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Abstract

We study the problem of understanding objects in detail,

intended as recognizing a wide array of fine-grained object

attributes. To this end, we introduce a dataset of 7,413 air-

planes annotated in detail with parts and their attributes,

leveraging images donated by airplane spotters and crowd-

sourcing both the design and collection of the detailed an-

notations. We provide a number of insights that should help

researchers interested in designing fine-grained datasets for

other basic level categories. We show that the collected data

can be used to study the relation between part detection and

attribute prediction by diagnosing the performance of clas-

sifiers that pool information from different parts of an ob-

ject. We note that the prediction of certain attributes can

benefit substantially from accurate part detection. We also

show that, differently from previous results in object detec-

tion, employing a large number of part templates can im-

prove detection accuracy at the expenses of detection speed.

We finally propose a coarse-to-fine approach to speed up

detection through a hierarchical cascade algorithm.

1. Introduction

Image-based modeling is perhaps one of the most suc-

cessful paradigms in image understanding. Image-based

models capture objects as two-dimensional patterns, lever-

aging the power of statistical learning to characterize their

variability and recognize them in images. The appearance

of such patterns can be described by orderless statistics

such as bag-of-visual-words or more sophisticated discrim-

inative templates [16] accounting explicitly for object de-

formations, occlusions, and multiple aspects. While these

models are relatively rich, comparatively little attention has

been dedicated to the detailed structure of objects, particu-

larly from a semantic viewpoint. For example, glancing at
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1 airplane facing-direction: SW; is-airliner: no; is-cargo-plane: no;

is-glider: no; is-military-plane: yes; is-propellor-plane: yes; is-seaplane:

no; plane-location: on ground/water; plane-size: medium plane;

undercarriage-arrangement: one-front-two-back; wing-type: single wing

plane; airline: UK–Air Force; model: Short S-312 Tucano T1

2 vertical stabilizer tail-has-engine: no-engine 3 nose

has-engine-or-sensor: has-engine 4 wing wing-has-engine: no-engine 5

undercarriage cover-type: retractable; group-type: 1-wheel-1-axle;

location: front-middle 6 undercarriage cover-type: retractable;

group-type: 1-wheel-1-axle; location: back-left 7 undercarriage

cover-type: retractable; group-type: 1-wheel-1-axle; location: back-right

Figure 1. Beyond object detection: detailed descriptions. An

example annotated airplane in the proposed AirplanOID dataset.

Our aim is to investigate models that understand object categories

in detail, generating rich descriptions of each object instance.

an image such as Fig. 2 we not only see a plane, but a “plane

with two wings, retractable single-wheeler undercarriages

under the wings, pointy nose with a four-blade, black-and-

white, striped propellor, a small round cockpit window, etc.”

Current object models would fail to extract any of these

properties, usually referred to as “attributes”. In general,

an attribute is any visual property that has a semantic con-

notation, such as the redness of an apple or the roundness

of a nose. Attributes capture information beyond the stan-

dard phraseology of object categories, instances, and parts,

and can significantly enrich object understanding. At the

same time, attributes are often modeled as holistic proper-

ties of objects, disregarding their compositional and local

nature. For example, a bird species could be characterized

as having “short wings”, a “dotted pattern around the neck”,

and an “orange beak”. A face could be described as having
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Global attribures

facing-direction ∈ {N, NE, E, SE, S, SW, W, NW}
is-airliner, is-cargo-plane, is-glider,
is-military-plane, is-propellor-plane, is-sea-plane ∈
{true, false}
location ∈ {on-ground/water, landing/taking-off, in-air}
size ∈ {small, medium, large}
airline ∈ {AirFrance, Easyjet, AirCanada, . . . }
model ∈ {Boeing747, ShortS-312Tucano084T1, . . . }

Wings

type ∈ {single-wing, biplane, triplane}
has-engine ∈ {none, embedded, 1-on-top, 2-on-top, 3-on-top,
1-on-bottom, 2-on-bottom, 3-on-bottom}

Vertical stabiliser

tail-has-engine ∈
{none, 1-on-top, 2-on-sides, 3-on-top-and-sides}

Nose

has-propeller-or-sensor ∈ {none, propeller, sensor}

Undercarriage

undercarriage-arrangement ∈
{1-front-more-back, 1-back-more-front, other}
location ∈ {front-left, front-middle, front-right,
back-left, back-middle, back-right, }
group-type ∈ {1-wheel-1-axel, 2w1a, 4w2a, 6w3a, 14w7a}
cover-type ∈ {retractable, fixed-outside,
fixed-inside, fixed-outside-with-cover}.

Figure 2. AirplanOID data. Each of 7,413 airplane instances is annotated with segmentations for five part types (bottom) and their

modifiers (top). The data internal variability is significant, including modern large airliners, ancient biplanes and triplanes, jet planes,

propellor planes, gliders, etc. For convenience, airplanes are divided into “typical” (planes with one wing, one fuselage, and one vertical

stabilizer) and “atypical” (planes with a different structure); this subdivision can be used as “easy” and “hard” subsets of the data. Several

detailed modifiers are associated to parts. For example, the undercarriage wheel group modifier specifies whether an undercarriage has one

wheel on one axel, two wheels on one axel and so on.

a “round nose”, “bulging eyes”, “short hair”, and “small

ears”. In all these examples attributes act as modifiers of

object parts, with a clear compositional structure which is

often disregarded in attribute modeling, partially due to the

lack of suitably annotated data that could support the devel-

opment of such models.

In this paper, we address this gap and look at the problem

of understanding Objects in Detail (OID), intended as de-

scribing an object and its parts with a rich set of semantic at-

tributes. In particular, we investigate how parts and their at-

tributes can be modeled and recognized in images and how

detailed supervision about them can be used to train better

object models and analyze them.

The first challenge is to find which parts and attributes

are useful in describing objects. While resources such as

WordNet can be used to extract a taxonomy of object cat-

egories, this is harder to do for generic object properties.

We address this problem by using a “comparison princi-

ple”: a part/attribute is informative if it can be used to

discriminate similar objects by pinpointing meaningful and

specific differences between them. We measure this em-

pirically from experiments conducted on Amazon Mechan-

ical Turk (AMT) where annotators are asked to differen-

tiate pairs of objects. The results are then filtered semi-

automatically by a statistical analysis and used to bootstrap

a vocabulary of parts and attributes. We apply this princi-

ple to the class “airplane” (the first class of PASCAL VOC,

Sect. 2), collecting and annotating and “OID dataset” of

7,413 images of airplanes spanning a hundred years of avi-

ation, with segmented parts and attributes carefully anno-

tated for each airplane part instance (Fig. 2). Compared

to existing object datasets, by focusing on a single object

category we can afford to collect significantly deeper an-

notations and use them as the basis for a type of analy-

sis that is not supported by existing datasets. The dataset

is publicly available at http://www.robots.ox.ac.

uk/˜vgg/data/oid/.1

Our second contribution is an analysis of the relation be-

tween parts and fine-grained attributes. Sect. 3 uses the de-

tailed annotations in the data to analyze which parts or part

combinations are more informative for the performance of

an attribute classifier. One conclusion in Sect. 3.1 is that

contextual information is a very strong predictor of local at-

tributes. Another one is that accurate part detection is highly

beneficial in the prediction of certain attributes.

Sect. 3.2 also shows that, contrary to what has been ob-

served in other object detection tasks in the literature [45],

detection of object parts can be improved by adding a signif-

icant number of part templates to a state-of-the-art detector.

Hence our final contribution is a coarse-to-fine algorithm to

efficiently and accurately detect parts by organizing multi-

ple templates in a tree hierarchy. Our method achieves a 4-

to 5-fold speedup without sacrificing accuracy.

1.1. Related work

Applications of visual attributes. Due to their semantic

connotation, visual attributes are very powerful in human-

centric applications such as generating image descriptions

automatically [13, 14, 22, 30] or searching images based

1We already introduced a superset of these aircraft images for FGcomp

2013 [28], but without detailed annotations.
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on detailed descriptions of their content [14, 23, 38]. The

method of[23] uses simile attributes to characterise face in-

stances (e.g. “a nose like Harrison Ford’s”) and [34] extend

this to relative properties (e.g. “more masculine than Clive

Owen”, “less natural than a forest”). The method of [21]

uses comparative (e.g. “more shiny than”) and simile at-

tributes for interactive query refinement. Attributes can also

be used to transfer expert knowledge to a computer vision

system in zero-shot learning [25, 43], in finding relations

between object categories [34, 42], in incorporating anno-

tator’s rationales and other forms of feedback [8, 35].

Mining and annotating visual attributes. The selection

of useful attributes is often left to the intuition of the re-

searcher [13, 36]. In specific domains attributes may be ex-

tracted from field guides [26, 43] or documents downloaded

from the Internet [3, 32]. The method of [33] starts from

randomly generated classifiers and uses humans in the loop

to find which ones may correspond to meaningful image at-

tributes. [6, 27] use a comparison principle to corwdsource

attributes from image collections.

Modelling and recognising visual attributes. While at-

tributes may be conceptually attractive, they are useful

only if they can be detected reliably in images. The

work on modelling attributes is relatively limited, as most

authors use off-the-shelf methods such as bag-of-visual-

words [8, 9, 13, 14, 21, 25, 25, 30, 33–36, 39, 42–44].

Despite the fact that most object attributes are local (e.g.

properties of parts), only a few authors account for locality

explicitly [12, 22–24, 38, 41, 43]. Very few works consider

the correlation between attribute occurrences [38, 44].

Attribute datasets. There are only a few datasets an-

notated with attributes, and fewer still with object at-

tributes. Examples of the latter are the a-Yahoo/a-PASCAL

datasets of [13], but these contain image-level annotations.

CORE [12] contains coarse part and attribute annotations

for several object categories, while our focus is the fine-

grained description, which led us to obtain detailed anno-

tations of a large number of images of one class. This

trade-off is motivated by the necessity of obtaining a sta-

tistically acceptable sampling of subtle object variations.

CUB-200 [40] also contains images of one object category

annotated in detail (bird), but their attributes are specialized

to the identification of bird species, while we are interested

in general object properties.

2. Detailed object annotation methodology

Similar to standard tasks such as image categorization

and object detection, describing objects in detail requires

a suitable dataset. This section discusses the nuances in-

volved in collecting a large set of detailed object annota-

tions [10] and a methodology to do so efficiently.

As a running example we consider the class airplane,

contained in standard datasets such as Caltech-101 [15],

PASCAL VOC [11], and CORE [12]. The airplane class

was selected because airplanes are largely non-deformable,

simplifying object and part detection, but contain significant

structural variably (biplanes, fighter jets, private jets, pro-

peller planes, airliners, etc.), supporting a rich set of modi-

fiers. The resulting annotated dataset, dubbed AirplanOID,

comprises 7,413 images of airplanes with segmentations for

five object part types as well as discrete labels for a number

of modifiers, as listed in Fig. 2. Crucially, several modifiers

apply directly to specific object parts (e.g. the number of

wheels of an undercarriage), allowing to investigate the in-

teraction between local and global semantic and modeling.

The next paragraphs illustrate how AirplanOID was col-

lected, emphasizing insights of general applicability. The

process is broken down into three phases: (i) collecting

images, (ii) crowdsourcing attributes and parts, and (iii)

crowdsourcing annotations.

(i) Collecting images. Rather than following the standard

approach of drawing images from sources such as Google,

it was found that extracting images from specialized col-

lections was much more efficient. For airplanes, we down-

loaded 7,413 images from airplane spotters (http://

www.airliners.net/); interestingly, several of them

agreed to let us use their copyrighted material for research

purposes for free. Not only these images are curated, but

they also come with a significant amount of very detailed

metadata (e.g. airplane model) that would be difficult to ob-

tain otherwise. Similar collections are available for other

object categories as well.

(ii) Crowdsourcing attributes and parts. In order to find

useful parts and attributes to describe objects, the natu-

ral approach is to look at the terms that humans use to

describe them. However, when asked to describe an ob-

ject directly [37], annotators did not usually produce de-

tailed information; instead, asking about the differences be-

tween objects pairs was found to be significantly more ef-

fective [27], producing a substantial list of candidate parts

and attributes.

(iii) Crowdsourcing annotations. The list of candidate

parts and attributes from (ii) was pruned to meet our anno-

tation budget, selecting five airplane parts (airplane, wing,

undercarriage, vertical stabilizer, nose) and several corre-

sponding modifiers (Fig. 2). While parts and attributes are

intuitive by design, it was found that providing clear spec-

ifications and instructions to annotators substantially im-

proved the annotation quality. In particular instruction were

iteratively refined by looking at early batches of annota-

tions, adding illustrations of typical annotation errors and

how to correct them. Each of the 7,413 images was submit-

ted to AMT for annotation, collecting attribute labels and

http://www.airliners.net/
http://www.airliners.net/
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Figure 3. Attribute prediction using local evidence: local evidence, measured in correspondence of different object parts, is used to

predict fine-grained attributes taking two, three, or four different values (left-to-right); the plots show the impact of different sources of

local information on attributed prediction, quantified as Normalized AP (NAP). In each plot, parts are sorted by decreasing mean NAP.

Attribute Method Best Second best Combined Airplane Image

undercarriage cover type
g.t. undercarriage phr. (61.2%) undercarriage (54.4%) 75.9% 54.8% 43.8%

detected undercarriage phr. (37.3%) nose (28.9%) – 34.0% –

tail has engine
g.t. wing (28.2%) wing phr. (26.8%) 36.1% 33.2% 21.2%

detected vertical stabiliz. (21.6%) undercarriage phr. (19.6%) – 20.1% –

facing direction
g.t. nose (49.0%) fuselage (39.6%) 70.6% 52.0% 43.8%

detected nose (29.8%) wing phr. (24.0%) – 31.9% –

Table 1. Attribute prediction with ground truth and detected parts. Only selected attributes shown due to space constraint.

part polygons (rectangles for undercarriage). The quality

of the annotators was highly variable, but maintaining a list

of reliable annotators addressed this issue successfully. For

attribute labels, annotation noise was reduced by collecting

from 5 to 10 redundant annotations (if after 10 rounds no

label received a least 80% of the votes, the instance was de-

clared ambiguous). Part polygons were also collected mul-

tiple times (from 3 to 6), but in this case verified by our

team, as there is no easy way to average these annotations.

To this end, a tool was developed to allow the team to work

concurrently by selecting the best polygonal segmentation

for each airplane/part instance, automatically ranking an-

notators and prioritizing the work of good ones. Overall,

three weeks of intense work were sufficient to collect high-

quality annotations for the 7,413 images. Nevertheless, part

validation is still expensive (in our case it involved about

ten researchers full time) and reducing this cost further is

subject of current research.

3. The role of parts in detailed understanding

Our exploration of the OID problem starts by investigat-

ing the notion of part and its role in defining a composi-

tional semantic of attributes. In particular, the first question

is whether extracting parts is necessary or useful in predict-

ing detailed object properties. While this may be a given,

in fact we will see that the correlation between the general

structure of the object and the local attributes make it possi-

ble to recognize certain attributes without localizing parts;

however, this is not true for all of them. Given that detect-

ing parts is important for at least a subset of the fine-grained

tasks, the second question is how parts can be best modeled

and detected. Here the surprising insight is that very de-

tailed appearance models do not overfit the data but rather

they surpass more regularized settings that have been found

to be optimal for generic object detection.

3.1. The effect of parts on attribute prediction

A key benefit of the OID dataset (Sect. 2) is that it allows

an in-depth analysis of attributes and their relation with ob-

ject parts. We now use OID to (i) study which object parts

are informative for which attributes and (ii) how part detec-

tion quality can impact attribute prediction performance.

To this end, we build attribute classifiers and combine

them with ground-truth and detected parts. We investigate

two standard models, Bag-of-Visual-Words (BoVW) and

Deformable Part Models (DPM), using state-of-the-art im-

plementations. The BoVW representation of an image win-

dow (corresponding to an entire image, an object, or one of

its part) uses dense SIFT features at multiple scales, quan-

tised into 2048 visual words, 1×1 and 2×2 spatial subdivi-

sions, l1 normalised histograms plus the square root feature

map, as detailed in [5]. DPMs use the latest implementa-

tion available online (v5) [18]. The latter was modified to

incorporate part-level supervision in some experiments.

Similar to [19], the OID data allows an analysis of the

performance of a classifier and its failure modes in relation

to properties and attributes of objects. However, while [19]

is limited to diagnosing the detection problem, OID allows

to move the study to the level of the individual parts and

attributes. As in [19], we evaluate classifiers in terms of



Normalized Average Precision (NAP) in order to penalize

inaccurate predictions while at the same time making dif-

ferent tasks comparable.

In the first experiment (Fig. 3), attribute classifiers are

learned by restricting visual information to specific parts of

the objects: the whole image, the whole airplane, the nose,

the undercarriages, the wings, the vertical stabilizer, the

fuselage (obtained by subtracting the other parts from the

airplane body), undercarriage and wing phrases (a bounding

box around the corresponding parts), and the background.

For each part, a BoVW descriptor is obtained as explained

above; part combinations obtained by stacking the corre-

sponding descriptors are evaluated as well. Fig. 3 shows a

subset of classifier performance comparison results.

The first observation (a) is that in all cases the model us-

ing part combination outperforms any single part model.

The second observation (b) is that, while generally (but

not always) attributes with a local semantic are best pre-

dicted by the corresponding part, other non-overlapping

parts are excellent predictors as well (note that chance NAP

is 1%). For example, the attribute tail-has-engine is

predicted with mNAP (mean NAP) of 28.2% by the wing

phrase part, and the vertical stabilizer is only the fifth best

part predictor at NAP 24.3%. Observations (a) and (b) indi-

cate that contextual information is complementary and of-

ten nearly as good (and sometimes better) than direct evi-

dence. Thus, learning attributes from global object or im-

age cues as commonly done [8, 9, 13, 14, 21, 25, 30, 33–

36, 39, 42–44] may in fact pick up contextual evidence more

than learning about the attribute per se.

In the second experiment (Tab. 1), the performance of

attribute prediction is evaluated in function of the reliabil-

ity of part detectors, repeating the experiment above, but

using detected rather than ground-truth parts. The drop in

performance when moving from ground truth to detected

parts is in some cases substantial, suggesting that work fo-

cusing on part localization is likely to benefit significantly

fine-grained object description.

3.2. Improving part detection

As noted in Sect. 3.1, part detection plays a major role in

fine-grained attribute prediction. This section seeks ways of

improving the detection of object parts, revisiting the ques-

tion “Do we need more data or better models” for object

detection posed by [45]. In their work they showed that on

PASCAL VOC datasets a leading approach for detection,

mixtures of deformable part-based models tends to saturate

on performance with 3 mixtures on most categories. Even

with the addition of 10× more data the authors noted that

the performance of the models does not improve signifi-

cantly — more mixtures simply added robustness by ‘taking

away’ noisy training examples.

Do more mixtures help? We first perform an experiment

Part k = 6 k = 20 k = 40 Shape

Nose 57 60 62 68

Vertical stabilizer 42 54 52 60

Wings (grouped) 15 19 22 28

Table 2. Part detection performance (MAP%) as a function of the

number of components. Shapes results were obtained with k = 40

components, and part segmentations to initialize clusters.
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Figure 4. Nose detection results. Nose shape clusters learned by

EM. Detection AP using k = 6, 20, and 40 mixture components

based on aspect-ratio clustering to initialize the latent SVM (left).

AP for the baseline clustering, left-right clustering from [18], and

our supervised shape clustering for k = 40 (right).

where we train mixtures of root-only models by varying the

number of mixture components k = 6, 20, and 40. We

found that, for most parts, detection performance saturates

at around 40 mixture components, which is an order of mag-

nitude higher than the same number on PASCAL dataset.

We use aspect-ratio based clustering to initialize the mix-

tures. Fig. 4 (top-left) shows that the performance of the

learned models for detecting noses are respectively 57%,

60%, and 62%, improving consistently as the numbers of

mixtures increase. Table 2 shows similar gains for other

parts. This can be because unlike those in the PASCAL

VOC dataset, our objects are of significantly higher resolu-

tion and variety, and hence can benefit from the details more

mixture components can provide.

Do semantic attributes help? In addition to aspect ratio

based clustering we can use a supervised left-right cluster-

ing which improves performance from 62% to 67% for the

nose part (Fig. 4-right). Additionally, we use the segmenta-

tion of the noses to cluster the shapes using the HOG fea-

tures of the foreground object. This initialization improves

the performance to 68%. A similar trend is observed for

other parts and the overall object as seen in the last column

of Tab. 2. Thus better initialization using semantic attributes

can improve detection accuracies a trend observed by sev-

eral others [4, 29, 45].



4. Hierarchical part detection cascades

Having outlined the merit of using multiple shape clus-

ters for part detection, we now address computational effi-

ciency. The refined processing advocated in Sec. 3.2 incurs

an increase in computational cost, as it requires the evalua-

tion of multiple classifiers at every candidate part location.

One of our technical contributions is a method to effi-

ciently process an image with a fine-grained model through

a hierarchical part detection cascade. We build on the

broader theme of sequential testing [1] and organizing mul-

tiple classifiers in a tree-structured hierarchy [2, 7], and in-

tegrate it with bounding-based detection [20].

We develop a coarse-to-fine algorithm that originally

gets rough and quick score estimates for sets of similar com-

ponents, and then recursively refines such scores by work-

ing with increasingly smaller sets of components. For this,

we start in Sec. 4.1 by recovering an hierarchy of parts

from a set of discriminatively trained components. Then,

in Sec. 4.2 we use this hierarchy at test time to quickly re-

cover filters that score above a predetermined threshold by

recursively constructing probabilistic upper bounds on part

scores lying below a tree node, and pruning accordingly.

4.1. Part hierarchy computation

We establish a tree-hierarchy to represent the k compo-

nent filters learned in Sec. 3.2; we use agglomerative clus-

tering and force the learned tree to be binary, ensuring that

it has depth at most ⌈log
2
k⌉. As shown in Fig. 5, the

leaf nodes of the hierarchy learned for the ‘nose’ part cor-

respond to the individual components-filters while higher-

level nodes represent the ensemble of filters below them.

Starting with the leaf nodes, we construct a k×k dissim-

ilarity matrix D between parts, containing the alignment-

based dissimilarity of components i and j:

D[i, j]=min
h′,v′

∑

h,v

(fi(h, v, d)−fj(h+ h′, v + v′, d))
2

(1)

where h, v, d are the horizontal, vertical, and direction in-

dexes of a HOG template respectively, h′, v′ indicates an

amount of translation applied to fj , while we treat different

sizes of fi, fj by zero-padding. We greedily pick the most

similar pair, remove the respective rows and columns from

D, and repeat until all leaves get paired. Each pair i, j is

represented by its parent, l, in terms of the aligned mean:

fl(v, h, d) =
1

2
(fi(v, h, d) + fj(v + v∗, h+ h∗, d)), (2)

where (v∗, h∗) is the minimizer of Eq. 1. We repeat this

procedure at the next level, halving the number of nodes

present at every hierarchy level; for k = 2i, the hierarchy

will thus contain 2k − 1 nodes and i+ 1 levels.

Level 1
(root)

Level 2

Level 3

Leaves

Figure 5. Hierarchical filter tree. The discriminative power of

the multi-component model is summarized in a single super-node

(root). Its left child corresponds to low aspect ratio leaf nodes,

whereas the right child captures characteristics of high aspect ratio

leaf nodes. The leaves are the individual mixture components.

4.2. Hierarchical pruning with probabilistic bounds

We use the constructed hierarchy to accelerate detection;

at any pixel we start at the root, visit the left and right chil-

dren, check if any of them holds promise for delivering a

score above threshold and then accordingly recursively re-

fine or stop. If the score estimate at all nodes upper bounds

the leaf scores below it, this procedure is guaranteed to de-

liver all parts scoring above threshold.

The main technical hurdle is the bound construction. For

this we adapt the probabilistic bounds [31] used recently in

[20] to our coarse-to-fine filter evaluation scheme. While

no longer being determinstic, in practice these bounds incur

only negligible changes in performance.

In particular, consider having M filters, f1, . . . , fM ly-

ing below a node l in the part hierarchy. Given an in-

put HOG feature I , we consider how the average filter

f̂ = 1

M

∑M

m=1
fm can be used to bound the individual filter

scores, sm = 〈fm, I〉. As we show below, with probability

pe the maximal filter score is bounded from above by the

score ŝ = 〈f̂ , I〉 of the average filter as follows:

max
m∈{1,...,M}

〈fm, I〉≤〈f̂ , I〉+

√

E(f1, . . . , fM , I)/Mpe, (3)

where E combines the local image measurements, I with a

measure of distance between the filters fm and the average

filter f̂ . In particular, we construct an expression for E that

can be rapidly computed with a single inner product oper-

ation; as such the cost of computing the bound for all M
filters at test-time does not depend on M .

To prove (3) we proceed as in [20] modelling ǫm = sm−
ŝ as a random variable, constructing an interval [−α, α] that

contains ǫm with high probability, and then bounding sm
from above by s = ŝ+ α. The value of α is determined by

Chebyshev’s inequality:

P (|X| > α) ≤ V/α2, (4)



which relates the second moment V = E{X2} of a zero-

mean random variable X with the probability that its ab-

solute exceeds α. Namely, X lies outside [−α, α] with

probability smaller than V/α2, or, equivalently, X lies in

[−
√

V/pe,
√

V/pe] with probability larger than 1− pe.

Unlike [20], rather than sm we now need to bound

maxm sm. This requires two modifications: first, we deal

with the ‘max’ operation as follows:

P (max
m

sm > s) = P (∨m {sm > s}) (5)

≤
∑

m

P (sm > s) < Mpe, (6)

where ∨m indicates a logical-or of the M events, the first

inequality follows from the union-bound, and the second

inequality holds for a pe such that P (sm > s) < pe, ∀l.

This brings us to our second modification: constructing s
so that P (sm > s) < pe, ∀m involves bounding the differ-

ent variables s1, . . . , sM with a common expression s. For

this we write the scores sm as summations over HOG cells:

sm = 〈fm, I〉 =
∑

c

∑

d

fm(c, d)I(c, d), (7)

where c = (v, h) indexes vertical/horizontal positions and

d indexes the HOG cell dimensions. We can thus write:

ǫm=
∑

c

ǫc,m, with ǫc,m=
∑

d

[

f̂(c, d)−fm(c, d)
]

I(c, d).

At any cell c we assume the approximation errors f̂(c, d)−
fm(c, d) can be modelled as independent, identically dis-

tributed (iid) variables, and estimate their second moment

using the reconstruction error of the respective filter cell:

Vc,m = 1

D

∑D

d=1

(

f̂(c, d)− fm(c, d)
)2

, where D = 32 is

the HOG cell dimensionality.

Treating ǫc,m as the weighted-by-I(c, d) sum of D iid

variables its second moment of ǫc will be:

E{ǫ2c,m} = Vc,m‖Ic‖
2

2
, (8)

where ‖Ic‖
2

2
is the ℓ2 norm of the 32-D vector formed from

the c-th HOG cell. We further consider the individual er-

ror contributions of the different cells as independent and

express the second moment of ǫl as follows:

E{ǫ2m} =
∑

c

E{ǫ2c,m} =
∑

c

Vc,m‖Ic‖
2

2
. (9)

The last expression provides us with the error variance

needed in Eq. 4 to construct the upper and lower bounds

to the score. This however is dependent on the filter index

m. In order to drop the dependence on m, we also upper

bound the variance in Eq. 9 by maximizing Vc,m over m:

E{ǫ2m} ≤
∑

c

(

max
m

Vc,m

)

‖Ic‖
2

2

.
= E. (10)
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Figure 6. Pruning of candidate locations. Detection example and

the number of visits by some node in the filter tree. By pruning

candidate locations as we move from the root to the leaves, the ex-

act score is evaluated at only a fraction of the image domain(right).
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Figure 7. Cascade detection results. Precision-recall curves for

different percentile values used to determine empirical thresholds,

and corresponding speedup with respect to the baseline.

Having derived an expression for the variance that no longer

depends on m, we can now bound sm,m = 1, . . . ,M with

a single expression (3), as required.

The computation of Eq. 10 at test time has negligible

cost: the cell distortion maxm Vc,m is computed off-line,

while the HOG-cell norm ‖Ic‖2 is computed once for the

HOG pyramid, and reused by all tree nodes. We also note

that other than independent errors we did not make further

assumptions, which makes our method fairly generic.

4.3. Experiments

We build two tree cascades, one for the left-facing and

another for the right-facing filters, each comprising 20 mix-

ture components. Setting the probability of error pe = 0.01
in Eq. 4.2, we obtain upper bounds for the maximal filter

score at any node on the filter-tree. Directly using these

bounds for bounding-based detection, as outlined above,

yields a 3-fold speedup with virtually identical performance

as the full-blown convolution (for all results we use identi-

cal, single-threaded implementations). We can get an ad-

ditional speedup by using the bounds of Eq. 4.2 to train

empirical pruning thresholds, as in [17]. For this, we set

the pruning threshold at every node to reject the bottom-k-

th percentile of the training set, for k = 1, 2, 5. As shown

in Fig. 7, this results in further acceleration (4- to 7- fold),

while incurring only a small drop in AP by 0.01-0.02. Our

implementation is available at http://cvn.ecp.fr/

personnel/tsogkas/code.html.

5. Summary

We have introduced AirplanOID, a large dataset of im-

ages of planes annotated in detail, discussing its design and

http://cvn.ecp.fr/personnel/tsogkas/code.html
http://cvn.ecp.fr/personnel/tsogkas/code.html


several practical aspects of its construction. This data al-

lowed us to initiate a study of the problem of fine-grained

object description, and in particular of the relation between

object parts and detailed attribute semantics. We have

shown that attributes are often predicted best by the part

containing direct evidence about them, but not always due

to the existence of contextual ties that are often neglected

in attribute modeling. We have also shown that semantic

supervision and rich appearance models can improve part

detection and hence attribute prediction. Finally, we have

introduced a coarse-to-fine technique to detect efficiently

these richer part models in images.

Acknowledgments. This research is based on work done

at the 2012 CLSP Summer Workshop, and was partially

supported by NSF Grant #1005411, ODNI via the JHU

HLTCOE and Google Research. S. Tsogkas and I. Kokki-

nos were supported by ANR-10-JCJC-0205. S. Mahendran

was supported by NSF Grant #11-1218709. All the images

in our dataset were kindly provided by Mick Bajcar, who

very generously agreed to allow the community to use his

images exclusively for non-commercial research purposes,

provided that a suitable copyright note is included.

References

[1] Y. Amit and D. Geman. A computational model for visual selection.

Neural Computation, 11(7), 1999. 6
[2] M. Andreetto, L. Zelnik-Manor, and P. Perona. Unsupervised learn-

ing of categorical segments in image collections. 2008. 6
[3] T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery

and characterization from noisy web data. In ECCV, 2010. 3
[4] L. Bourdev and J. Malik. Poselets: Body part detectors trained using

3D human pose annotations. In ICCV, 2009. 5
[5] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil

is in the details: an evaluation of recent feature encoding methods.

In BMVC, 2011. 4
[6] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for

fine-grained recognition. In CVPR, 2013. 3
[7] J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei. Fast and balanced:

Efficient label tree learning for large scale object recognition. In

NIPS, 2011. 6
[8] J. Donahue and K. Grauman. Annotator rationales for visual recog-

nition. In ICCV, 2011. 3, 5
[9] M. Douze, A. Ramisa, and C. Schmid. Combining attributes and

fisher vectors for efficient image retrieval. In CVPR, 2011. 3, 5
[10] I. Endres, A. Farhadi, D. Hoiem, and D. A. Forsyth. The benefits and

challenges of collecting richer object annotations. In Proc. ACVHL

Wokrshop (with CVPR), 2010. 3
[11] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool. The

PASCAL visual obiect classes challenge 2007 (VOC2007) results.

Technical report, Pascal Challenge, 2007. 3
[12] A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition

for cross-category generalization. In CVPR, 2010. 3
[13] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects

by their attributes. In CVPR, 2009. 2, 3, 5
[14] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian,

J. Hockenmaier, and D. Forsyth. Every picture tells a story: Gen-

erating sentences from images. In ECCV, 2010. 2, 3, 5
[15] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsu-

pervised one-shot learning of object categories. ICCV, 2003. 3
[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part based models.

PAMI, 32(9):1627–1645, 2010. 1

[17] P. F. Felzenszwalb, R. B. Girshick, and D. A. McAllester. Cascade

object detection with deformable part models. In CVPR, 2010. 7
[18] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester. Dis-

criminatively trained deformable part models, release 5.

http://people.cs.uchicago.edu/˜rbg/latent-release5/. 4, 5
[19] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in

object detectors. In ECCV, 2012. 4
[20] I. Kokkinos. Shufflets: shared mid-level parts for fast object detec-

tion. In ICCV, 2013. 6, 7
[21] A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Image

search with relative attribute feedback. In CVPR, 2012. 3, 5
[22] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L.

Berg. Baby talk: Understanding and generating image descriptions.

In CVPR, 2011. 2, 3
[23] N. Kumar, P. Belhumeur, and S. Nayar. Facetracer: A search engine

for large collections of images with faces. In ECCV, 2008. 3
[24] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute

and simile classifiers for face verification. In ICCV, 2009. 3
[25] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect un-

seen object classes by between-class attribute transfer. In CVPR,

2009. 3, 5
[26] C. H. Lampert. Detecting objects in large image collections and

videos by efficient subimage retrieval. In ICCV, 2009. 3
[27] S. Maji. Discovering a lexicon of parts and attributes. In ECCV

Workshop, 2012. 3
[28] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-

grained visual classification of aircraft. Technical report, 2013. 2
[29] K. Matzen and N. Snavely. Nyc3dcars: A dataset of 3d vehicles in

geographic context. In ICCV, 2013. 5
[30] M. Mitchell, J. Dodge, A. Goyal, K. Yamaguchi, K. Stratosi, X. Han,

A. Mensch, A. Berg, T. Berg, and H. D. III. Midge: Generating

image descriptions from computer vision detections. EACL, 2012. 2,

3, 5
[31] M. Mitzenmacher and E. Upfal. Probability and computing - ran-

domized algorithms and probabilistic analysis. CUP, 2005. 6
[32] V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images

using 1 million captioned photographs. In NIPS, 2011. 3
[33] D. Parikh and G. Grauman. Interactively building a discriminative

vocabulary of nameable attributes. In CVPR, 2011. 3, 5
[34] D. Parikh and K. Grauman. Relative attributes. In ICCV, 2011. 3
[35] A. Parkash and D. Parikh. Attributes for classifier feedback. In

ECCV, 2012. 3
[36] O. Russakovsky and L. Fei-Fei. Attribute learning in large-scale

datasets. ECCV Workshop Parts and Attributes, 2010. 3, 5
[37] B. C. Russel, A. Torralba, K. P. Murphy, and W. T. Freeman. La-

belme: a database and web-based tool for image annotation. Techni-

cal Report AIM-2005-025, MIT AI Lab, 2005. 3
[38] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and retrieval

based on multi-attribute queries. In CVPR, 2011. 3
[39] L. Torresani, M. Summer, and A. Fitzgibbon. Efficient object cate-

gory recognition using classemes. In ECCV, 2010. 3, 5
[40] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The

caltech-ucsd birds-200-2011 dataset. Technical report, 2011. 3
[41] G. Wang and D. Forsyth. Joint learning of visual attributes, object

classes and visual saliency. In ICCV, 2009. 3
[42] G. Wang, D. Forsyth, and D. Hoiem. Comparative object similarity

for improved recognition with few or no examples. In CVPR, 2010.

3, 5
[43] J. Wang, K. Markert, and M. Everingham. Learning models for ob-

ject recognition from natural language descriptions. In BMVC, 2009.

3
[44] Y. Wang and G. Mori. A discriminative latent model of object classes

and attributes. In ECCV, 2010. 3, 5
[45] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need

more training data or better models for object detection? BMVA

Press, 2012. 2, 5

~

