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Abstract. Sparsity regularization allows handling the curse of dimen-
sionality, a problem commonly found in fMRI data. In this paper, we
compare LASSO (ℓ1 regularization) and the recently introduced k-support
norm on their ability to predict real valued variables from brain fMRI
data for cocaine addiction, in a principled model selection setting. Fur-
thermore, in the context of those two regularization methods, we compare
two loss functions: squared loss and absolute loss. With the squared loss
function, k-support norm outperforms LASSO in predicting real valued
behavioral variables measured in an inhibitory control task given fMRI
data from a different task, designed to capture emotionally-salient re-
ward. The absolute loss function leads to significantly better predictive
performance for both methods in almost all cases and the k-support
norm leads to more interpretable and more stable solutions often by an
order of magnitude. Our results support the use of the k-support norm
for fMRI analysis and the generalizability of the I-RISA model of cocaine
addiction.

Keywords: Functional magnetic resonance Imaging (fMRI), Regular-
ization, Sparse representations

1 Introduction

Functional magnetic resonance imaging (fMRI) is a widely used modality within
the field of neuroimaging, that measures brain activity by detecting associated
changes in blood oxygenation. One of the goals of fMRI data analysis is to detect
correlations between brain activation and a task the subject performs during the
scan.

The main challenges in statistical fMRI data analysis [1–4] are (i) the curse
of dimensionality (ii) a small number of samples, due to the high cost of fMRI
acquisition, and (iii) high levels of noise, such as system noise and random neural
activity.
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Sparsity regularizers are key statistical methods for improving predictive per-
formance in the event that the number of observations is substantially smaller
than the dimensionality of the data, as is the case in fMRI analysis. In this
paper we compare the most frequently applied sparsity regularizer developed
in the statistics literature, LASSO [5], with the k-support norm [6], a recently
introduced method which is less biased towards sparse solutions.

The k-support norm can be viewed as a generalization of LASSO when k = 1
and ridge regression when k = d, where d is the dimensionality of the data. The
k-support norm has previously been used in [6] for classification. It was first used
for fMRI data modelling in [7] with a specific choice k parameter of the norm,
that is, the method was not tested in a model selection setting. In both cases
the k-support norm was used with the squared loss function.

We focus on comparing LASSO with the k-support norm in order to estab-
lish the latter regularizer’s superiority in analyzing fMRI data. We use two loss
functions, namely the squared error and the absolute error. The advantage of
the absolute error loss is that it is more robust, in that it penalizes outliers less
than squared loss, while still retaining convexity which guarantees finding the
global optimum. We compare the methods not only in their predictive accuracy
but also in the interpretability and stability of their results.

Our contribution in this paper is threefold. First, we introduce a novel method,
the k-support norm with absolute error. Second, this is the first attempt to com-
pare LASSO with the k-support norm in a principled model selection setting.
Finally, to the best of our knowledge this is the first application of the k-support
norm to a real valued response variable in a challenging clinical setting where
the fMRI signal collected during one task is used to predict behavioral responses
collected at a different time during a second task.

The neuroscientific motivation for our experiments is the exploration of hu-
man drug addiction. Basic studies have led to a theoretical model of human drug
addiction, characterized by Impaired Response Inhibition (RI) and Salience At-
tribution (SA) (hence, I-RISA) [8]. According to the model, the skew in SA is
predictive of impaired RI, together contributing to excessive drug use and re-
lapse, core clinical symptoms of cocaine addiction. We use the fMRI data from
a SA task (drug Stroop) in order to predict behavioral data in a RI task (color-
word Stroop) collected at a different time, hence providing further evidence to
support the I-RISA model.

2 Methods

We denote by X ∈ R
n×d the design matrix of n samples each with d dimensions;

we denote by y ∈ R
n the vector of targets.

A basis of statistical inference is the application of regularized risk, in which
a loss function is evaluated over a sample of data and is linearly combined with
a regularizer that penalizes some norm of the prediction function as in (Eq. (1)),
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where the first term is the loss function and the second is the penalty term:

min
β

f(β,X, y) + λJ(β). (1)

The scalar parameter λ > 0 controls the degree of regularization and J is a
scalar valued function monotonic in a norm of β ∈ R

n. Sparsity regularization
is a key family of priors over linear functions that prevents overfitting and aids
interpretability of the resulting models [5, 6]. Key to the mathematical under-
standing of sparsity regularizers is their interpretation as convex relaxations to
quantities involving the ℓ0 norm, which simply counts the number of non-zero el-
ements of a vector. One of the most important sparsity regularizers is the LASSO
[5], where λJ(β) = λ‖β‖1. In many learning problems of interest, LASSO has
been observed to shrink too many of the β variables to zero. In the presence
of a group of highly correlated variables, LASSO may prefer a sparse solution.
However including all correlated variables in the model could potentially lead to
higher predictive accuracy [6] and the k-support norm provides a way of cali-
brating the cardinality of the regression vector β so as to include more variables.

The k-support norm can be computed as
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where |β|↓i is the ith largest element of the vector and r is the unique integer in
{0, . . . , k − 1} satisfying

|β|↓k−r−1
>

1

r + 1

d
∑

i=k−r

|β|↓i ≥ |β|↓k−r. (3)

In this paper, we consider LASSO and the k-support norm with two loss
functions: the squared error f(β,X, y) = ‖y − Xβ‖2

2
and the absolute error

f(β,X, y) = ‖y −Xβ‖1.
In practice, we approximate the absolute error with a Huber type smoothing

around zero to ensure differentiability.

3 Experimental Set-up

In this section we present our experiments and the data sets used in them. Our
experiments aim at providing empirical evidence for the support of the I-RISA
model.

We use the fMRI drug-word task described in [9, 10]. The neuropsychological
experiment for cocaine addiction data set has a block design, which includes
eight sessions, with each of them having different conditions. The two varying
conditions are the monetary reward (50➣, 25➣, 1➣ and 0➣) and the cue shown
(drug words, neutral words). The session consists of an initial screen displaying
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the monetary reward and then presenting a sequence of forty words in four dif-
ferent colors (yellow, blue, red or green). The subject was instructed to press one
of four buttons matching the color of the word they had just read. The subjects
were rewarded for correct performance depending on the monetary condition.

We use the behavioral responses of the same subjects in a color-word task
[11], a classic task of inhibitory control. In this task the subjects pressed for ink
color of color words printed in either their congruent or incongruent colors. Four
colors and words (red, blue, yellow and green) were used in all possible combi-
nations. Both congruent and incongruent stimuli were presented randomly. The
subjects performed four consecutive runs of this task. As there were 12 incon-
gruent events in each run of 200 events, each subject’s data contained up to 48
incongruent events.

For 38 control subjects and 74 cocaine abusers, we use the fMRI data from
the drug-word task, to predict color-word behavioral variables.

Our experimental setting consists of 500 trials with an 85% / 15% random
split between training and test sets. We perform model selection on the training
set. That is, for each combination of parameters (λ ∈ {10i : i = −2, · · · , 8}
for LASSO, λ ∈ {10i : i = −2, · · · , 8}, k ∈ {1, 2, 3, 6, 12, 100, 200, 300, 600} for
k-support norm), we do a leave-one-subject-out cross validation on the samples
that constitute the training set. We measure the correlation between the pre-
dicted and the true response variables on the training set. The parameter setting
that leads to the highest correlation is used on the whole training set in order to
learn a set of weights for each method, which are then applied on the test set.
Finally, we measure the correlation between the predicted and the true response
variables on the test set. We report the mean correlation on the holdout test
samples and its standard error across the 500 random permutations in Sec. 4.
We note that the same sample randomization is used for both LASSO and k-
support norm.

In experiment 1 we use the fMRI contrast drug > neutral words, averaged
over monetary reward condition, to predict the conflict effect in the subjects’
reaction time on the color-word task, defined as the difference in time between
correctly performing the task for congruent and incongruent events. We use the
Insula, Hippocampus Complex, Amygdala and ACC, part of the brain’s limbic
(emotion) circuit, as regions of interest (ROIs) for this experiment. These regions
are chosen on the basis of previous studies on independent datasets that showed
limbic system modulation by drug-related cues, eg. drug words [12].

In experiment 2 we use the fMRI contrast 50➣ > 0➣, averaged over word
type condition, in order to predict the subjects’ responses on the color-word
task, defined as the difference in percent accuracy between performing the task
for congruent and incongruent events. We use the Basal Ganglia and Thalamus,
part of the brain’s reward circuit, as ROIs for this experiment. We chose these
ROIs on the basis of previous studies on independent datasets that showed re-
ward system modulation by primary and secondary reinforcers, including money
[13].
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4 Results

We compare the performance of the two methods in Table 1 for the first exper-
iment and Table 2 for the second experiment.

Mean Correlation, D>N, Conflict effect on Reaction Time

Control Subjects

Norm / Loss Squared Absolute p

LASSO 0.16 (0.02) 0.27 (0.02) <0.01
k-support 0.22 (0.02) 0.24 (0.02) <0.05

p <0.001 0.21

Cocaine Subjects

Norm / Loss Squared Absolute p

LASSO 0.27 (0.01) 0.37 (0.01) <0.001
k-support 0.33 (0.01) 0.36 (0.02) <0.001

p <0.001 0.96

Table 1. Mean (SE) correlation over 500 random permutations of the samples between
the predicted and the actual conflict effect on the reaction times for drug > neutral
using the limbic ROI, for all combinations of regularizers and loss functions. The p-
values were computed with a Wilcoxon signed rank test between the 500 correlation
values for the two combinations of regularizer and loss function in the preceding rows
or columns. Based on the p-values, there is a statistically significant difference between
absolute loss predictions and squared loss predictions and between LASSO and k-
support norm with the squared loss function in both cocaine and control subjects.

With the squared loss function, the k-support norm outperforms LASSO for
almost all cases, while when combined with the absolute loss function, the regu-
larizers do not significantly differ in their predictive performance. The absolute
loss function, for both regularizers, leads to correlations that are significantly
higher than those with the squared loss function in almost all cases.

We report the fraction of non-zero weights that were selected by each method
for over 50% of the 500 trials in Tables 3 and 4 for the first and the second ex-
periment respectively.

We average the weights assigned to the voxels over the 500 permutations and
then compute the cumulative distribution function (CDF) for those weights. We
threshold the CDF at 0.9 and visualize the weights of the voxels up to that
threshold1 in Fig. 1. The overly sparse solutions of the LASSO (Fig. 1(b), 1(d))
lead to models that cannot be interpreted as easily as the solutions of the k-
support norm method (Fig. 1(a), 1(c)).

In the presence of correlated features, the degree of sparsity of the solution
can be tuned with the k-support norm in order to include several highly corre-
lated features. In contrast, LASSO tends to pick one representative feature with

1 Due to space constraints we include one representative example out of two for each
experiment. The omitted results are qualitatively similar.
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Mean Correlation, 50➣>0➣, Conflict effect on Accuracy
Control Subjects

Norm / Loss Squared Absolute p

LASSO 0.25 (0.02) 0.09 (0.02) <0.001
k-support 0.26 (0.02) 0.09 (0.02) <0.001

p 0.42 0.78

Cocaine Subjects

Norm / Loss Squared Absolute p

LASSO 0.22 (0.02) 0.42 (0.02) <0.001
k-support 0.27 (0.01) 0.41 (0.02) <0.001

p <0.001 0.78

Table 2. Mean (SE) correlation over 500 random permutations of the samples between
the predicted and the actual response variables for 50➣> 0➣ using the Basal Ganglia,
Thalamus ROI, for all combinations of regularizers and loss functions. The p-values
were computed with a Wilcoxon signed rank test between the 500 correlation values for
the two combinations of regularizer and loss function in the preceding rows or columns.
Based on the p-values there is a statistically significant difference between absolute loss
predictions and squared loss predictions and between k-support and LASSO with the
squared loss in cocaine subjects only.

Voxel Selection Stability, D>N, Conflict effect on Reaction Time
Control Subjects

Norm / Loss Squared Absolute

LASSO 0.0004 0.0007
k-support 0.0029 0.0018

Cocaine Subjects

Norm / Loss Squared Absolute

LASSO 0 0.0023
k-support 0.0058 0.0734

Table 3. Voxel Selection stability over 500 random permutations of the samples for
drug > neutral using the limbic ROI, for all combinations of regularizers and loss
functions. The fraction of voxels which are selected for more than 50% of the 500 trials
are presented. The higher values reported for k-support norm indicate that it makes
more stable voxel selection than LASSO over different training sets.
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no guarantee of consistency in feature selection across different splits of the data
samples into training and test sets. In all cases the fraction of non-zero weights
selected by the k-support norm is higher than that of LASSO, indicating that
the k-support norm method leads to more stable solutions as compared to those
obtained with LASSO.

Voxel Selection Stability, 50➣>0➣, Conflict effect on Accuracy
Control Subjects

Norm / Loss Squared Absolute

LASSO 0.0004 0.0050
k-support 0.0037 0.0083

Cocaine Subjects

Norm / Loss Squared Absolute

LASSO 0.0008 0.0013
k-support 0.0223 0.0122

Table 4. Voxel Selection stability over 500 random permutations of the samples for
50➣> 0➣ using the Basal Ganglia, Thalamus ROI, for all combinations of regularizers
and loss functions. The fraction of voxels which are selected for more than 50% of the
500 trials are presented. The higher values reported for k-support norm indicate that
it makes more stable voxel selection than LASSO over different training sets.

5 Discussion

In our experiments, in almost all cases, the k-support norm outperforms LASSO
in predicting the behavioral measures given fMRI data when combined with
squared loss, while when combined with the absolute loss, the predictive accu-
racy of the two regularizers does not differ significantly. The absolute loss led to
higher predictions than squared loss for both regularizers for almost all cases.
The LASSO leads to sparse solutions, since it tends to pick one feature per group
of correlated features. On the other hand, the k-support norm allows calibrating
the cardinality of the solutions and thus can select more interpretable group-
ings of correlated features and also leads to more stable results across different
training sets. Thus, our results support the further exploration of the k-support
norm for fMRI analysis.

We also provide further evidence to support the I-RISA model of drug addic-
tion, whereby the skew in SA in cocaine abusers, as indexed by fMRI response
to drug words and monetary rewards, two motivationally salient stimuli, is pre-
dictive of RI, as indexed by response slowing and accuracy on a task requiring
inhibitory control (the color-word Stroop). Specifically, we show that in cocaine
users, response to drug words in voxels located in limbic brain regions, such
as the anterior insula and ACC implicated in emotion processing and emotion
regulation, was predictive of slower responses on the RI task (Exp. 1), while
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(a) Most predictive voxels in Exp. 1 us-
ing the k-support norm with the Absolute
Loss

(b) Most predictive voxels in Exp. 1 using
the LASSO with the Absolute Loss

(c) Most predictive voxels in Exp. 2 using
the k-support norm with the Squared Loss

(d) Most predictive voxels in Exp. 2 using
the LASSO with the Squared Loss

Fig. 1. Visualization of the most predictive voxels in Exp. 1 (top row) and Exp. 2
(bottom row) over the 500 permutations. The degree of sparsity of the solution can
be tuned with the k-support norm, thus leading to models ((a), (c)) that are easier to
interpret than those of LASSO ((b), (d)). (Best viewed in color)

response to money in voxels located in reward-related brain regions, such as the
putamen implicated in habits, was predictive of lower accuracy on the RI task
(Exp. 2).
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