learning, the teacher
influences the exploration of the outcome space. He can hinder
the exploration of subspaces attracting the learner’s attention
to other subspaces. On the contrary, he can encourage their
exploration by making demonstrations in those subspaces. Self-
exploration is essential to build up on these demonstrations to
overcome correspondence problems and collect more data to ac-
quire better precision according to the embodiment of the robot.
This behavioural description of SGIM-ACTS is followed in the
next section by the description of its architecture.

3.2. Hierarchical Structure
SGIM-ACTS improves its estimation L−1 to minimise I =∫
τ
P(τ)J(τ,M(L−1(τ)))dτ by exploring with the different strate-

gies the outcome and policy spaces. Its architecture is separated
into three levels:

· A Strategy Exploration level which decides actively which
learning strategy to use between intrinsic motivation, em-
ulation and mimicry, and which teacher to ask for demon-
strations (Select Goal Outcome and Strategy). To moti-
vate its choice, it maps T in terms of interest level for
each strategy (Outcome and Strategy Interest Mapping)
to keep track which strategy and which subspace of T
leads to the best learning progress.

· An Outcome Space Exploration level which minimises I
by exploring T. It decides actively which outcome τg to
focus on, to minimise J(τg,M(L−1(τg))), according to the
adopted strategy. In the case of an emulation strategy,
it sets the observed outcome of the demonstration τd as
a goal. In the case of mimicry and intrinsic motivation
strategies, it self-determines a goal τg selected by the
Select Goal Outcome and Strategy function.

· A Policy Space Exploration level which explores the pol-
icy parameters space Π to improve its estimation of J and
estimate the inverse mapping L−1(τg). With the mimicry
learning strategy, it mimics the demonstrated trajectory
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pertain to the strategy, the outcome space and the policy space exploration respectively.

ζd by the chosen teacher to estimate J around that lo-
cality (Mimicry). With the emulation and autonomous
exploration strategy, the Goal-Directed Policy Optimi-

sation function minimises J(τg,M(θ)) with respect to θ.
It attempts to reach the goals τg set by the Strategy and
Outcome Space Exploration level, and gets a better es-
timate of J that it can use later on to reach other goals.
It finally returns to the Strategy and Outcome Space Ex-
ploration level the measure of competence progress for
reaching τg or τd.

The exploration in the three levels is the key to the robustness
of SGIM-ACTS in high dimensional policy spaces.

3.3. Policy Space Exploration
3.3.1. Mimicry
This function tries to mimic a demonstration (ζd, τd) with policy
parameters θim = θd+θrand with a random movement parameter
variation |θrand| < ε and πθd is the closest policy to reproduce
ζd. θd is computed by minimising over θ the distance between
ζd and the motor primitives πθ . This function thus makes an esti-
mate of J(τd,M(θ)) in the locality of θd. After a short fixed num-
ber of times, SGIM-ACTS computes its competence at reaching
the goal τd.

3.3.2. Goal-Directed Policy Optimisation
This function searches for policies πθ that guide the system
toward the goal τg by 1) building local models of J during ex-
ploration that can be re-used for later goals and 2) updating its
estimated inverse model L−1. In the experiments below, explo-
ration mixes local optimisation with the Nelder-Mead simplex
algorithm [22] and global random exploration to avoid local min-
ima. The measures are used to build memory-based local direct

and inverse models, using interpolation and more specifically
locally weighted learning with a gaussian kernel such as pre-
sented in [4].

3.4. Strategy and Outcome Space Exploration
3.4.1. Emulation
In the emulation strategy, the learner explores outcomes τd that
he observed from the demonstrations: τg ← τd. The learner
tries to achieve τd by goal-oriented policy optimisation, which
allows data collection and updating of L−1.

3.4.2. Outcome and Strategy Interest Mapping
T is partitioned according to interest levels. We note R =
{Ri, T = ∪iRi} a partition of T . For each outcome τ explored
with strategy σ , the learner evaluates its competence progress,
where competence measure assesses how close it can reach τ:
γ = J(τ,M(L−1(τ))). A high value of γ means a good competence
at reaching the goal yg by strategy σ .
For each episode, it can compute its competence for the goal
outcome at the beginning of the episode γ1 and the end of the
episode γ2 after trying nbA movements and measure its compe-
tence progress:

prog = 2(sig(αp ∗
γ1 − γ2
|Ti| · nbA

)− 1) with sig(x) = ex + e−x

2 (2)

where αp is a constant and |Ti| is the size of the subspace Ti.
T is partitioned so as to maximally discriminate areas according
to their competence progress, as described in Algorithm 3.2 and
[6]. For each strategy σ , we define a cost κ(σ ), which are weights
for the computation of the interest of each region of the outcome
space. κ(σ ) represents the preference of the teachers to help the
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Algorithm 3.2 [R] = Update Outcome and Strategy Interest

Mapping(R,Memo, τg, progressg, σ )
input: R: set of regions Rn and corresponding interestRn (σ ) for each
strategy σ .
input: τg, progressg: goal outcome of the episode and its progress
measure.
input: Memo: the set of all observed outcomes during the episode
and their progress measures (τr , progressr ).
input: σ : strategy and teacher used during the episode.
parameter: gMax : the maximal number of elements inside a region.
parameter: δ : a time window used to compute the interest.
for all (τ, progress) ∈ {Memo, (τg, progressg)} do

Find the region Rn ∈ R such that τ ∈ Rn.
Add progress in Rn(σ ), the list of competence progress measures
of experiments τ ∈ Rn with strategy σ .
Compute the new value of competence progress of Rn(σ ):

interestRn (σ ) = mean
|Rn|
i=|Rn |−δprogressi

κ(σ )
if |Rn(σ )| > gmax then

R ← Split Rn.
end if

end for

return R

robot or not, or the cost in time and energy ... of each strategy,
and in this study κ(σ ) are set to arbitrary constant values.
We compute the interest as the local competence progress, over

a sliding time window of the δ most recent goals attempted

inside Ri with strategy σ which builds the list of competence
progress measures Ri(σ ) = {progress1, ...progress|Ri(σ )|}:

interestRi (σ ) = mean
|Ri(σ )|
j=|Ri(σ )|−δprogressj

κ(σ ) (3)

The partition of T is done recursively and so as to maximally
discriminate areas according to their levels of interest. A split is
triggered once a number of outcomes gmax has been attempted
inside Rn with the same strategy σ . The split separates areas of
different interest levels and different reaching difficulties. The
split of a region Rn into Rn+1 and Rn+2 is done by selecting
among m randomly generated splits, a split dimension j ∈ |T |

and then a position vj (we suppose that Rn ⊂ Ti ⊂ T with Ti a
n-dimensional space) such that:

· All the τ ∈ Rn+1 have a jth component smaller than vj;

· All the τ ∈ Rn+2 have a jth component higher than vj;

· It maximises the quantity Qual(j, v j) = |Rn+1|.|Rn+2|
|interestRn+1((σ ))− interestRn+2 (σ )|, where |Ri| is the size
of the region Ri;

3.4.3. Select Goal Outcome and Strategy
In order to balance exploitation and exploration, the next goal
outcome and strategy are selected according to one of the 3
modes, chosen stochastically with respectively probabilities p1,
p2 and p3:

· mode 1: choose σ and τ ∈ T randomly. It ensures a
minimum of exploration of the full strategy and outcome
spaces.
· mode 2: choose the region Rn(σ ) and thus the strategy
σ with a probability proportional to its interest value
interestRn (σ ):
Pn(σ ) = interestRn (σ )− min(interestRi )∑|Rn|

i=1 interestRi (σ )− min(interestRi )
(4)

A outcome τ is then generated randomly inside Rn. This
mode uses exploitation to choose the region with highest
interest measure.
· mode 3: the strategy and regions are selected like in

mode 2, but the outcome τ ∈ Rn is generated close to
the already experimented one which received the lowest
competence estimation. This mode also uses exploitation
to choose the best outcome and strategy with respect to
interest measures.

We illustrate in the following section this hierarchical algorithm
through an illustration example where a robot learns to throw
a ball or to place it at different angles with 7 strategies: in-
trinsically motivated exploration, mimicry from 3 teachers and
emulation from 3 teachers.

4. Throwing and Placing a Ball
4.1. Experimental Setup
In our simulated experimental setup, we have a 1 degree-of-
freedom arm place a ball at different angles or throw the ball
by controlling its angular acceleration φ̈ (fig. 1). The time
evolution of its angular acceleration is described with motor
primitives determined by 14 parameters. Π ⊂ R

14 as described
in 4.1.1. The outcome space is composed of 2 types of outcomes
T = T1 ∪ T2, that we detail in 4.1.2 and 4.1.3.

4.1.1. Policy Parameter Space
Starting from angle φ = 0, the robot can control its angular ac-
celeration φ̈. Its movement is parameterised by (φ̈1, t1, ...φ̈7, t7)
which defines the acceleration of the arm for the 7 durations ti.
It thus defines φ̈(t) as a piecewise constant function. The policy
parameter space is arbitrarily set to a 14 dimensional space.
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T1 T2 T3

R1 R2

R3 R4

R5 R10

R6 R7
R8

R9

Self-exploration Strategy

Mimicry of Teacher 1 Strategy

Emulation of Teacher 2 Strategy

Task Space

Selected Region and Strategy

Figure 4: The selection of outcome and strategy is based on a partition of the outcome space with respect to different
competence progress levels. We illustrate with the case of an outcome space of 3 different types of outcomes. T = T1 ∪ T2 ∪ T3

where T1 ⊂ R
2, T2 ⊂ R and T3 ⊂ R

3. T is partitioned in regions Ri to which are associated measures of competences γ for
each strategy. The ”Select Goal Outcome and Strategy” function chooses the (region, strategy) pair that makes the most

competence progress.

4.1.2. Throwing Outcomes
The first type of outcomes is the different distance x and height h
at which the ball B can be thrown. T1 = {(x, h)} is a continuous
space of dimension 2. The ball, initially in the robot’s hand
is first accelerated by the robot arm, and then automatically
released:

· at position ~OBt=0 which is the position of the tip of the
arm,

· with velocity d ~OB
dt t=0 which magnitude is the velocity of

the arm, and which direction is the tangent of the arm
movement.

Then, the ball falls under gravity force, described by the equa-
tion:

~OBt = ~g2 · t
2 + d

~OB

dt t=0
· t + ~OBt=0, (5)

where ~g is the gravity force. x is therefore computed for timpact ,
the time when the ball touches the ground, or in other words
the solution to the 2nd polynomial equation:

−g

2 · t
2 + dz
dt t=0

· t + zt=0 = 0 (6)

The maximum height is also directly computed by equation:

h = zt=0 + ( dOB
dt t=0)2

2g ; (7)

To make the throwing less trivial, we also added a wall as an
obstacle at x= 10. The ball can bounce on the wall using an
immobile wall model and elastic collision.

4.1.3. Placing Outcomes
The second type of outcomes is placing a ball at different angles
φ. Therefore T2 is of dimension 1. To achieve an outcome in T2,
the robot has to stop its arm in a direction φ before releasing
the ball, i.e. it learns to reach φ at a small velocity |v | < |vmax |.
Any policy would move the arm to a final angle φ, but to ”place”
the ball at an angle, it also needs to reach a velocity smaller
than |vmax |. Therefore placing a ball is difficult.
The robot learns which arm movement it needs to perform to ei-
ther place at a given angle φ or to throw a ball at a given height
and distance. Mathematically speaking, it learns highly redun-
dant mappings between a 14-dimensional policy space and a
union of a 1D and a 2D continuous outcome spaces.
In our experimental setup, the outcome space is thus the union
of two continuous spaces of different dimensionalities, related
to throwing and placing skills, which makes it complex because
of the continuous and composite nature of the space. The com-
plexity of the placing of the ball depends on the physics of the
body and on the structure of motor commands. We choose to
control the robot by angular acceleration to emphasise the dif-
ference in the ease of control between the ”throwing outcomes”
which require rather a velocity control, and the ”placing out-
comes” which require rather a position control. Given the motor
control by acceleration and the encoding of motor primitives,
the placing outcomes are thus more difficult to achieve than the
throwing outcomes.

4.2. Several Teachers and Strategies
We create simulated teachers by building 3 demonstration sets
from which to pick a random demonstration when asked by the
learner :

· teacher 1 has learned how to throw a ball with SAGG-
RIAC. The teacher 1 has the same motor primitives
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Demo 1 Mimic Demo 1 Mimic Demo 1 Mimic Demo 1 Mimic Demo 1 MimicMimic teacher 1

AutonomousSAGG-RIAC

Random ActionsRandom

Demo mic us us Demo ation Demo mic imi

Demo 2 Emulate Demo 2 Emulate Demo 2 Emulate Demo 2 Emulate Demo 2 EmulateEmulate teacher 2

Demo 2 Emulate Autonomous Demo 2 Mimic Demo 1 Mimic Demo 1 EmulateSGIM-ACTS

# actionsFigure 5: Comparison of several learning algorithms

encoding as the learner, and the robot observes from
the demonstrated trajectories directly the demonstrated
(φ̈1, t1, ...φ̈7, t7).
· teacher 2 is an expert in placing, programmed by an ex-

plicit equation to place at any angle with a null veloc-
ity. The teacher 2 too has the same motor primitives
encoding as the learner, and the robot observes from
the demonstrated trajectories directly the demonstrated
(φ̈1, t1, ...φ̈7, t7).
· teacher 3 is an expert in placing, except that in this case

the learner faces correspondence problems and misinter-
prets the two parameters φ̈6 and φ̈7 as the opposite val-
ues. In this experiment, we do not attempt to solve this
correspondence problem. We also note that while the
learner has issues mimicking teacher 3, he has no issues
emulating teacher 3, as the outcome space parametrisa-
tion is the same.

Therefore in our experiment, the interactive learner can choose
between 7 strategies : SAGG-RIAC autonomous exploration,
emulation of each of the 3 teachers or mimicry of each of the 3
teachers.

4.3. Comparison of Learning Algorithms
To assess the efficiency of SGIM-ACTS, we decide to compare
the performance of several learning algorithms (fig. 5):

· Random exploration : throughout the experiment, the
robot learns by picking policy parameters randomly. It
explores randomly the policy parameter space Π.
· SAGG-RIAC : throughout the experiment, the robot uses

active goal-babbling to explore autonomously, without
taking into account any demonstration by the teacher,
and is driven by intrinsic motivation.
· mimicry : at a regular frequency, the learner determines a

goal τg where learning progress is maximal, and requests
to the chosen teacher a demonstration. The teacher se-
lects among his data set a demonstration [ζd, τd] so that
τd = argminτ∈{DemoSet}||τg−τ||. The learner mimics the
demonstrated policy ζd by repeating the movement with
small variations.

Figure 6: Mean error for the different learning algorithms
averaged over the two sub outcome spaces (final variance

value ∆ is indicated in the legend) .

· emulation : at a regular frequency, the learner deter-
mines a goal τg where learning progress is maximal,
and requests to the chosen teacher a demonstration.
The teacher selects among his data set a demonstration
[ζd, τd] so that τd = argminτ∈{DemoSet}||τg − τ||. The
learner tries to reproduce the outcome τd.

· SGIM-ACTS : interactive learning where the robot learns
by actively choosing between intrinsic motivation strat-
egy or one of the social learning strategies with the cho-
sen teacher: mimicking or emulation.

We run simulations with the following parameters. The costs of
all socially guided strategies κ(σ ) are set to 2, and the cost of
intrinsic motivation is set to 1. The probabilities for the different
modes of selecting a region of the outcome space and a strategy
are: p1 = 0.05, p2 = 0.7 and p3 = 0.25. Other parameters are
ε = 0.05, gmax = 10, αp = 1000 and vmax = 0.01.
For each experiment, we let the robot perform 8000 actions
in total, and evaluate its performance every 1000 actions, by
requiring the system to produce outcomes from a benchmark set
that is evenly distributed in the outcome space and independent
from the learning data.

4.4. Results
The comparison of these four learning algorithms in fig. 6 shows
that SGIM-ACTS decreases its cumulative error for both placing
and throwing. It performs better than autonomous exploration
by random search or intrinsic motivation, and better than any
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Figure 7: Mean error for the different learning algorithms for
each of the throwing outcomes and placing outcomes

separately. The legend is the same as in fig. 6.

socially guided exploration with any teacher. Fig. 7 details that
SGIM-ACTS error rate for both placing and throwing is low.
For throwing, SGIM-ACTS performs the best in terms of error
rate and speed because it could find the right strategy. We also
note that random exploration and SAGG-RIAC also perform well
for solving the 2nd degree polynomial equation (5) to achieve
throwing outcomes. While mimicking and emulating teacher 1
decreases the error as expected, mimicking and emulating a
teacher who is expert in another kind of outcomes and is bad
in that outcome leaves a high error rate. For placing, SGIM-
ACTS makes less error than all other algorithms. Indeed, as
we expected, mimicking the teacher 2, and emulating teachers
2 and 3 enhances low error rates, while mimicking a teacher
with correspondence problem (teacher 3) or an expert on another
outcome (teacher 1) gives poor result. We also note that for both
outcomes, mimicry does not lead to important learning progress,
and the error curve is almost flat. This is due to the lack of
exploration which leads the learner to ask demonstrations for
outcomes only in a small subspace.
Indeed, we see in fig. 8 which illustrates the percentage times
each strategy is chosen by SGIM-ACTS with respect to time,
that mimicry of teacher 3, which lacks efficiency because of
the correspondence problem, is seldom chosen by SGIM-ACTS.
Mimicry and emulation of teacher 1 is also little used because

Figure 8: Strategy chosen by SGIM-ACTS through time:
percentage of times each strategy is chosen for several runs of

the experiment.
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Figure 9: Outcome chosen by SGIM-ACTS through time:
percentage of times each kind of outcome is chosen for several

runs of the experiment.

autonomous learning learns quickly throwing outcomes. Teach-
ers 2 and 3 are exactly the same with respect to the outcomes
they demonstrate, and are emulated in the same proportion.
This figure also shows that the more the learner cumulates
knowledge, the more autonomous he grows : his percentage
of autonomous learning increases steadily.
Not only does he choose the right strategies, but also the right
outcome to concentrate on. Fig. 9 shows that he concentrates
in the end more on placing, which are more difficult.
Finally, fig. 10 shows the percentage of times over all the ex-
periments where he chooses at the same time each outcome
type, a strategy and a teacher. We can see that for the plac-
ing outcomes, he seldom requests help from the teacher 1, as
he learns that teacher 1 does not know how to place the ball.
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Figure 10: Consistency in the choice of outcome, teacher and
strategy: percentage of times each strategy, teacher and

outcome are chosen over all the history of the robot.

Likewise, because of the correspondence problems, he does not
mimic teacher 3. But he learns that mimicking teacher 2 and
emulating teachers 2 and 3 are useful for placing outcomes. For
the throwing outcomes, he uses slightly more the autonomous
exploration strategy, as he can learn efficiently by himself. The
high percentage for the other strategies is due to the fact that
the throwing outcomes are easy to learn, therefore are learned
in the beginning when a lot of sampling of all possible strate-
gies is carried out. SGIM-ACTS is therefore consistent in its
choice of outcomes , data collection strategies and teachers.

5. Conclusion and Discussion
We presented the SGIM-ACTS (Socially Guided Intrinsic Mo-
tivation with Active Choice of Teacher and Strategy) algo-
rithm that efficiently and actively combines autonomous self-
exploration and interactive learning, to address the learning of
multiple outcomes, with outcomes of different types, and with
different data collection strategies. In particular, it learns ac-
tively to decide on the fundamental questions of programming by
demonstration: what and how to learn; but also what, how, when

and who to imitate. This interactive learner decides efficiently
and coherently whether to use social guidance. It learns when
to ask for demonstration, what kind of demonstrations (action
to mimic or outcome to emulate) and who to ask for demonstra-
tions, among the available teachers. Its hierarchical architecture
bears three levels. The lower level explores the policy param-
eters space to build skills for determined goal outcomes. The
upper level explores the outcome space to evaluate for which
outcomes he makes the best progress. A meta-level actively
chooses the outcome and data collection strategy that leads to

the best competence progress. We showed through our illustra-
tion example that SGIM-ACTS can focus on the outcome where
it learns the most, while choosing the most appropriate asso-
ciated data collection strategy. The active learner can explore
efficiently a composite and continuous outcome space to be able
to generalise for new outcomes of the outcome spaces.
SGIM-ACTS has been shown an efficient method for learning
with multiple teachers and multiple outcome types. The number
of outcomes used in the experiment is infinite, with a continu-
ous outcome space that is made of 2 types of outcomes, but all
the formalism and framework is in principle scalable to a higher
number of types of outcomes. Likewise, the method should apply
to domestic or industrial robots who usually interact with a finite
number of teachers. Even in the case of correspondence prob-
lems, the system still takes advantage of the demonstrations to
bias its exploration of the outcome space. When the discrepan-
cies between the teacher and the learner are small, demonstra-
tions advantageously bias the exploration of the outcome space,
as argued in [30]. Future work should test SGIM-ACTS on more
complex environments, and with real physical robots and every-
day human users. It would also be interesting to compare the
outcomes selected by our system to developmental behavioural
studies, and highlight developmental trajectories.
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