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Abstract

Over the last years, Model Driven Engineering platformshea from fixed metamodel tools to systems with
variable metamodels. This enables dealing with a variefahain Specific Languages (DSLs). These generic
platforms are increasingly adopted to solve problems ld@deayeneration. However, these environments are often
limited to syntax definitions. The AMMA platform conceive$Ds as collections of coordinated models defined
using a set of core DSLs. For broadening the approach to semaefinition, AMMA should thus be extended.
The paper presents an extension of the core DSLs of AMMA toipine dynamic semantics of a range of DSLs
by means of Abstract State Machines. Thus, DSLs can be defitexhly according to their abstract and concrete
syntaxes but also to their semantics in a uniform and sydiemvay. The approach is validated by means of the
semantic bootstrap of the ATL transformation language.






1 Introduction

Over the last years, Model Driven Engineering (MDE) platierevolved from tools based on fixed metamodels
(e.g. a UML CASE tool with ad-hoc Java code generation fieedl) to complex systems with variable metamod-
els. In MDE, metamodels are used to specify the conceptualtate of modeling languages. The flexibility in
coping with an open set of metamodels enables the handliagety of Domain Specific Languages (DSLSs), i.e.
languages which are close to a given problem domain anchdistan the underlying technological assets.

The current MDE platforms are increasingly adopted to selueh problems as code generatigh][ semantic
tool interoperability ], checking modelsd], and data integratiorip]. However, these platforms are often limited
to specifying the syntactical aspects of modeling langsayeh as abstract and concrete syntax. Defining of
precise models and performing various tasks on these maaighsas reasoning, simulation, validation, verification,
and others require that precise semantics of models andlimgtinguages are available. To achieve this, existing
MDE platforms have to be extended with capabilities for defifanguage semantics.

In this paper we use the ATLAS Model Management Architec(dddMA) as a framework for defining DSLs
following MDE principles. AMMA treats a DSL as a collectiori coordinated models, which are defined using
a limited set of core DSLs. The current set of core DSLs alltawsope with most syntactic and transformation
definition issues in language definition. In order to broaihenapproach to semantics definition, AMMA should
be extended with additional generic facilities.

The paper presents an extension of AMMA to specify the dynasamantics of a wide range of DSLs by
means of Abstract State MachindgJ[ (ASMs), which are introduced in the framework as a furtherecDSL.
Thus, DSLs can be defined not only by their abstract and ctssyatax but also by their semantics in a uniform
and systematic way. The approach is validated by means cfeimantic bootstrap of the ATL transformation
language.

The structure of the paper is as follows. Secfgrovides the basic definitions and describes the interfimata
of DSLs in a MDE setting. Sectio8 briefly reviews the ASMs formalism. Secti@ghdescribes the current state
of the AMMA framework. Sectiorb presents the extension of AMMA with ASMs. In Secti6ra case study is
proposed where the dynamic semantics of ATL is proposecerAdiating the approach with other works, some
conclusions are given in Secti@n

2 Domain-Specific Languages and Models

DSLs are languages able to raise the level of abstractioorfiegoding by specifying programs using domain
concepts27]. In particular, by means of DSLs, the development of systean be realized by considering only
abstractions and knowledge from the domain of interests €bintrasts with General Purpose Languages (GPLS),
like C++ or Java, that are supposed to be applied for much ig@mneric tasks in multiple application domains.
By using a DSL the designer does not have to be aware of impittien intricacies, which are distant from
the concepts of the system being implemented and the doimaisystem acts in. Furthermore, operations like
debugging or verification can be entirely performed wittia tomain boundaries.

Over the years, many DSLs have been introduced in diffeppliGation domains (telecommunications, multi-
media, databases, software architectures, Web manageste)teach proposing constructs and concepts familiar
to experts and professionals working in those domains. Kewehe development of a DSL is often a complex
and onerous task. A deep understanding of the domain isreetjtai perform the necessary analysis and to elicitate
the requirements the language has to meet.

As any other computer language (including GPLs), a DSL &sisif concrete and abstract syntax definition
and possibly a semantics definition, which may be formulategrious degrees of preciseness and formality. In
the context of MDE we perceive a DSL as a collection of cocatiéd models. We are in this way, leveraging the
unification power of models4]. Each of the models composing a DSL specifies one of thevilig language
aspects:

« Domain definition metamodelAs we discussed before, the basic distinction between D8HSGPLS is
based on the relation to a given domain. DSLs have a cleahtiited, concrete problem domain. Programs



(sentences) in a DSL represent concrete states of affalgsidomain. A conceptualization of the domainiis
an abstract entity that captures the commonalities amanpgdhksible state of affairs. It introduces the basic
abstractions of the domain and their mutual relations. Guoich an abstract entity is explicitly represented
as a model it becomes a metamodel for the models expresseel DSL. We refer to this metamodel as a
Domain Definition MetaModel (DDMM). It plays a central role the definition of the DSL. For example,

a DSL for directed graph manipulation will contain the cqpiseof nodes and edges, and will state that an
edge may connect a source node to a target node. SimilarigLaf@ Petri nets will contain the concepts
of places, transitions and arcs. Furthermore, the metahsbdeld state that arcs are only between places
and transitions;

» Concrete syntaxesA DSL may have different concrete syntaxes, which are defimedransformation
models that maps the DDMM onto display surface metamodetanples of display surface metamodels
are SVG or DOT 1§], but also XML. A possible concrete syntax of a Petri net DSaynbe defined by
mapping from places to circles, from transitions to rectesgand from arcs to arrows. The display surface
metamodel in this case has the concepts of Circle, RectaangiieArrow;

» Dynamic semanticsGenerally, DLSs have different types of semantics. For gtan©OWL [28] is a DSL
for defining ontologies. The semantics of OWL is defined in elddeoretic terms. The semantics is static,
that is, the notion of changes in ontologies happening dwer is not captured. Many DSLs have a dynamic
semantics based on the notion of transitions from statete #tat happen in time. Dynamic semantics may
be given in multiple ways, for example, by mapping to ano®8L having itself a dynamic semantics or
even by means of a GPL. In this paper we focus on DSLs with dymaemantics;

« Additional operations over DSLdn addition to canonical execution governed by the dynaraioantics,
there are plenty of other possible operations manipulgihograms written in a given DSL. Each may be
defined by a mapping represented by a model transformationeXample, if one wishes to query DSL
programs, a standard mapping of the DDMM onto Prolog may b&iuisThe study of these operations over
DSLs presents many challenges and is currently an opernrcbsaabject.

3 Abstract State Machines

3.1 Overview

ASMs [10] bridge the gap between specification and computation byigirtg more versatile Turing-complete
machines. The ability to simulate arbitrary algorithms logit natural levels of abstraction, without implementing
them, makes ASMs appropriate for high-level system degigreaalysis. ASMs specifications represents a formal
basis to reason about the properties of systems which atalgedinto unambiguous way. ASMs form a variant of
first-order logic with equality, where the fundamental ogpids that functions are defined over algednd can be
changed point-wise by means of transition rules. Thé/seeferred to as theuperuniversén ASM terminology,
always contains the distinct elemeinse, false andundef Apart from thesel/ can contain numbers, strings, and
possibly anything, depending on the application domain.

By means of ASMs, systems can be modeled as sequences dfamatdons. The state transitions are captured
by means of ASMs rules that are executed if correspondindjgates are verified. Being slightly more formal, we
define thestate) of a system as a mapping from a signatir@vhich is a collection of function symbols) to actual
functions. We writef,, for denoting the function which interprets the symigoh the state\. Subsets o/, called
universes, are modeled by unary functions filano {true, false}. Such a function returnsue for all elements
belonging to the universe, afaseotherwise. A functiory from a universé/ to a universé’ is a unary operation
on the superuniverse such that foralE U, f(a) € V or f(a) = undef. The universdBooleanconsists otrue
andfalse A basic ASMtransition ruleis of the form

f(tl,...,tn) =1

where f(t1,...,t,) andt, are closed terms (i.e. terms containing no free variableshé signaturé:. The
semantics of such a rule is : evaluate all the terms in thengstete, and update the function corresponding) &b



Abstract Data Model

Operational Rules

Figure 1: General Structure of the abstract machine sgagithe dynamic semantics of a DSL

the value of the tuple resulting of evaluatiftg, . . . , t,,) to the value obtained by evaluatitig Rules are composed
in a parallel fashion, so the corresponding updates arexeduted at once. Apart from the basic transition rule
shown above, there also exginditionalrules where the firing depends on the evaluated boolean tommdérm,
do-for-all rules which allow the firing of the same rule for all the elentsenf a universe, and lastgxtendrules
which are used for introducing new elements into a univefsansition rules are recursively built up from these
rules.

3.2 DSL Dynamic Semantics Specification with ASMs

In general, giving dynamic semantics to a DSL with ASMs csissof the specification of an abstract machine
able to interpret programs defined by means of the given D8k.rachine has to be generic enough to express
the behavior of all correct programs. As depicted in Bithe ASMs specification of such a machine is composed
of the following parts:

« Abstract Data Model (ADM)LIt consists of universes and functions corresponding tactirestructs of the
language and to all the additional elements, language diemérthat are necessary for modeling dynamics
(like environments, states, configurations, etc.);

« Initialization Rules.They encode the source program that has been defined witivée@SL. The encod-
ing is based on the abstract data model. It gives the initad ©f the abstract machine;

« Operational RulesThe meaning of the program is defined by means of operatiated expressed in form
of transition rules. They are conditionally fired startingrh the given instance of the ADM, modifying the
dynamic elements like environment, state etc. The evaiwiicsuch elements gives the dynamic semantics
of the program and simulates its behavior.

ASMs have been used with success in numerous applicatiahalao for specifying the semantics of different
languages (like C, Java, SDL, VHDL2(]. Additionally, ASMs are executable and several compibard tools
are available both from academy and industry supportingtimepilation and simulation of ASMs specification.
In the rest of the paper the XASN2] dialect will be used for the description of the ASMs speeifions. They can
be compiled with the available compiler.

4 The AMMA Framework

AMMA (A TLAS Model Management Architecture) is an MDE framework for 8 DSLs. It provides tools to
specify different aspects of a DSL (see sect®n These tools are based on specific languages. The domain of
each of this tool corresponds to one of the aspects of a DSIMANS currently organized around a set of three
core DSLs:

¢ KM3. The Domain Definition MetaModel (DDMM) of a DSL is captureda&M3 [21] metamodel. KM3
is based on the same core concepts used in OMG/M&BFand EMF/Ecore 11]: classes, attributes and
references. Compared to MOF and Ecore, KM3 is focused onmuetaling concepts only. For instance,
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the Java code generation facilities offered by Ecore arsugported by KM3. The default concrete syntax
of KM3 is a simple text-based notation.

» ATL. Transformations between DSLs are represented as &BL{P2] (ATLAS Transformation Language)
model transformations. Such transformations can be usedpiement the semantics of a source DSL in
terms of the semantics of a target DSL. Other potential uté3 o are: checking modelsd], computing
metrics on models, etc.

TCS.Textual concrete syntaxes of DSLs are specified in TCS (&xiancrete Syntax). This DSL captures
typical syntactical concepts like keywords, symbols, aagligncing (i.e. the order in which elements appear
in the text). With this information, models can be serializes text and text can be parsed into models. Text
to model translation is, for instance, achieved by comigjtie KM3 metamodel and TCS model of a DSL
and generating a context-free grammar.

Figure2 gives an overview of AMMA as a set of core DSLs. Two other DStes shown: SPL 12| (Session
Processing Language), which is a language for the domainterfriet telephony, and DSLx, which stands for any
DSL. The DDMM of each DSL is specified in KM3. TCS is used to sfyeconcrete syntaxes. ATL transforma-
tionsKM32Ecore ATL2VM andTCS2EBNFare used to respecively map the semantics of KM3 to EMF/E.ofre
ATL to the ATL Virtual Machine p2], and of TCS to EBNF (Extended Backus-Naur Form).

Using AMMA does not necessarily means using only these thoee DSLs. For instance, MOF or Ecore
metamodels can also be used and transformed from and to KM&edver, UML class diagrams specifying
metamodels can be used too (i.e. with the UML2MOF.atl tramsétion). Other AMMA DSLs are also currently
the subject of active research, for example AMY¥]|[(ATLAS Model Weaver) and AM3§] (ATLAS MegaModel
Management). An overview of AMMA including AMW and AM3 cansal be found inT].

5 Extending AMMA with ASMs

There is currently no tool in AMMA to formally capture tliynamic semantiosf DSLs. Only informal semantic
mappings between DSLs can be specified in the form of ATL foansations. The main principle on which
AMMA is built is to consider everything as a modd]] Following this unification idea, thdynamic semantiosf
a DSL should also be specified as a model. What is required Blaibwhich to specify this semantic model.
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We decided to integrate ASMs in AMMA instead of designing &vm¥SL from scratch. For this purpose, we
need to specify a KM3 metamodel and a TCS model for ASMs. Ei§wshows how the ASMs DSL is defined
on top of AMMA: its DDMM is specified in KM3 whereas its conceesyntax is specified in TCS. The KM3
metamodel for ASMs is available on the Eclipse GMT websdle ASMs may now be considered as an AMMA
DSL. Note that there is no semantics specification for ASMe feason is that we get this semantics by extracting
ASMs models into programs that we can compile with an ASMsiten

The next step is to use our newly created ASMs DSL. We expetieaeby specifying the dynamic semantics
of the SPL telephony language and reported our resultsin Fig. 3 shows this as thdefinedlrrelation between
SPL.xasnand the ASMs DSL. In this work, we show how thgnamic semanticsf ATL can also be specified
with ASMs. Sectiorb gives details on how this is done. FiguBeepresents this asdefinedlnarrow going from
ATL.xasmnto the ASMs DSL.

6 Case Study: Giving Dynamic Semantics to ATL

6.1 ATL Syntax in a Nutshell

ATL is a hybrid model transformation DSL containing a miduwf declarative and imperative constructs. Its
declarative part enables simple specification of many grob| while its imperative part helps in coping with
problems of higher complexity. ATL transformations arediréctional, operating on read-only source models and
producing write-only target models. During the executiba transformation source models may be navigated but
changes are not allowed. Target models cannot be navigated.

Before describing the specification of the dynamic semaraicATL, its syntax is presented by means of
examples that will be considered in the overall section. n$farmation definitions in ATL formrmodules A
module contains a mandatangadersection,import section, and a number belpersandtransformation rules
Header section gives the name of a transformation moduleladkres the source and target models (Iihes
Fig. 4). The source and target models are typed by their metamodils keywordcreateindicates the target
model, whereas the keywofm indicates the source model. In the example of Bithe target model bound to
the variableOUT is created from the source modgl The source and target metamodels, to which the source and
target model conform, afeetriNet andPNML [9] respectively.

Helpers and transformation rules are the constructs usegdoaify the transformation functionality. In this
paper we consider only transformation rules as basic aaetstfor expressing the transformation logic.
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nodul e Petri Net 2PNML
create QUT : PNML fromIN : PetriNet;

rule Place {
from
e : PetriNet!Place
--(guard)

n : PNWM.! Pl ace
(

name <- name

id <- e.nanme

location <- e.location
name : PNM.! Name

| abel s <- | abel

)
| abel : PNMW! Label
(

)

text <- e.nane

Figure 4: Fragment of a declarative ATL transformation

Declarative ATL rules are calleshatched rules They specify relations betweeource patterngndtarget
patterns The name of a rule is given after the keywotte. The source pattern of a rule (linés7, Fig. 4)
specifies a set afource typesnd an optionajuard given as a Boolean expression in OCL. A source pattern
is evaluated to a set of matches in source models. The taadfetrp (liness-22, Fig. 4) is composed of a set
of elements Each of these elements (e.g. the one at livag, Fig. 4) specifies aarget typefrom the target
metamodel (e.g. the typelace from thePNML metamodel) and a set bindings A binding refers to a feature
of the type (i.e. an attribute, a reference or an associataf) and specifies an expression whose value is used to
initialize the feature. In some cases complex transfoiwnadlgorithms may be required and it may be difficult to
specify them in a declarative way. For this issue ATL progitieo imperative constructsalled rules andaction
blocks A called rule is a rule called by other ones like a procedAmeaction block is a sequence of imperative
statements and can be used instead of or in combination wingat pattern in matched or called rules. The
imperative statements in ATL are the well-known constrfmtspecifying control flow such as conditions, loops,
assignments, etc.

In the rest of the paper, only the dynamic semantics of ATUatative rules will be presented. We believe
that this does not compromise the validity of the approacbesASMs have already been used for specifying the
semantics of several imperative languages.

6.2 Dynamic Semantics of ATL

The operational context of ATL is shown in the left hand sifiEig. 5. An ATL transformation is a modeM 471)
conforming to the ATL metamodeMM 47) and it is applied to a source modaéll{) in order to generate a
target one ;). The source and the target models conform to the soMdé,|) and targetIM;) metamodels
respectively. Parts of the Abstract State Machines (initite side of Fig 5) able to interpret ATL transformations
are automatically derived from the components in the lefithside of the figure.

The Abstract Data Model (ADM) consists of universe and function declarations neede the formal encod-
ing of the given ATL transformation and the source and tangetlels. These declarations can be automatically
obtained via model transformations from metamodels desdrin KM3. For example, we transform the KM3
fragment of thePetriNet metamodel (Fig6) to the corresponding ASMs code in Fig. The KM32ASMATL
transformation performs this canonical translation. Famteclass in the metamodel, a corresponding universe is
specified. If the class is an extension of other classes im#tamodel, the sub-setting facility of ASMs is used.
For example, the clasBansition (Fig. 6) is transformed into the univerg&etriNet_Transition declared as a subset
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of the universeretriNet_ Element. The references of the classes are encoded as boolearohsickor example,
the incoming arcs of a transition will be encoded with thectionincomingArc whose value will be true for all the
transitions and arcs (in this case place to transition d@hed)are connected and false otherwise.

The ADM also includes the declaration of universes and fonstused for the specification of the dynamic part
that evolves during the execution of an ATL transformatidhis declaration cannot be automatically generated
as it depends on the operational rules that specify the digrsamantics of ATL. In particular, as explained in the
following, the dynamic semantics of ATL is based on the exieowf transformation rules. Executing a rule on
a match (i.e. elements of the source model) creates a trdcthlt relates three components: the rule, the match
and the newly created elements in the target model. The rs@VeaceLink (see Fig.8) contains the trace links
that are generated during the execution of the transfoomsti The source and target elements of the trace link
are maintained in the universgsurceElement and TargetElement respectively. For each of them the functions
element andpatternElement are provided. The functioelement returns the element of the source model that has
matched with the given rule. When applied to an elemertigetElement universe, it returns the new element
that has been created in the target model.

The patternElement function, when applied to a source element, returns thecsopattern definition of the
corresponding ATL rule. The source pattern is a member ofarseATL_SimplelnPatternElement. This universe
is derived from the ATL metamodel. In a similar way, when thadtion is applied to a target element, it returns
the target pattern member of the univeASe_SimpleOutPatternElement (line 12).

Thelnitialization Rules of the machine depicted in Fi§.encode in a formal way the source model and the ATL
transformation that has to be interpreted. The encodingsed on the ADM previously described and it gives
the initial state of the abstract machine. This encodingbmautomatically obtained by transforming the source

1 class Transition extends El enent {

2 reference incom ngArc[1-*] : PlaceToTransition oppositeX to;

3 reference outgoingArc[1-*] : TransitionToPl ace oppositeCf from
4 }

5 .

Figure 6: Part of the PetriNet metamodel expressed in KM3
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uni verse PetriNet_Transition < Petri Net_El ement
function incom ngArc(a:PetriNet_Transition, b:PetriNet_PlaceToTransition)->Bool
function outgoingArc(a: PetriNet_Transition, b:PetriNet_TransitionToPl ace)->Bool

Figure 7: Part of the PetriNet metamodel specification

model and the ATL program (see tModel2ASMransformation in Fig5).

TheOperational Rules of the machine in Fig5 play a key role in the specification of the dynamic semantics o
ATL. In particular, theSemantic rulepart describes the dynamics related to the execution of Adhsformation
rules. These rules interpret the given ATL transformatioplied to the provided source mod#&d{) and generate
a formal representation of the target moddl .

The execution of ATL transformation rules can be describethbans of an algorithn2B] consisting of two
steps. In the first step all the source patterns of the rukesmatched and the target elements and trace links are
created. In the second step the feature initializationb@fewly created elements are performed on the base of
the previously created trace links and following the biggispecified in the rule target patterns. In the following
the ASMs specification encoding these steps are explainbdistails.

6.2.1 Matching Rules

The formal specification of the first step of the algorithmaséd on the sub-machinatchRule shown in Fig.9.
This machine is invoked for each matched rule containedergthen ATL module. For example, for the module
in Fig. 4, the machine is invoked just once for the interpretatiorheftiace rule.

Given a matched rule, the machine searches in the sourcd theddements that match the type of the source
pattern. In the lines-8 the machine selects the elements that defines the soureenpattthe matched rule in
the universes induced by the ATL metamodel. Such elemestsisad in the lines0-11 for the determination
of the universe identifier (of the source metamodel) coitigithe elements that match the source pattern of the
considered rule. For example, for the source pattern of ke in Fig. 4, the lines10-11 return the universe
identifier PetriNet_Place of the sourcePetriNet metamodel. To obtain this the external functiaesvalue and
sValue are used to handle primitive values.

For each element of the source model contained in the olotaimgerse, the univers@scelLink andSourceEle-
ment have to be extended and the corresponding functions have tptated (lineg2-16). Furthermore, the
universeTargetElement has to be extended for each new element that will be createdding to the target pattern
of the matched rule (lines3-32). The identifier of the universes belonging to the targetametdel that have to be
extended are determined by means of the code in the2®eg. For example, for the transformation of F#y.the
universes that will be extended by thatchedRule machine will bePNML_Place, PNML_Name andPNML_Label
belonging to the encoding of ttRNML metamodel.

uni verse TracelLi nk

function rule(t: TraceLi nk, r: ATL_Mat chedRul e) - >Bool
function sourcePattern(t: TraceLi nk, x: SourceEl enent) - >Bool
function targetPattern(t: TracelLi nk, x: Target El enent) - >Bool

uni ver se Sour ceEl enent
function el enent(t: SourceEl enent)->_
function patternEl enent(t: SourceEl ement) - >ATL_Si npl el nPat t er nEl enent

uni ver se Tar get El enent

function el enent(t: TargetEl ement)->_
function patternEl enment(t: Target El enent) - >ATL_Si npl eCut Pat t er nEl enent

Figure 8: ASM specification for the trace links management



1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

13

asm Mat chRul e(e: ATL_Mat chedRul e)
is
choose ip in ATL_InPattern, ipe in ATL_Si npl el nPatternEl ement,
ipet in ATL_Ccl Model El ement, op in ATL_CQutPattern
: inPattern(e,ip) and el enents(ip, ipe)
and type(ipe,ipet) and outPattern(e, op)
do forall c in
$sVal ue(get Val ue("name", (get Val ue("nodel ",ipet))))+"_"
+sVal ue( get Val ue("name",ipet))$
extend TraceLink with tl and SourceEl ement with se
sourcePattern(tl,se) := true
patternEl ement(se) := ipe
el ement(se) :=c
rule(tl,e) := true
do forall ope in ATL_Si npl eCut PatternEl enent
if (elements(op, ope)) then
extend TargetEl enment with te
do forall opet in ATL_Ccl Mbdel El enent
if (type(ope,opet) ) then
ext end
$sVal ue(get Val ue("nane", get Val ue(" nodel ", opet))) +"_"
+sVal ue(get Val ue("name", opet)))$ with t
targetPattern(tl, te) := true
element(te) :=t
patternEl ement(te) := ope
endext end
endi f
enddo
endext end
endi f
enddo
endext end
enddo
endchoose
endasm

Figure 9: MatchRule sub-machine specification

6.2.2 Applying Rules

After the creation of the trace links induced by the matchdeds; the feature initializations of the newly created
elements have to be performed. For example, during the émeaf theMatchedRule machine on the rulelace

in Fig. 4, thePNML_Place universe is extended with new elements for which the funstiame id andlocation
have to be initialized. The ASMs rules in Fit0 set these functions.

For all the trace links, all the bindings of each target patteave to be evaluated. The bindings are contained
in the ATL_Binding universe corresponding to tBinding concept of the ATL metamodel. The propertiatie and
propertyName are also part of the binding specification in the metamoded.eikample in the bindingocat i on
<- e.location (line 13, Fig. 4), propertyName corresponds to the attributeocat i on whereasvalue is the
OCL expressiore. | ocati on. The lines6-10 play a key role for the feature initializations of the newnaénts
added during the first step of the algorithm. The externattion oclEval is called for the evaluation of the
OCL expression of the binding. The value obtained by thiduatin (see liner), will be then used for the
initialization of the target element feature named withvhkelie ofpropertyName (see lines). The availableclEval
implementation is able to evaluate basic OCL expressiohg. ifiprovement of this function for supporting the
evaluation of complex OCL expressions could be done by uasmgvailable work that describes the dynamic
semantics of OCL 2.0 by using ASM47]. Due to space limitation, the ASMs code of thelEval function is
not provided here. After the expression of a binding has lesafuated, the resulting value is first resolved before
being assigned to the corresponding target element. Fombolution (line, Fig. 10) the external functioresolve
(Fig. 11) is used. The resolution depends on the type of the valubelfyipe is primitive then the value is simply
returned (line, Fig. 11). If the type is a metamodel type there are two possibilitigken the value is a target
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do forall tl in TraceLink
do forall te : (targetPattern(tl,te))
choose pe : patternEl ement(te)=pe
do forall b in ATL_Bi nding
i f(bindings(pe, b)) then
let vExp = getValue("value", b) in
let v = ocl Eval (tl, vExp) in
set Val ue(sVal ue( get Val ue("propertyNane", b)), element(te), resolve(v))
endl et
endl et
endi f
enddo
endchoose
enddo
enddo

Figure 10: Apply rule specification

asmresol ve(el:_)->_

is
if (isString(el) or isBoolean(el) or
(exists te in TargetEl enent: el enment(te)=el)) then
return el
el se
choose tl in TracelLink, se in SourceEl ement
te in TargetEl enent, op in ATL_QutPattern
. elenent(se)=el) and sourcePattern(tl,se) and
targetPattern(tl,te) and el ements(op, patternEl enent(te))and
order (op, patternEl enent(te))=1
return el enent(te)
endchoose
endi f
endasm

Figure 11: Resolve function specification

element (like linel1 in Fig. 4), it is simply returned (lin&, Fig. 11); when the value is a source element (lirge
Fig. 4), it is first resolved into a target element using trace liflkee 9-13, Fig. 11). The resolution results in an
element from the target model which is then returned (lis)e

6.2.3 Serializing Target Model

Once the semantic rules have been executed, it is neceesseg the results of their execution. For this purpose,
the ModelSerializersub-machine in Fig5 is called to obtain a textual representation of the gendralgebra
encoding the target model. This serializer depends on thettanetamodeNIM;). TheKM32ASMSerializeATL
transformation automatically generates the ASMs codepthiats the contents and the values of the universes and
functions encoding the obtained target modi&j).

All the ASMs specifications and the ATL transformations dised in this paper are available for download
from [3]. Furthermore, the given semantics specification has baktated by formally interpreting the already
availablePetriNet2PNLM[3] ATL transformation.

7 Related Work

The work described here is an extension of an experiment werpged previously, which is reported inf]. In
this experiment we used ASMs to provide dynamic semantitseoSPL language. In this paper we integrate the
ASMs mechanism in the AMMA platform and provide another ekpent by giving the dynamic semantics of
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ATL itself. In [13] ASMs are used as a semantic framework to define the semaftitanain-specific modeling
languages. The approach is based on basic behavioral @hsis called semantic units, that are tailored for
the studied problem domain. Semantic units are specifiedSdsA Such semantic units are then anchored to
the abstract syntax of the modeling language being spediffecheans of model transformations. The major
difference with the work described here is that, in our apphgthe ASMs mechanism is integrated in the AMMA
platform. In that way the semantic specifications are moaetsmay be manipulated by operations over models
(e.g. model transformations). In the semantic anchorimpy@grh the semantics specification is given outside the
model engineering platform, in this case the Generic Mogdtinvironment (GME).

In the context of MDE some other approaches for semantiasfggaion have been proposed. The approach
of Xactium [14, 1] follows the canonical scheme for the specification of seiinamf programming languages. In
this scheme the semantics is defined by specifying mappkmgsvp as semantic mappings) from abstract syntax
to semantic domain. Both the abstract syntax and the setrdmtiain are given as metamodels. The semantic
mapping is specified by model elements (mostly associgtidigs approach has become known as denotational
metamodeling. The work presented ] extends the denotational metamodeling approach by dgfikieta
Relations as a mechanism for specifying semantic mappietygsen the abstract syntax and the semantic domain.
The dynamic semantics specification (part of the semanticaily) is given by graph transformation rules. This
approach is called Dynamic Metamodeling. In our approaehsétmantic domains and semantic mappings are
defined as parts of ASMs. Dynamic aspect is defined by transitiles.

The language Kermet24] is a metamodeling language that contains constructs feeigpng operations of
metamodel elements. These operations may be used fory@pgdifie operational semantics of metamodels and
thus the semantics of DSLs expressed in Kermeta. In our apprihe operational semantics expressed in ASMs
is clearly separated from the metamodel (abstract syntax).

8 Conclusions and Future Work

In this paper we presented an approach for specifying dymaamantics of Domain Specific Languages in the
context of Model Driven Engineering. Abstract State Maelsiformalism was integrated into the AMMA platform
as a semantics specification framework. ASMs is defined ad affihe set of core AMMA DSLs along with KM3,
TCS, and ATL. This allows semantics specifications to betiéibas models following the vision that a DSL is a
set of coordinated models. In addition, it is still possitaleise the existing ASM tools (working outside AMMA)
for model simulation and validation purposes.

It should be noted that not all DSLs have dynamic semanticsthErmore, as the review presented in Re-
lated Work section shows, there are different ways for $pegj dynamic semantics. The general problem of
semantics specification of modeling languages is therstilt®pen and requires further research. The following
observations can be used as a starting point in this directio

Models are representations of systems. There exists aajaystem theory that classifies systems in various
dimensions, for example, static and dynamic systems. Dimagstems, in turn, may be classified as discrete
or continuous on the base of the underlying model of time. S¢maantics of a modeling DSL should reflect the
nature of the modeled systems. This may be a criteria foctetethe suitable semantics description formalism.
In general, itis more likely that more than one semantic &awrk will be needed to solve problems. Furthermore,
we have to consider the practical merits of various framé&ea:or

Finally, the purpose of semantics specification should bertain factor for selecting the semantic framework.
The mature engineering disciplines are based on solid ¢tieat foundations that allow modeling process that
guarantees at a large extent production of reliable systdihe same goal should be pursued in software engi-
neering as well. Semantics formalisms should answer the foeevhich the model is built: simulation, analysis,
reasoning, verification, and/or validation. We need moigeeixnental work in each one of these possible uses of
models.
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Extending AMMA for Supporting
Dynamic Semantics Specifications
of DSLs
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Abstract

Over the last years, Model Driven Engineering platformshesa from fixed metamodel tools to systems with
variable metamodels. This enables dealing with a varie®@ahain Specific Languages (DSLs). These generic
platforms are increasingly adopted to solve problems ldgegeneration. However, these environments are often
limited to syntax definitions. The AMMA platform conceives$SDs as collections of coordinated models defined
using a set of core DSLs. For broadening the approach to semadefinition, AMMA should thus be extended.
The paper presents an extension of the core DSLs of AMMA toiptihe dynamic semantics of a range of DSLs
by means of Abstract State Machines. Thus, DSLs can be defitexhly according to their abstract and concrete
syntaxes but also to their semantics in a uniform and systemvay. The approach is validated by means of the
semantic bootstrap of the ATL transformation language.
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