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Point Alignment Detection
José Lezama, Rafael Grompone von Gioi, Jean-Michel Morel, Gregory Randall

✦

Abstract—In spite of many interesting attempts, the problem of

automatically finding alignments in a 2D set of points seems to be still

open. This paper tries to explain why it is so difficult, and to elaborate

a solution. We show that a correct alignment detection depends on

not less than four interlaced criteria, namely the amount of masking

in texture, the relative bilateral local density of the alignment, its in-

ternal regularity, and finally a redundancy reduction step. Extending

tools of the a contrario detection theory, we show that all of these

detection criteria can be naturally embedded in a single probabilistic

a contrario model with a single user parameter, the number of false

alarms. Our contribution to the a contrario theory is the use of

sophisticated conditional events on random point sets, for which

expectation we nevertheless find easy bounds. By these bounds the

mathematical consistency of our detection model receives a simple

proof. Our final algorithm also includes a new formulation of the

exclusion principle in Gestalt theory to avoid redundant detections.

Aiming at reproducibility, a source code and an online demo open to

any data point set are provided. The method is carefully compared

to three state-of-the-art algorithms and counterexamples to the final

methods are also explained.

Index Terms—point alignment detection, clustering, a contrario

methods, Poisson point process

The code of the final algorithm used to generate all the

experiments presented here is freely available at the companion

webpage to this submission.1 An online demo is also available

and readers are invited to try out the method on their own data

(the website allows users to upload or draw directly their own

point patterns).

1 INTRODUCTION

We will consider the problem of finding collinear sub-
sets within a planar set of points. This problem arises
in many contexts of data analysis: Alignments are
among the simplest structures observable in a point
set. They constitute a classic example in statistical
shape analysis [40]. Alignment detection is relevant in
geology, where the alignment of features, for example
earthquake epicenters, reflects underlying faults and
joints [32], [18], [19]. In archaeology, geometric config-
urations of post holes, in particular alignments, often
reveal the disposition of buildings even in presence of
overlaps from different time periods [40], [31], [6]. The
computer vision applications include the detection of
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Fig. 1. Exactly the same set of aligned dots is present

in the three images, but it is only perceived as such

in the first one. The second one is a classic “masking

by texture” case and the third shows a “masking by

structure”, often called “Gestalt conflict”.

grids [11], calibration patterns [14] or vanishing points
[21], [53], and the interpretation of high resolution
remote sensing images [48].

Dot patterns are often used in the study of visual
perception. Several psychophysical studies led by Ut-
tal have investigated the effect of direction, quantity
and spacing in dot alignment perception [47], [44],
[45], [46]. The detection of collinear dots in noise
was the target of other studies attempting to assess
quantitatively the masking effect of the background
noise [41], [28], [43], [38]. A recent work by Preiss
analyzes various perceptual tasks on dot patterns
from a psychophysical and computational perspective
[39]. An interesting computational approach to detect
gestalts in dot patterns is presented in [1], although
the study is limited to very regularly sampled pat-
terns. The work described here was initiated in the
context of a psychophysical research; here we concen-
trate, however, on the general problem of detection of
point alignments in noise.

While it may seem that point alignments are simple
structures, Fig. 1 shows how complex an alignment
event can be. From a purely factual point of view,
the same alignment is present in the three figures.
However, it is only perceived as such by most viewers
in the first one. The second and the third figures
illustrate two occurrences of the masking phenomenon
discovered by gestaltists [26]: the masking by texture,
which occurs when a geometric structure is sur-
rounded by a clutter of randomly distributed similar
objects or distractors, and the masking by structure,
which happens when the structure is masked by other

http://bit.ly/point_alignments
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perceptually more relevant structures, a phenomenon
also called perceptual conflict by gestaltists [34], [35],
[25]. The magic disappearance of the alignment in
the second and third figures can be accounted for
in two very different ways. As for the first one, a
probabilistic a contrario model [10] is relevant and can
lead to a quantitative prediction. As for the second
disappearance, it requires the intervention of another
more powerful grouping law, the good continuation [24]
in the perceptual conflict.

These examples show that a mathematical defini-
tion of point alignment perception is required before
even starting to discuss how to detect them. A purely
geometric-physical description is clearly not sufficient
to account for the masking phenomenon. Indeed, an
objective observer making use of a ruler would be able
to state the existence of the very same alignment at
the same precision on all three figures. But this state-
ment would contradict our perception, as it would
contradict any reasonable computational (definition
and) theory of alignment detection.

This experiment also shows that alignment de-
tection is highly dependent on the context of the
alignment. It is therefore a complex question, and
must be decided by building mathematical definitions
and detection algorithms, and confronting them to
human perception. As the patterns of Fig. 1 already
suggest, simple computational definitions with in-
creasing complexity will nevertheless find perceptual
counterexamples.

A classic approach to this problem uses the Hough
transform [23], [12], first used for the detection of
subatomic particles in bubble chamber pictures [22].
To compute the Hough transform, each point votes
in a parameter space for the lines that pass through
it. After accumulation of the votes of all points, the
lines that correspond to local maxima in the parameter
space are selected as detections. Several variations
of the basic method were proposed; in particular,
the methods proposed in [42], [29], [30] are robust
to errors in the point positions. When the Hough
transform is applied to a random set of points, it will
still find a local maximum which does not correspond
to a significant collinear subset. A threshold on the
number of votes is usually imposed to cope with this
problem. Even if the Hough transform methods pro-
vide successful solutions in many applications [49], a
sound criterion for setting this threshold is missing.

Other approaches use point clustering methods es-
pecially adapted to clusters of linear shape [37]. Using
a particular distance between points and clusters [8],
general clustering algorithms can be used to detect
collinear subsets [16], [15]. The same problem can be
approached using a parametric model fitting [7].

We are particularly interested in methods that pro-
vide an evaluation of the statistical significance of the
detected aligned structures. An example in astronomy
may illustrate the importance of such evaluation: In

1980 the discovery of several very precise alignments
of quasars in the sky raised the question of a the-
ory explaining this presence [5]. These alignments,
however, were later dismissed by a statistical anal-
ysis, first by simulations [13] and then analytically
[54], showing that alignments of such precision could
easily occur just by chance.

The expected number of events where k among n
random points are to be found in some rectangle of
a given shape was already computed in 1950 using a
Poisson random model [33]. This could be the origin
of the strip method for defining alignments as a large
number of points covered by a thin rectangle (the
thinner, the more precise). The same random model
was used in [6], now explicitly used for detecting
point alignments. But the alignment was defined dif-
ferently: three points are considered aligned when the
triangle formed by them is flat enough. Alignments of
more points are evaluated by all the possible triangles
observed among the points. Various theoretical results
about the flat triangles methods are described in [27],
where Poisson as well as Gaussian distributions are
considered in different domain shapes.

Since then, many different algorithms have been
proposed, most of them variations of the strip
method. Monte Carlo simulations of random points
provide the estimate of the significance in [52] while
a binomial model is used in [3]. A set of heuristics
are added in [4]. The method in [18] also applies the
strip method with a Poisson model, but the density is
estimated locally. A refined statistical test, including
angular statistics, is proposed in [19].

Here we develop a method deriving from the a con-
trario methodology proposed by Desolneux, Moisan
and Morel [9], [10]. It is a mathematical formaliza-
tion of the so-called non-accidentalness principle pro-
posed for perception [51], [2], [50] (sometimes called
Helmholtz principle). In a nutshell, an observed struc-
ture is relevant if it would rarely occur by chance.
The result is a statistical framework that provides es-
timates of significance similar in spirit to the methods
mentioned before.

As a simple example to introduce the method-
ology, Desolneux, Moisan and Morel showed how
to handle point alignment detection using a simple
strip method with a Poisson model [10, Sect. 3.2].
We shall nevertheless show that this initial method
(and the similar ones we mentioned above) is far
from sufficient for detecting perceptual alignments. To
cope with obvious objections and counterexamples,
we shall prove that three new features are necessary
to cope with the variety of alignments. We shall show
that a reliable algorithm requires: a) a local Poisson
density estimation, b) an evaluation of the regularity
of the spacing of the points in the alignment, and c) a
criterion to select the best interpretation among redundant
detections.

The rest of this article is organized as follows:
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Fig. 2. A schematic representation of the evalu-

ated rectangle. In a domain with N points, there are
N(N−1)

2 W possible rectangles. In this example, N = 47
and k(r,x) = 8 among them are inside the rectangle r.

Section 2 introduces the basic concepts and techniques
used in the state of the art point alignment detectors,
and describes the classic strip method. Sections 3, 4
and 5 improve this basic method by incorporating
local point density estimation, lateral estimation, and
measurements of the regularity of the point spacing.
Section 6 discusses how to cope with the redundancy
of detections. Section 7 shows some experiments and
comparisons and Sect. 8 concludes the paper.

2 BASIC POINT ALIGNMENT DETECTOR

The key point in a statistical detection method is how
to define accidental detections. This requires a stochas-
tic model H0, the so-called a contrario model, charac-
terizing unstructured or random data in which the
sought structure could only be observed by chance.
This basic idea of comparing the detection to the
expected number of detections in a random model in
an a contrario model is inevitable [6], [27], [19].

Consider a set of N points defined in a domain D
with total area SD, see Fig. 2. We are interested in
detecting groups of points that are well aligned. A
reasonable a contrario hypothesis H0 for this problem
is to suppose that the N points are the result of a
random process where points are independent and
uniformly distributed in the domain. The question
is then to evaluate whether the presence of aligned
points contradicts the a contrario model or not.

Given an observed set of N points x = {xi}i=1...N

and a rectangle r (a candidate for alignment), we
will denote by k(r,x) the number of those points
observed inside r. The decision of whether to keep
this candidate or not is based on two principles: a
good candidate should be non-accidental, and any
equivalent or better candidate should be kept as well.
The degree of non-accidentalness of an observed rect-
angle r can be measured by how small the probability
P
[

k(r,X) ≥ k(r,x)
]

is, where X denotes a random set
of N points following H0. In the same vein, a rectangle
r′ will be considered at least as good as r given the
observation x, if P

[

k(r′,X) ≥ k(r′,x)
]

≤ P
[

k(r,X) ≥
k(r,x)

]

.

The question is now to control the expected number
of accidental detections. Given that Ntests candidates
will be tested, the expected number of rectangles
which are as good as r under H0 is, following [10],
less than

Ntests · P
[

k(r,X) ≥ k(r,x)
]

. (1)

The H0 stochastic model fixes the probability law of
the random number of points in the rectangle, k(r,X).
The discrete nature of this law implies that (1) is not
actually the expected value but an upper bound of it
[10], [17]. Let us now analyze the two factors in (1).

The a contrario model H0 assumes that the N points
are i.i.d. with uniform density on the domain. (H0 is
a planar Poisson process [36].) Under the a contrario
hypothesis H0, the probability that one point falls
into the rectangle r is p = Sr

SD

, where Sr is the area
of the rectangle and SD the area of the domain. As
a consequence of the independence of the random
points, k(r,X) follows a binomial distribution. Thus,
the probability term P

[

k(r,X) ≥ k(r,x)
]

is given by

P

[

k(r,X) ≥ k(r,x)
]

= B
(

N, k(r,x), p
)

(2)

where B(n, k, p) is the tail of the binomial distribution

B(n, k, p) =
n
∑

j=k

(

n

j

)

pj(1− p)n−j . (3)

The number of tests Ntests corresponds to the total
number of rectangles that could contain an alignment,
which in turn is related to the number of pairs of
points defining such rectangles. With a set of N points

this gives N(N−1)
2 different pairs of points. The set of

rectangle widths to be tested must be specified a priori
as well. In the a contrario approach, a compromise
must be found between the number of tests and the
precision of the structures that are being sought for.
The larger the number of tests, the lower the statistical
relevance of detections. However, if the set of tests is
chosen wisely, structures fitting accurately the tests
will have a very low probability of occurrence under
H0 and will therefore be more significant.

For a particular problem, one may have reasons
to restrict the shape of rectangles. Nevertheless, this
inquiry is not aimed at any particular application.
Thus, we will rely on the following general criteria.
An alignment should be an elongated structure, so a
minimal ratio between the length and the width of
the rectangle must be fixed. Then, a fixed number
of widths must be tested, decreasing geometrically
the maximal width. (The choice of a geometric se-
ries is justified by the obvious scale invariance of
the detection problem.) Our implementation uses a
length/widthmax ratio of 10 and a geometric series of
8 width values with a factor 1/

√
2. The total number

of widths to be tested will be denoted by W . Then the
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total number of tested rectangles is

Ntests =
N(N − 1)

2
W. (4)

The fundamental quantity of an a contrario approach
is the Number of False Alarms (NFA) associated with
a rectangle r and a set of points x,

NFA1(r,x) = Ntests · P
[

k(r,X) ≥ k(r,x)
]

(5)

=
N(N − 1)

2
W · B

(

N, k(r,x), p
)

.

This quantity gives a precise meaning to Eq. (1). It
will be interpreted as a bound of the expected number
of rectangles containing enough points to be as rare
as r under H0. When the NFA associated with a
rectangle is large, this means that such an event is to
be expected under the a contrario model and therefore
is not relevant. On the other hand, when the NFA
is small, the event is rare and probably meaningful.
A rarity threshold ε must nevertheless be fixed for
each application. Rectangles with NFA1(r,x) ≤ ε will
be called ε-meaningful rectangles [10], constituting the
detection result of the algorithm. We will refer to this
method as Algorithm 1.

Theorem 1 ([10]).

E

[

∑

r∈R

1NFA1(r,X)≤ε

]

≤ ε

where E is the expectation operator, 1 is the indicator
function, R is the set of test rectangles, and X is a random
set of points under H0.

The theorem states that the average number of ε-
meaningful rectangles under the a contrario model H0

is bounded by ε. Thus, the number of detections in
noise is controlled by ε and it can be made as small
as desired. In other words, this detector satisfies the
non-accidentalness principle.

As shown in [10], the detection result is not very
sensitive to the value of ε. Following Desolneux,
Moisan, and Morel [9], [10], we shall therefore fix
ε = 1 for our experiments. This corresponds to ac-
cepting on average at most one false detection per
data set in the a contrario model.

Figure 3 shows the results of the basic algorithm in
two simple cases. The results are as expected: the vis-
ible alignment in the first example is detected, while
no detection is produced in the second. Actually, the
points in the first example are also present in the
second one, but the addition of random points masks
the alignment to our perception. The first example
produces many redundant detections; this issue will
be addressed in Sect. 6.

3 LOCAL DENSITY ESTIMATION

The basic point alignment detector of section 2 takes
as a contrario assumption a uniform point density

(a) (b)

(c) (d)

Fig. 3. Results from the basic point alignment detector

(Algorithm 1). (a) and (c) are the input data, and (b)

and (d) are the corresponding results. Each detection

is represented by a rectangle. In (b) the algorithm

correctly detects the obvious alignment. Notice that

multiple and redundant rectangles were detected; this

issue will be dealt with in Sect. 6. The data set (c)

contains the same set of points in (a) plus added

noise points. The aligned points are still present but

hardly perceptible. The algorithm handles correctly this

masking phenomenon and produces no detection.

in the whole domain and evaluates alignments as a
local excess with respect to this global density. This
comparison is nevertheless too restrictive, because
alignments are in fact local violations of uniformity.
Consider a configuration of points with two zones
of different point density, like in Fig. 4 (a). Applying
the basic alignment detector yields an unexpected
detection shown in Fig. 4 (b). Each of the detected rect-
angles certainly has a non-accidental excess of points
in the rectangles with respect to the global density,
but this is definitely not what we are looking for. This
example shows that we are actually interested in non-
accidental events with an excess of points conditioned
to the observation of a local density (which may well
be lower or higher than the global density). Such
local density estimations for the random point models
have been used in [3], [18], [19]. In the interpreta-
tion proposed here, a more sophisticated definition
of the alignment event should not measure the non-
accidentalness by an unusually small probability, but
by an unusually small conditional probability.

The local density is estimated by counting the
points in a rectangular local window, with the same
length as the alignment and a given width. To account
for the scale invariance of the detection, the width
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(a) (b) (c) (d)

Fig. 4. Local vs. global density estimation. (a) The set of points. (b) Alignments found using global density

estimation (Algorithm 1). The many detected rectangles indeed have a high point density compared to the

average image density used as background model. (c) Alignments found using local density estimation

(Algorithm 2). The local density is in that case lower on the border, hence the deceptive detection. (d) No

alignment is found when the local density is estimated by the maximum density on both sides of the alignment

(Algorithm 3).

of the local window is proportional to the length
of the alignment. For every alignment, a number
of proportion ratios or scales are tried. The largest
window is square, its width equal to the length of
the alignment. Then a fixed number L = 8 of widths
in geometric series are also tried. The choice for a
geometric series with factor 1/

√
2 is again justified

by the scale invariance of the detection problem. The
number of tests Ntests corresponds to the total number
of observations performed, which in turn is related
to the number of rectangles and the different local
windows evaluated for each rectangle. With a set of
N points and L different sizes of local windows, this

gives N(N−1)
2 WL different tests.

When the rectangle to be tested lies near the bor-
der of the domain, the local window may be partly
outside it, where no point information is available,
leading to a wrong density estimation. This also hap-
pens when the rectangle covers the diagonal of the
domain. In accordance with perception theory and
the good continuation principle, a sound solution is
obtained by creating a mirror-symmetric extension of
the point set outside the domain. The extended point
set is only used for the local density estimation, but
not for selecting candidates, and its points are never
counted as part of an alignment.

Let R be the local window surrounding the align-
ment r, as shown in Fig. 5(a). The probability of one
point in R falling in r is p = Sr

SR

where Sr and SR are
the areas of r and R respectively. The degree of non-
accidentalness of an observation will be measured by
the probability that a rectangle has a higher density
than its surroundings, conditioned by the observation
of the surrounding density. The NFA for the new

(a) (b)

Fig. 5. (a) The point density is estimated in the

local window R surrounding the alignment r. (b) In a

refined version of the algorithm, the density of points

is measured on each side of the evaluated rectangle.

The maximum of the densities in R1 and R3 is taken as

an estimation of the point density in both R1 and R3.

detector is accordingly defined as

NFA2(r,R,x) =

Ntests · P
[

k(r,X) ≥ k(r,x)
∣

∣

∣
n(R,X) = n(R,x)

]

=
N(N − 1)

2
WL · B

(

n(R,x), k(r,x), p
)

, (6)

where n(R,x) is the number of points observed in
x inside R. We will call this method Algorithm 2.
The next theorem shows that the method controls the
number of false detections in H0; its proof is very
similar to the proof of the more general Th. 4 and
will therefore be omitted.

Theorem 2.

E





∑

r∈R

∑

R∈R′(r)

1NFA2(r,R,X)≤ε



 ≤ ε

where E is the expectation operator, 1 is the indicator
function, R is the set of rectangles considered, R′(r) is
the set of surrounding local windows for each rectangle r,
and X is a random set of points under H0.
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4 LATERAL DENSITY ESTIMATION

While the local density estimation can provide a more
adjusted background model, it can also introduce
new problems such as a “border effect”, as shown
in Fig. 4 (c). Indeed, the density estimation is lower
on the border of the left half of the image than
inside it. Thus, the previous algorithm (Algorithm 2)
detects alignments on the border with non-accidental,
meaningful excess with respect to the local density.

In order to avoid this effect, the more sophisticated
Algorithm 3 used in Fig. 4 (d) takes, as a conservative
estimation of the background density, the maximum of
the densities measured on both sides of the alignment.
In short, to be detected, an alignment must show a
higher point density than in both regions immediately
on its left and right. This local alignment detector
is therefore similar to a classic second order Gabor
filter where an elongated excitatory region is sur-
rounded by two inhibitory regions. The local density
estimation is calculated as illustrated in Fig. 5 (b):
The local window is divided in three parts. R1 is the
rectangle formed by the area of the local window on
the left of the alignment. R3 is the area of the local
window on the right of the alignment, and R2 is the
rectangle which forms the candidate alignment. Note
that the length of the local window is the same as
the alignment and that we can consider any arbitrary
orientation for it. Next, the algorithm counts the num-
bers of points M1, M2, and M3 in R1, R2 and R3,
respectively, and defines the conservative estimate of
the local number of points as

n∗(R,x) = 2max(M1,M3) +M2. (7)

We then define the NFA of the event “the density in
R2 has a significant excess with respect to the density
estimated in R” by

NFA3(r,R,x) =

Ntests · P
[

k(r,X) ≥ k(r,x)
∣

∣n(R,X) = n∗(R,x)
]

=
N(N − 1)

2
WL · B

(

n∗(R,x), k(r,x), p
)

. (8)

Indeed, conditioned to the fact that we assume
n(R,X) = n∗(R,x) under the model H0, the n∗(R,x)
points in R are still uniformly and independently
distributed. We call this method Algorithm 3. The
following theorem shows that the method controls the
number of false detections in H0. Again, its proof is
omitted because it is very similar to the proof of Th. 4.

Theorem 3.

E





∑

r∈R

∑

R∈R′(r)

1NFA3(r,R,X)≤ε



 ≤ ε

where E is the expectation operator, 1 is the indicator
function, R is the set of rectangles considered, R′(r) is
the set of surrounding local windows for each rectangle r,
and X is a random set of points under H0.

5 ALIGNMENT REGULARITY

We proceed incrementally toward a more complex
algorithm, by showing that each new more sophis-
ticated version of an alignment detection is still not
sufficient to cope with all features of this problem.
There is indeed still an objection to Algorithm 3: One
can stir wrong detections by introducing small point
clusters as shown in Fig. 6 (a). The detected alignment
in Fig. 6 (b) seems clearly wrong. It is nevertheless
explainable in the setting of Algorithm 3: there is
indeed a meaningful point density excess inside the
red rectangle. But this excess is caused by the clusters,
not by what could be termed an alignment. While
the algorithm counted every point, human perception
seems to group the small clusters into a single entity,
and to count them only once. This unwanted result is
a consequence of the fact that Algorithm 3 is search-
ing for elongated clusters of higher density without
any cluster regularity requirement. As suggested in
other studies [39], [43], [44], the density is not the
only property that makes an alignment perceptually
meaningful; another characteristic to consider is the
uniform spacing or regularity of the points in it,
which the gestaltists call the law of constant spacing.
This observation forces to a still more sophisticated
version of the alignment detector. To cope with both
issues (avoiding small clusters and favoring regular
spacing) a more advanced version of the alignment
detector divides each candidate rectangle into equal
boxes. Instead of counting the total number of points,
the algorithm counts the number of boxes that are
occupied by at least one point. We call them occupied
boxes. In this way, the minimal NFA is attained
when the points are perfectly distributed along the
alignment. In addition, a concentrated cluster in the
alignment has no more influence on the alignment
detection than a single point in the same position.

We want to estimate the expected number of occu-
pied boxes in the background model H0. The probabil-
ity of one point falling in one of the boxes is p0 = SB

SL

,
where SB and SL are the areas of the boxes and
the local window respectively. Then, the probability
of having one box occupied by at least one of the
n∗(R,x) points (i.e., of an occupied box) is

p1(R, c) = 1− (1− p0)
n∗(R,x). (9)

We will denote by b(r, c,x) the observed number of
occupied boxes in the rectangle r when divided into
c boxes. Finally, the probability of having at least
b(r, c,x) of the c boxes occupied is

B
(

c, b(r, c,x), p1(R, c)
)

. (10)

A set C of different values are tried for the number
of boxes c into which the rectangle is divided, and
the one producing the lowest NFA is taken. Thus, the
number of tests must be multiplied by its cardinality
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(a) (b) (c)

Fig. 6. Counting occupied boxes to avoid false detections due to the presence of clusters. The dot pattern shown

in image (a) presents two point clusters but no alignment. However, Algorithm 3 finds a thin rectangle with a high

point density, hence a false detection, as shown in (b). Algorithm 4 divides the rectangle into boxes and counts

the occupied ones, avoiding this misleading cluster effect, as seen in (c), where the occupied boxes are marked

in red and no alignment is actually detected.

Fig. 7. Redundant detections. Left: point pattern. Center: all significant alignments found by the refined point

alignment detector (Algorithm 4) described in Sect. 5. The color represents the relative NFA value, where red is

the most significant (smallest NFA value) and blue the least (highest NFA value). Right: Result of the masking

process.

Fig. 8. Examples of two alternative formulations of the masking process. Left: Set of points. Center: The

Exclusion Principle as defined in [10], a validated gestalt prevents others from using its points. The vertical

alignments (evaluated first) mask the horizontal ones. Right: The Masking Principle, described in the text, which

solves the ambiguities without forbidding basic elements to participate of two different structures. In this example,

no individual alignment can mask an individual one in another direction. Thus we get oblique, horizontal and

vertical meaningful alignments.
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#C = C. In practice we set C =
√
N and that leads to

Ntests =
N(N − 1)

2
WLC =

N(N − 1)

2
WL
√
N.

The NFA of the new event definition is then

NFA4(r,R, c,x) =

Ntests · P
[

b(r, c,X) ≥ b(r, c,x)
∣

∣n(R,X) = n∗(R,x)
]

=
N(N − 1)

2
WLC · B

(

c, b(r, c,x), p1(R, c)
)

. (11)

Fig. 6 (c) shows an example of the resulting algorithm
and we will show some more after discussing the
masking problem, in section 6. Algorithm 4 presents
the pseudo-code for this final refined version of the
alignment detector.

Theorem 4.

E





∑

r∈R

∑

R∈R′(r)

∑

c∈C

1NFA4(r,R,c,X)≤ε



 ≤ ε

where E is the expectation operator, 1 is the indicator
function, R is the set of rectangles considered, R′(r) is
the set of surrounding local windows for each rectangle r,
C is the set of number of boxes tested, and X is a random
set of points under H0.

Proof: We define b̂(r,R, c,M) as

b̂(r,R, c,M) = min

{

β ∈ N,

P
[

b(r, c,X) ≥ β
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WLC

}

.

R determines the domain of the local window and M
the number of points in it. The probabilistic model
inside R, conditioned to the fact that the number
of observed points is M , is still uniform and inde-
pendent, and the conditional law of the number of
points inside any subset of R follows a binomial law.
Then, NFA4(r,R, c,X) ≤ ε is equivalent to b(r, c,X) ≥
b̂(r,R, c,M) when M = n∗(R,X). Now,

E





∑

r∈R

∑

R∈R′(r)

∑

c∈C

1NFA4(r,R,c,X)≤ε



 =

∑

r∈R

∑

R∈R′(r)

∑

c∈C

P
[

NFA4(r,R, c,X) ≤ ε
]

=

∑

r∈R

∑

R∈R′(r)

∑

c∈C

2N
∑

M=0

P
[

NFA4(r,R, c,X) ≤ ε
∣

∣

n(R,X) = M
]

· P
[

n(R,X) = M
]

=

∑

r∈R

∑

R∈R′(r)

∑

c∈C

2N
∑

M=0

P
[

b(r, c,X) ≥ b̂(r,R, c,M)
∣

∣

n(R,X) = M
]

· P
[

n(R,X) = M
]

. (12)

Algorithm 4: Point alignment detector with boxes

input : A set x of N points [W = 8, L = 8, ε = 1]
output: A list out of point alignments

for i = 1 to N and j = 1 to i− 1 do
l← distance(xi, xj)
w ← l/10
for 1 to W do

r ← rect(xi, xj , w)
wL ← l
for 1 to L do

R1 ← local-window-left(xi, xj , wL)
R3 ← local-window-right(xi, xj , wL)
for c ∈ C do

Compute NFA4(r,R, c,x) [Eq. 11]
if NFA4(r,R, c,x) ≤ ε then

out← r
end

end

wL ← wL/
√
2

end

w ← w/
√
2

end
end

Note that, because of the maximum density estimation
n∗(R,x), the estimated number of points inside a
rectangle can theoretically be as large as 2N , and
thus the range for M . By definition of b̂(r,R, c,M)
we know that

P

[

b(r, c,X) ≥ b̂(r,R, c,M)
∣

∣n(R,X) = M
]

≤
ε

N(N−1)
2 WLC

,

and using #R = N(N−1)
2 W , #R′(r) = L, #C = C and

2N
∑

M=0

P
[

n(R,X) = M
]

= 1

we get E





∑

r∈R

∑

R∈R′(r)

∑

c∈C

1NFA4(r,R,c,X)≤ε



 ≤

∑

r∈R

∑

R∈R′(r)

∑

c∈C

ε
N(N−1)

2 WLC

2N
∑

M=0

P
[

n(R,X) = M
]

= ε,

which concludes the proof.

6 REDUNDANCY

As was observed in Fig. 3, all the described align-
ment detectors may produce redundant detections.
In a very meaningful alignment many smaller or
larger rectangles overlapping the main alignment are
also meaningful. This redundancy phenomenon can
involve points that belong to the real alignment as
well as background points near the alignment, as
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illustrated in Fig. 7. In such cases, humans usually
perceive only one alignment. The question is how
to detect this best rectangle, both explaining and
masking the redundant detections.

A simple model for this masking process was pro-
posed by Desolneux et al. [10] under the name of
“exclusion principle”. The main idea is that each basic
element (a point in our case) cannot contribute to more
than one perceived group or gestalt. This leads to a
masking algorithm proceeding as follows: The most
meaningful observed structure (the one with smallest
NFA) is kept as a valid detection. Then, all the basic
elements (the points) that were part of that validated
group are assigned to it and the remaining candi-
date structures cannot use them anymore. The NFA
of the remaining candidates is re-computed without
counting the excluded elements. In that way, redun-
dant structures lose most of their supporting elements
and are no longer meaningful. On the other hand,
a candidate that corresponds to a different structure
keeps most or all of its supporting basic elements and
remains meaningful. The most meaningful candidate
among the remaining ones is then validated and the
process is iterated until there are no more meaningful
candidates.

This formulation of the masking process often leads
to good results, removing redundant detections while
keeping the good ones. But it may also lead to unsat-
isfactory results as illustrated in Fig. 8. The problem
arises when various valid alignments have many ele-
ments in common. As one alignment is evaluated after
the other, it may happen that all of its elements have
been removed, even if the alignment is in fact not
redundant with any of the other ones. In the example
of Fig. 8, individual horizontal and vertical alignments
are not redundant, but if all the vertical ones have
been detected first, the remaining horizontal ones
will be (incorrectly) masked. This example shows
a fundamental flaw of the exclusion principle: it is
not sound to impose that a basic element belongs
to a single perceptually valid structure. There must
be a global explanation of the organization of the
basic elements in visible structures which is at the
same time coherent with each individual structure
(eliminating local redundancy) and with the general
explanation of the scene in such a way that some basic
elements can participate of several structures without
contradiction. The solution seems to be in a sort of
relaxation of the exclusion principle. The following
definitions sketch a possible solution.

Definition 1 (Building Elements). We call building
element any atomic component that can be a constituent
element of several structures. An example of building
elements are points that can be recursively grouped in
alignments.

Definition 2 (Masking Principle). A meaningful struc-
ture B will be said “masked by a structure A” if B is

no longer meaningful when evaluated without counting its
building elements belonging to A. In such a situation, the
structure B is not retained as detected.

In short, a meaningful structure will be detected
if it is not masked by any other detected structure.
The difference with the former exclusion principle is
that here a structure can only be masked by another
individual structure and not by the union of several
structures. A procedural way to attain this result is to
validate alignments one by one, starting by the one
with smallest NFA. Before accepting a new alignment,
it is checked that it is not masked by any one of the
previously detected alignments.

Figures 13 and 14 show some point alignment
detection results when combining Algorithm 4 with
the masking principle. The results obtained in these
examples are as expected and this masking procedure
was applied to all experiments below. For simplicity,
we shall still refer to it as “Algorithm 4”.

7 COMPARATIVE EXPERIMENTS

We will first compare the proposed algorithm with
two methods described in the literature designed
for point alignment detection [18], [19]. These two
methods were selected because they were introduced
recently and include statistical significance tests. As
we shall see, these methods depend critically on user
parameters; we will describe their result for three
data sets, commenting on the results while varying
the parameters. Next, we will show the results, for
the same data, of a well-known clustering method
[15], which, as our algorithm, requires no parameter
tuning. Finally, the results of our method for these and
other point sets will be shown and commented. More
experiments can be performed by the reader using the
freely available online demo and source code.2

The method introduced in 2006 by Hall, Tajvidi
and Malin [18] makes measurements similar to Algo-
rithm 3: the alignment is evaluated as a thin strip and
two lateral rectangles are used to estimate the point
density; the set of candidates and the statistical test are
different. The results presented here were computed
using our own implementation of the method; we re-
produced the experiments in the original publication
to verify the correctness of our code.

The statistical test of the method by Hall et al. is
designed to reject alignments in a uniform Poisson
random point model. The method works well when
the intensity of the point process is high. Indeed, the
authors showed that the method approaches optimal-
ity as the intensity increases [18]. The method is less
efficient when the density of points is low relative
to the size of the operator; in such conditions the
sampling is not suitable, the point density estimation
is poor, and the statistical test is not able to reject

2. http://bit.ly/point alignments

http://bit.ly/point_alignments
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Fig. 9. Result of Hall, Tajvidi, Malin 2006 [18] on a

set of 100 uniform and independent random points.

Each detection is represented by a thin rectangle,

surrounded by the local window. Left: The same pa-

rameters as in [18, Sect. 3.1] were used: 10 × 10 grid,

5 degree angle step, a = 0.1, b = 0.6, c = 0.01,

u = 6 v = 2. As in the original publication, about 3

alignments were detected (2 in this example). Right:

Result with a slightly different candidate set: 20 × 20
grid and b = 0.3, producing 47 detections. A similar

behavior is observed with sets of 1000 random points.

random configurations. The test depends on two pa-
rameters, u and v, to be set manually. The first param-
eter controls the statistical level. In extreme cases of
wrong density estimation (e.g. no point is observed in
the local window), the statistical test fails. The second
parameter, v, is a threshold imposed on the number
of points in the strip. It is necessary to cope with cases
of density undersampling. The method assumes that
the domain is the unit square and tests candidates
centered in an n×n grid, at regular orientations with
an angle step θ; three parameters define the strip:
the length b, the strip width c, and the local window
width a. Thus seven parameters must be provided by
the user: n, θ, a, b, c, u, and v.

Figure 9 shows two detection results in a set of
100 points generated according to a Poisson model.
The first result (left) is using the same parameters
as in [18, Sect. 3.1]; in accordance with the results of
the original article, in these conditions is observed an
average of 3 detections per data set (2 in the example
shown). However, when the shape parameters are
modified, the statistical test is no longer able to control
the number of false detections, see Fig. 9 (right). In
the second experiment, the number of candidates is
larger, (the grid is 20× 20 instead of 10× 10), and the
density estimation is worse because the candidates
are half as long (thus the local window is half as
big). Under the new conditions, the same u and v
values lead to 47 detections in the same point set.
This experiment shows the need to set manually the
statistical significance parameters (u, v) to produce
reliable results. This behavior was also observed for
sets of 1000 random points.

We will see now how the method handles data

sets that do contain point alignments. Figure 10(a)
shows a set of 186 points; perceptually one can see
three alignments, three clusters, and random points.
We first adjusted the statistical test parameters u
and v so as to obtain very few detections with the
same number of random points. The candidate shape
parameters (a, b, c) where then adjusted to obtain the
best result, see Fig. 10(b). As one can see, the three
alignments were detected. Nevertheless, all detections
only partially cover the perceived alignment; this is of
course due to the selected length (b = 0.4), but longer
candidates produced less complete results. Also, there
is some redundancy in the detections; no redundancy
reduction step is included in Hall et al.’s method.
Finally, one can observe that one of the clusters led
to a false detection. When the shape parameters are
changed to less optimal values, Figs. 10(c) and (d), we
obtains less useful results: some alignments or parts of
them are missing, and many spurious detections were
produced. Some are due indeed to deviations from the
random model as is the case of the clusters, and this
shows the need for a more complex event definition.
Others, as in Fig. 10(d), reveal a failure of the statistical
test. This experiment shows that the candidate shape
parameters must be carefully adjusted to produce
good results.

The second point alignment detection method we
used for comparison was introduced by Hammer in
2009 [19]. This method requires an alignment length
parameter (defined as a radius). Each point of the
input set defines a candidate. The distribution of
angles from the center point to each of the points
inside the radius is evaluated. When the circular-
uniform distribution is rejected, using a Rayleigh test,
the candidate produces a detection. The last decision
requires a significance level α.

The experiments presented here were done using
the author implementation of the algorithm, included
in the software package PAST [20]. Figure 11 shows
the results for the three data sets considered in this
comparison and for four parameter sets (no detection
was produced for l = 0.6 and α = 0.00001). As
one can see in the first row, the default significance
level used in PAST is not satisfactory: it produces
many detections on random sets of points (left and
middle). Using this significance level one gets some
of the expected alignments in the data set containing
alignments (right). But, as in the previous method,
redundancy is observed and many false detections,
mainly caused by the presence of the clusters. When
the significance level is changed to α = 0.00001
(second row), the number of false detections in noise
is reduced significantly; unfortunately, the true align-
ments also disappear, leaving only two detections
due to a cluster. Using a longer alignment length
(third row) produced no better results: false detections
in random points and unexpected detections in the
structured data set. Increasing the significance level
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(a) (b) (c) (d)

Fig. 10. Result of Hall, Tajvidi, Malin 2006 [18]. Each detection is represented by a thin rectangle, surrounded by

the local window. In the following results a 20× 20 candidate center grid was used, a 5 degree angle step, u = 7
and v = 3. (a) Input set of 186 points, containing 3 alignments, 3 clusters, and random points. (b) Result of the

method for a = 0.2, b = 0.4, and c = 0.02. (c) Result of the method for a = 0.3, b = 0.6, and c = 0.02. (d) Result

of the method for a = 0.05, b = 0.6, and c = 0.005.

l
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1
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Fig. 11. Result of Hammer 2009 [19] for three point sets in a normalized unit square domain. Two length values

were tested: 0.3 (radius 0.15) and 0.6 (radius 0.3); and two significance levels: α = 0.1 and α = 0.00001. No

detection was produced with l = 0.6 and α = 0.00001. Left: The same set of 100 random points used in Fig. 9.

Middle: 1000 points drawn independently with uniform distribution in a unit square. Right: The same point set

as in Fig. 10.
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Fig. 12. Unsupervised clustering of the sets of points in Figs. 9, 10, 11 obtained by the Figueiredo and Jain

method [15]. Each ellipse represents a detected cluster.

for long alignments led to no detection.

As discussed in the introduction, general clustering
methods can provide point alignments when a cri-
terion is added to select elongated clusters. We will
show results of this approach using the well-known
algorithm by Figueiredo and Jain of 2002 [15]. This
algorithm adds an important aspect to our compari-
son: like our algorithm it is unsupervised. Figure 12
shows the results for the same point sets used before.
Being a randomized algorithm, different results are
obtained at each run; the best results obtained in
our tests are presented. The method was used in its
standard form, fitting Gaussian mixtures. Each ellipse
in the figure corresponds to a Gaussian cluster. The
results obtained for the structured point sets are sur-
prisingly good: each one of the perceived alignments
and clusters is well represented. The middle result on
random point sets is far less satisfactory as it includes
many elongated clusters interpretable as alignment
detections.

Figure 13 shows the results of the proposed al-
gorithm for the same data sets. As one can see, no
detection is produced in the random points, and the
three alignments were found. Two of the detections
are however shorter than expected and the top vertex
of the “A” is missing. Note how the method correctly
handled the redundant detections.

Some further results of our method, with increas-
ingly difficulty, are shown in Figs. 14 and 15. The first
four are correctly solved. Notice how the very low
relative density alignment in Fig. 14(d) was correctly
detected. Figure 15 shows some failures and requires a
longer comment because they show the limitations of
our algorithm. All the alignments in Fig. 15(a) were
found; however, the redundancy reduction step did
not select the candidates best covering the alignments
from a global gestaltic viewpoint. The set of points in
Fig. 15(b) is the same already shown in Fig. 1; the
alignment found by the algorithm is correct, but as
discussed before, does not corresponds to the most
common interpretation by a human observer. A natu-
ral way of handling this problem would be to detect
the “curves” by good continuation and then forcing a

global interpretation by methods similar to our mask-
ing methodology, that would discard the detected
alignment as “masked” by the curves. In Fig. 15(c)
the presence of a large cluster masks an alignment:
the large number of points causes a large number
of tests, raising the detection threshold and imposing
a very restrictive test on the alignments. The seven
points alignment is detected but the six points one
is missing. Handling this example probably implies a
round cluster detector but also a recursive approach:
once a cluster is detected and removed, our current
algorithm would easily detect both alignments. Fi-
nally, two of the structures in Fig. 15(d) are slightly
curved, rendering them inaccurate as alignments; they
are therefore not detected. Again, the detection of
good continuation may provide a solution. In short,
no alignment detection algorithm can be fully satis-
factory per se; it requires the interaction (and conflicts)
with other feature detectors, namely cluster and curve
detectors.

8 CONCLUSION

In this work we have presented a series of algorithms
with growing efficiency for detecting alignments of
points in a point pattern. The two key aspects of the
alignment have been shown to be its local density
and its regularity. Our final method combines both
criteria into a single coherent detection. We have also
introduced a new procedure to resolve the problem
of redundant detections. As future work, the same
research methodology can be used to address the
detection of related structures, such as the Good Con-
tinuation or curves of points. This will in particular be
necessary to resolve the still unsolved gestalt conflict
between good continuation and alignment pointed
out in Fig. 1.
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