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Abstract

Our goal is to automatically obtain a distributed and
fault-tolerant embedded system: distributed because the
system must run on a distributed architecture; fault-tolerant
because the system is critical. Our starting point is a source
algorithm, a target distributed architecture, some distribu-
tion constraints, some indications on the execution times of
the algorithm operations on the processors of the target ar-
chitecture, some indications on the communication times of
the data-dependencies on the communication links of the
target architecture, a number Npf of fail-silent processor
failures that the obtained system must tolerate, and finally
some real-time constraints that the obtained system must
satisfy. In this article, we present a scheduling heuristic
which, given all these inputs, produces a fault-tolerant, dis-
tributed, and static scheduling of the algorithm on the ar-
chitecture, with an indication whether or not the real-time
constraints are satisfied. The algorithm we propose consist
of a list scheduling heuristic based active replication strat-
egy, that allows at least Npf +1 replicas of an operation
to be scheduled on different processors, which are run in
parallel to tolerate at most Npf failures. Due to the strat-
egy used to schedule operations, simulation results show
that the proposed heuristic improve the performance of our
method, both in the absence and in the presence of failures.

Keywords: Fault Tolerance in Distributed and Real-Time
Systems, Safety-Critical Systems, software implemented
fault-tolerance, multi-component architectures, distribution
heuristics.

1. Introduction

Embedded systems account for a major part of crit-
ical applications (space, aeronautics, nuclear. . . ) as well
as public domain applications (automotive, consumer
electronics. . . ). Their main features are:

• critical real-time: timing constraints which are not met
may involve a system failure leading to a human, eco-
logical, and/or financial disaster;

• limited resources: they rely on limited computing
power and memory because of weight, encumbrance,
energy consumption (e.g., autonomous vehicles), radi-
ation resistance (e.g., nuclear or space), or price con-
straints (e.g., consumer electronics);

• distributed and heterogeneous architecture: they are
often distributed to provide enough computing power
and to keep sensors and actuators close to the comput-
ing sites.

Moreover, the following aspect, extremely important w.r.t.
the target fields, must also be taken into account:

• fault-tolerance: an embedded system being intrinsi-
cally critical [20], it is essential to insure that its soft-
ware is fault-tolerant; this in itself can even motivate
its distribution; in such a case, at the very least, the
loss of one computing site must not lead to the loss of
the whole application.

The general domain of our research is that of distributed and
fault-tolerant embedded systems. The target applications
are critical embedded systems. Our ultimate goal is to pro-
duce automatically distributed and fault-tolerant code from
a given specification of the desired system. In this paper,



we focus on a sub-problem, namely how to produce auto-
matically a distributed and fault-tolerant static schedule of
a given algorithm on a given distributed architecture.

Concretely, we are given as input a specification of the
algorithm to be distributed (Alg), a specification of the tar-
get architecture (Arc), some distribution constraints (Dis),
some information about the execution times of the algo-
rithm blocks on the architecture processors and the commu-
nication times of the algorithm data-dependencies on the ar-
chitecture communication links (Exe), some real-time con-
straints (Rtc), and a number of processor failures (Npf ).
The goal is to find a static schedule of Alg on Arc, satis-
fying Dis , and tolerant to at most Npf processor failures,
with an indication whether or not this schedule satisfies Rtc

w.r.t. Exe. The global picture is shown in Figure 1. In this
paper, we focus on the distribution algorithm.
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Figure 1. Global picture of our methodology

Finding an algorithm that gives the best fault-tolerant
schedule w.r.t. the execution times is a well-known NP-hard
problem [10]. Instead, we provide a heuristic that gives one
scheduling, possibly not the best.

There are two constraints we have to deal with:

1. We are targeting embedded systems, so first, we do
not allow the algorithm to add extra hardware, because
hardware resources in embedded systems are always
limited. It implies that we have to do with the ex-
isting parallelism of the given architecture Arc. If
the obtained schedule does not satisfy Rtc, then it is
the responsibility of the user to add more hardware
to increase the redundancy. And second, the obtained
schedule must be static to allow optimisations and to
minimise the executive overheads. Therefore, we can-
not apply the existing methods, proposed for example
in [7, 3, 11], which use preemptive scheduling or ap-
proximation methods.

2. We want to obtain the schedule automatically, so: The
fault-tolerance must be obtained without any help from
the user.

For these two reasons, it will fall into the class of soft-
ware implemented fault-tolerance.

2. Related Work

In the literature, we can identify several approaches:
① Some researchers make strong assumptions about the

failure models (e.g., only fail-silent) and about the kind of
schedule desired (e.g., only static schedule). By adhering
to these assumptions however, they are able to obtain auto-
matically distributed fault-tolerant schedules. For instance,
Ramamritham requires that the execution cost of each sub-
task is the same for each processor, and that the commu-
nication cost of each data-dependency is the same for each
communication link [19], thereby assuming that the target
architecture is homogeneous. Related approaches can be
found in [4] (independent tasks and homogeneous architec-
ture) and [18] (heterogeneous architecture but only one fail-
ure is tolerated).

② Other researchers introduce some dynamicity. For in-
stance, Caccamo and Buttazzo propose an on-line schedul-
ing algorithm to tolerate task failures on a uniprocessor sys-
tem [5], while Fohler proposes a mixed on-line and off-line
scheduling algorithm to tolerate task failures in a multipro-
cessor system [9].

③ Finally, some researchers take into account much less
restrictive assumptions, but they only achieve hand-made
solutions, e.g., with specific communication protocols, vot-
ing mechanisms. . . See the vast literature on general fault-
tolerance, for instance [17].

Like the other researchers belonging to the first group,
we propose an automatic solution to the fault-tolerance dis-
tributed problem. The conjunction of the four following
points makes our approach original:

1. We take into account the execution time of both the
computation operations and the data communications
to optimise the critical path of the obtained schedule.

2. Since we produce a static schedule, we are able to com-
pute the expected completion date for any given oper-
ation or data communication, both in the presence and
in the absence of failures. Therefore we are able to
check the real-time constraints Rtc before the execu-
tion. If Rtc is not satisfied, we can give a warning to
the designer, so that he can decide whether to add more
hardware or to relax Rtc.

3. The given algorithm Alg can be designed with a high-
level programming language based on a formal mathe-
matical semantics. This is for instance the case of syn-
chronous languages, which are moreover well suited to
the programming of embedded critical systems [15, 2].
The advantage is that Alg can be formally verified
with model-checking and theorem proving tools, and



therefore we can assume safely that it is free of design
faults. The scheduling method we propose in this pa-
per preserves this property.

4. Operations scheduled on the distributed architecture
are guaranteed to complete if at most Npf processors
fails at any instant of time. There is no need for a com-
plex failure detection mechanism, and in particular we
do not need timeouts to detect the processor failures;
there is no need for the processors to propagate the
state of the faulty ones; and finally, due to the schedul-
ing strategy used the time needed for handling a failure
is minimal.

A different version of the method presented here has
been published as an abstract in [12] and as a full version
in a workshop [13]. It is different since it addresses dis-
tributed architectures consisting of several nodes connected
to a single bus, while here we address more general dis-
tributed architectures since they can include point-to-point
communication links (see Section 3.3). As a result, here the
communications can be scheduled in parallel on the com-
munication links, and the fault-tolerance is achieved with
the software redundancy of both the computation operations
and the data communications (see Section 4.1). In [12, 13]
we used the time redundancy of the data communications.
Also, we can cope with intermittent processor failures and
we do not need to use timeouts to detect failures, which was
not the case in [12, 13]. In conclusion, the method presented
here is complementary and more general than the one pre-
sented in [12, 13].

There is another work involving some of the authors [8],
where a totally different approach is taken: First, commu-
nication link failures are also taken into account, and sec-
ond, the method presented involves building a basic sched-
ule for each possible failure, and then merging these ba-
sic schedules to obtain a distributed fault-tolerant schedule.
The method presented here is lighter, faster, and more effi-
cient, but it only copes with processor failures.

The rest of the paper is organised as follows. Section 3
states our fault-tolerance problem, and presents the various
models used by our method. Section 4 presents the pro-
posed solution for providing fault-tolerance. Section 5 pro-
vide a correctness proof of the proposed algorithm. Simu-
lation results are presented in Section 6. Finally, Section 7
concludes and proposes directions for future research.

3. Models

3.1. Failure Model

As said in the introduction, our goal is to find a static
schedule of Alg on Arc, satisfying Dis , and tolerant to at
most Npf processor failures, with an indication whether or

not this schedule satisfies Rtc w.r.t. Exe. The failures con-
sidered are fail-silent processor failures (permanent as well
as intermittent). By “tolerant” we mean that the obtained
schedule must achieve “failure masking” [17]. More pre-
cisely, this will be done by means of error compensation,
using software redundancy. The real-time constraints Rtc

can be, for instance, a deadline for the completion date of
the whole schedule. If the user wants to be more precise,
he/she can specify a deadline on the completion date of a
particular sub-task of the algorithm. The fact that the ob-
tained schedule is static allows the computation of its com-
pletion date w.r.t. Exe.

3.2. Algorithm Model

The algorithm is modelled by a data-flow graph. Each
vertex is an operation and each edge is a data-dependency.
The algorithm is executed repeatedly for each input event
from the sensors in order to compute the output events for
actuators. We call each execution of the data-flow graph
an iteration. This cyclic model exhibits the potential paral-
lelism of the algorithm through the partial order associated
to the graph. This model is commonly used for embedded
systems and automatic control systems.

Operations of the graph can be either:

• a computation operation (comp): its inputs must pre-
cede its outputs; the outputs depend only on the input
values; there is no internal state variable and no other
side effect;

• a memory operation (mem): the data is held by a mem
in sequential order between iterations; the output pre-
cedes the input, like a register in Boolean circuits;

• an external input/output operation (extio). Opera-
tions with no predecessor in the data flow graph (resp.
no successor) are the external input interfaces (resp.
output), handling the events produced by the sensors
(resp. actuators). The extios are the only operations
with side effects; however, we assume that two exe-
cutions of a given input extio in the same iteration
always produce the same output value.

Figure 2 is an example of algorithm graph, with nine op-
erations: I and O are extios (resp. input and output),
while A–G are comps. The data-dependencies between
operations are depicted by arrows. For instance the data-
dependency A . B can correspond to the sending of some
arithmetic result computed by A and needed by B.

3.3. Architecture Model

The architecture is modelled by a graph, where each ver-
tex is a processor, and each edge is a communication link.



Classically, a processor is made of one computation unit,
one local memory, and one or more communication units,
each connected to one communication link. Communica-
tion units execute data transfers, called comms. The chosen
communication mechanism is the send/receive [14], where
the send operation is non-blocking and the receive opera-
tion blocks in the absence of data. Figure 2 is an example
of architecture graph, with three processors and three point-
to-point links.
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Figure 2. Example of (a) an algorithm graph
Alg (a); and (b) an architecture graph Arc

3.4. Distribution Constraints, Execution Times, and
Real-Time Constraints

For the operations, the execution times Exe consist of a
table associating to each pair 〈o, p〉 the execution time of
the operation o on the processor p, expressed in time units.
Since the target architecture is heterogeneous, the execution
times for a given operation can be distinct on each proces-
sor. Specifying the distribution constraints Dis involves as-
sociating the value “∞” to certain pairs 〈o, p〉, meaning that
o cannot be executed on p.

For the inter-processor communications, the execu-
tion times Exe consist of a table associating to each
pair 〈data dependency, communication link〉 the value
of the transmission time of this data dependency on this
communication link, again expressed in time units.

time operation
proc. I A B C D E F G O
P1 1 2 3 2 3 1 2 1.4 1.4
P2 1.3 1.5 1 3 1.7 1.2 2.5 1 ∞
P3 ∞ 1 1.5 1 3 2 1 1.5 1.8

Table 1. Distributed constraints Dis and exe-
cution times Exe for operations

For instance, the Dis and Exe for Alg and Arc of Fig-
ure 2 are given by the two tables 1 and 2. Here it takes
more time to communicate the data-dependency I . A than
A . B simply because there are more data to transmit. The
point-to-point links {L1.2} and {L1.3, L2.3} are hetero-
geneous. This table only gives the transmission times for

inter-processor communications. For an intra-processor
communication, the time is always 0.

time data-dependency
link I . A A . B A . C A . D A . E B . F
L1.2 1.75 1 1 1.5 1 1
L2.3 1.25 0.5 0.5 1 0.5 0.5
L1.3 1.25 0.5 0.5 1 0.5 0.5

time data-dependency
link C . F D . G E . G F . G G . O
L1.2 1.3 1.9 1.3 1 1.1
L2.3 0.8 1.4 0.8 0.5 0.6
L1.3 0.8 1.4 0.8 0.5 0.6

Table 2. Execution times Exe for communica-
tions

Finally, the real-time constraints Rtc are also given in
time units. They can be, for instance, a deadline for the
completion date of the whole schedule. For our exam-
ple, we will take Rtc = 16, which means that the obtained
static fault-tolerant distributed schedule must complete in
less than 16 time units.

4. The Proposed Solution

In this Section we discuss some of the basic principles
used in the proposed approach, followed by a description of
our algorithm. The algorithm we propose is a list schedul-
ing heuristic based active replication strategy [6], that al-
lows at least Npf +1 replicas of an operation to be scheduled
on different processors, which are run in parallel to tolerate
at most Npf processors failures.

4.1. Algorithm Principle

The proposed solution uses the software redundancy of
both comps/mems/extios and of comms. Each opera-
tion X of the algorithm graph is replicated on Rep differ-
ent processors of the architecture graph, where Rep ≥
Npf + 1. Each of these Rep replicas send their results
in parallel to all the replicas of all the successor operations
in the data-flow graph. Therefore, each operation will re-
ceive its set of inputs Rep times; as soon as it receives the
first set, the operation is executed and ignores the later in-
puts. However, in some cases, the replica of an operation
will only receive some of its inputs once, through an intra-
processor communication. For the sake of simplicity, sup-
pose we have an operation X with only one input produced
by its predecessor Y (see Figure 3(a)).

Consider the replica of X which is assigned to proces-
sor P. Two cases can arise: either one replica of Y is also
scheduled on P, or all the replicas of Y are assigned to pro-
cessors distinct from P. In the first case, the comm from Y to



X will not be replicated and will be implemented as a single
intra-processor communication (see Figure 3(b)). Indeed,
the replicas of this comm would only be used if P failed, but
in this case the replica of X assigned to P would not need
this input. In the second case, the comm from Y to X will
be replicated Npf +1 times, each implemented as an inter-
processor communication (see Figure 3(c)).

(c)

(a) (b)

one intra−processor
communication

L’ PP’ P’’L

X

Y
Y

P

XY
X

Y

two (or more) inter−processor communications

Figure 3. (a) Algorithm sub-graph; (b) At least
one replica of Y is on P; (c) No replica of Y is
on P.

Figure 3 illustrates this example by showing the partial
schedules obtained for the X and Y subgraph. In these di-
agrams, an operation is represented by a white box, whose
height is proportional to its execution time. A comm is rep-
resented by a gray box, whose height is proportional to its
communication time, and whose ends are bound by two ar-
rows: one from the source operation and one to the destina-
tion operation.

L’ PP’ L

X

P’’

Y
Y

Y

Figure 4. Schedule more than Npf replicas of
an operation.

Since the communication cost between operations as-
signed to the same processor is considered to be negligible,
replicating an operation more than Npf +1 times reduces
the global interprocessor communication overheads of the
schedule. Consider the schedule of Figure 3(c): if Y is
replicated on P, the schedule length can be reduced, both
in the presence and in the absence of failures, as shown in
Figure 4.

4.2. Scheduling Heuristic

The heuristic implementing this solution is a greedy list
scheduling [22], called the Fault-Tolerance Based Active
Replication strategy (FTBAR) algorithm. We present the
scheduling algorithm in macrosteps, the superscript num-
ber in parentheses refers to the step of the heuristic, e.g.,
O

(n)
sched.
Before describing the heuristic, we define the following

notations which are used in the rest of this paper:

• O
(n)
cand: The list of candidate operations, this list is

built from the algorithm graph vertices. An operation
is said to be a candidate if all its predecessors are al-
ready scheduled.

• O
(0)
sched: The list of scheduled operations.

• pred(oi): The set of predecessors of operation oi.

• succ(oi): The set of successors of operation oi.

• R(n): The critical path length.

• E
(n)
exc(oi, pj): The end execution time of operation oi

scheduled on processor pj .

• E
(n)
com(oi, oj): The end of data communication time

from operation oi to operation oj .

• S
(n)

(oi) is the latest start time from end of oi.

• S
(n)
best(oi, pl): The earliest time at which operation oi

can start execution on processor pl. It is computed as
follows:

S
(n)
best(oi, pl) = max

oj∈pred(oi)

{

Npf+1

min
k=1

E(n)
com(ok

j , oi)

}

where ok
j is the kth replica of oj .

If oi and oj are scheduled in the same processor pl then

E
(n)
com(ok

j , oi) = E
(n)
exc(oj , pl).

• S
(n)
worst(oi, pl): The earliest time at which operation oi

can start execution on processor pl, taking into account
all the predecessors replicas. It is computed as follows:

S
(n)
worst(oi, pl) = max

oj∈pred(oi)

{

Npf+1
max
k=1

E(n)
com(ok

j , oi)

}

where ok
j is the kth replica of oj .

If oi and oj are scheduled in the same processor pl then

E
(n)
com(ok

j , oi) = E
(n)
exc(oj , pl).

The schedule pressure [21] is used as a cost function to
select the best operation/processor pair. The schedule pres-
sure noted by σ(n)(oi, pj) tries to minimise the length of the
critical path of the algorithm and to exploit the scheduling
margin of each operation. It is computed for each proces-
sor pj ∈ P (P is the processor’s set) and each operation

oi ∈ O
(n)
cand by using two functions:



1. The schedule-flexibility SF is defined as:

SF (n)(oi, pj) = R(n) − S
(n)
worst(oi, pj) − S

(n)
(oi)

2. The schedule-penalty SP is defined as:

SP (n)(oi, pj) = R(n) − R(n−1)

With these two functions, the schedule pressure σ is
computed as follows:

σ(n)(oi, pj) = SP (n)(oi, pj) − SF (n)(oi, pj)

= S
(n)
worst(oi, pj) + S

(n)
(oi) − R(n−1)

The schedule pressure measures how much the schedul-
ing of the operation lengthens the critical path of the algo-
rithm. Therefore it introduces a priority between the op-
erations to be scheduled. Note that, since all candidates
operations at step n have the same value R(n−1), it is not
necessary to compute R(n−1).

The FTBAR fault-tolerance scheduling heuristic is for-
mally described below:

The FTBAR Algorithm:
begin
Initialise the lists of candidate and scheduled operations:
O

(0)
cand := {o ∈ O | pred(o) = ∅};

O
(0)
sched := ∅;

while O
(n)
cand 6= ∅ do

➀ Compute the schedule pressure for each operation oi of
O

(n)
cand on each processor pj using S

(n)
worst, and keep the first

Npf +1 min results for each operation:
∀oi ∈ O

(n)
cand,

∪l=Npf +1
l=1 σ

(n)
best(oi, pil

) := minNpf +1
pj∈P σ(n)(oi, pj);

➁ Select the best candidate operation o such that:
σ

(n)
urgent(o) := max

oi∈O
(n)
impl

∪l=Npf +1
l=1 σ

(n)
best(oi, pil

);

➂ Apply Minimize start time for the best candidate opera-
tion o on the first Npf +1 processors computed at ➀;

➃ Update the lists of candidate and scheduled operations:
O

(n)
sched := O

(n−1)
sched ∪ {o};

O
(n+1)
cand := O

(n)
cand − {o} ∪ Succ{o}; with:

Succ{o} = {o′ ∈ succ(o) | pred(o′) ⊆ O
(n)
sched};

end while
end

Initially, O
(0)
sched is empty and O

(0)
cand is the list of opera-

tions without any predecessors. At the n-th step (n ≥ 1),
the list of already scheduled operations O

(n)
sched is kept.

Also, the list of candidate operations O
(n)
cand is built from

the algorithm graph vertices.
At each step n, one operation of the list O

(n)
cand is se-

lected to be scheduled. To select an operation, we select at
the micro-step ➀, for each operation oi, the Npf +1 proces-
sors having the minimum schedule pressure. Then among

those best pairs 〈oi, pj〉, we select at the micro-step ➁ the
one having the maximum schedule pressure, i.e., the most
urgent pair.

The selected operation is implemented at the micro-
step ➂ on the Npf +1 processors computed at micro-step ➀,
and the comms implied by this implementation are also im-
plemented. At this micro-step the start time of the selected
operation o is reduced by replicating its predecessors using
a procedure Minimise start time proposed by Ahmad and
al. in [1], which is formally described below:

Minimise start time(o,p):
begin

➊ Determine earliest start time S
(n)
worst(o, p);

➋ if S
(n)
worst(o, p) is undefined then quit because o cannot be

scheduled on p;

➌ Find out the Latest Immediate Predecessor (LIP) of o;

➍ Minimize the start time of this LIP by recursively calling
Minimize start time(LIP,p);

➎ Compute the new S
(n)
worst(o, p);

➏ if ( new S
(n)
worst(o, p) ≥ S

(n)
worst(o, p) )

➐ then

• Undo all the replications just performed in ➍;

• Schedule o to p at S
(n)
best(o, p);

• The comms implied by (b) are also implemented here
such that, each replica of o receives data from each
replica of these predecessors oj through parallel links;

➑ else Find out the new LIP of o and repeat from ➍;

end

For each pair 〈predecessor, operation replica〉, comms
are added in parallel links if and only if all the replicas of
the predecessor are on different processors. If this is not
the case, i.e., if there exists a replica of the predecessor on
the same processor, no comm is added (see Section 4.1 and
Figure 3).

When a comm is generated, it is assigned to the set of
communication units bound to the communication medium
connecting the processors executing the source and desti-
nation operations. At the end, all the comms assigned to
the same communication unit are statically scheduled. The
comms are thus totally ordered over each communication
medium. Provided that the network preserves the integrity
and the ordering of messages, this total order of the comms
guarantees that data will be transmitted correctly between
processors. The obtained schedule also guarantees a dead-
lock free execution.

The strategy used to schedule operations ensures a mini-
mum run-time overhead in the faulty system (a system pre-
senting at least one failure) by using S

(n)
worst(o, p) to give

priority to operations and S
(n)
best(o, p) to schedule operations.



4.3. An Example

We have implemented our fault-tolerant heuristic in the
SYNDEX [21] tool, which is a tool for optimizing the im-
plementation of real-time embedded applications on multi-
component architecture.

We apply our heuristic to the example of Figure 2. The
user requires the system to tolerate one permanent proces-
sor failure, i.e., Npf = 1. The execution characteristics of
each comp/mem/extio and comm are specified by the two
tables of time units given in Section 3.4.

After the first two steps of our heuristic, we obtain the
temporary schedule of Figure 5.

Figure 5. Step 2

In the next step, operation C is scheduled. Assigning C

to P1, P2 and P3 gives an expected schedule pressure of
9.73, 10.53 and 9.23 respectively. But, if A, the LIP of C, is
duplicated to P3, the schedule pressure of C can be reduced
to 5.73, which means that the start time of C is also reduced.
We therefore schedule a new replica of A on P3 and two
replicas of C on P3 and P1, which minimizes the schedule
pressure. As shown in Figure 6, operation A receives its
inputs data twice from the replicas of I scheduled on P1
and P2, and the start time of A is the end of the earliest
communication between 〈I, A〉 on {L1 3} and {L2 3}. We
obtain therefore the temporary schedule of Figure 6.

Figure 6. Step 3

Similarly, operations B, D, E, F, G, and O are scheduled.
At the end of our heuristic, we obtain the final schedule pre-
sented in Figure 7. Each operation of the algorithm graph
is replicated at least twice and these replicas are assigned
to different processors. More important, the real-time con-
straint is satisfied since the total time is 15.05 < Rtc.

Figure 7 shows that some communications are not useful
in the absence of failures. For example, the communication
of the result of the operation 〈I, P2〉 to the operation 〈A, P3〉
is not used since the result sent by 〈I, P1〉 arrives first. How-
ever, these communications may become useful during a

faulty execution. For instance, suppose that P1 crashes at
time0 (see Figure 8). Since we have assumed a fail-silent
model, P1 fails to produce its expected results, the output of
〈I, P1〉 that should have been sent to 〈A, P3〉 and the output
of 〈C, P1〉 that should have been sent to 〈F, P2〉. Therefore
the failure of P1 can actually be detected by P3 only after
the expected completion date of the comm from 〈I, P1〉 to
〈A, P2〉. Detecting P1’s failure is useful in order to avoid
sending further comms to P1, but functionally, we do not
need it: indeed, the static schedule transparently tolerates
one failure since Npf = 1. Actually, it is not entirely trans-
parent since the resulting schedule has a greater execution
time.

Figure 7. Final fault-tolerant schedule

Figure 8 shows the schedule when P1 crashes. As ex-
pected, the data sent by all the comms toward the faulty
processor P1 are discarded. The schedule corresponding to
the subsequent iterations is the same except that all the oper-
ations scheduled on P1 as well as all the comms from and to
P1 have disappeared. Finally, the real-time constraint is still
satisfied since the total time is respectively 15.35, 15.05,
12.6 when P1, P2, or P3 fails at time 0.

Figure 8. Timed execution when P1 crashes

4.4. Analysis of the Example

To evaluate the overheads introduced by the fault-
tolerance, let us consider the non fault-tolerant schedule
produced for our example with a basic scheduling heuris-
tic (for instance the one of SYNDEX). The schedule length
generated by this heuristic is 10.7.



Neither this non fault-tolerant schedule nor the fault-
tolerant schedule of Figure 7 are the best possible. Remem-
ber that finding the best schedule is an NP-hard problem;
this is the reason why we have designed a heuristic schedul-
ing algorithm. In this particular case, the fault-tolerance
overheads is therefore 15.05− 10.7 = 4.35.

In the fault-tolerant schedule, some communications
take place although they are not necessary. On the other
hand, the response time of the faulty system is minimized,
since results are sent without waiting for any timeout (see
Figure 8). For the same reason, the system supports the ar-
rival of several failures during the same iteration since there
are no risks that the sum of pending timeouts overtakes the
desired real-time constraints. In other words, we do not
need to make any assumptions on the failure inter-arrival
time.

This solution is appropriate to an architecture where the
communication means are point-to-point links, which al-
low parallel communications to take place. For multi-point
links, the overheads introduced by the replication of comms
may be too high because of their serialization on a single
link.

5. Runtime Behavior

In our heuristic, Npf faults can be tolerated by schedul-
ing Npf +1 replicas for each operation on different proces-
sors. We assume in this paper that all values returned by
the Npf +1 replicas of any given input operation are iden-
tical in the same iteration. If no fault occurs, each of the
Npf +1 replicas of an operation receives its inputs in par-
allel from all the replicas of its predecessor operations in
the data-flow graph; as soon as it receives the first set, the
operation is executed and ignores the later Npf inputs. If
there are k permanent faults (k ≤ Npf ), each replica of an
operation scheduled on a non-faulty processor receives its
inputs in parallel from all the replicas of its predecessors
operations scheduled on a non-faulty processors; as soon as
it receives the first set, the operation is executed and ignores
the later inputs. Concerning the failure detection, there are
two options:

1. Either we do not perform any failure detection, in
which case, after a failure, the remaining processors
will continue to send results to the faulty one. This
will not help reducing the communication overheads,
especially when the comms have to be serialized over
a multi-point communication link. The advantage is
that if a processor experiences an intermittent failure,
then since it will continue to receive inputs from the
healthy processors, it will be able to produce its results
again when recovering from its intermittent failure.

2. Or we perform a failure detection procedure by know-
ing at what time each comm is supposed to happen,

and by deciding accordingly that when a comm did not
happen,then the sending processor is faulty. Each pro-
cessor can therefore maintain an array of faulty pro-
cessors and avoid further comms to the faulty proces-
sors in both the remaining of the transient iteration and
the subsequent iterations. The drawback is that an in-
termittent failure cannot be recovered. Indeed, when
a processor is detected to be faulty, the other healthy
processors will update their array of faulty processors,
and will not send any more data during the subsequent
iterations. So even if this faulty processor comes back
to life, it will not receives any inputs and will not be
able to perform any computation. Therefore, in the
subsequent iterations, it will fail to send any data on its
communication links, and the other healthy processors
will never be able to detect that it came back to life.
The same applies to failure detection mistakes.

The choice between these two options can be left to the
user. It will depend on the intermittent failure rate of the
application as well as on the topology and the bandwidth of
the network.

6. Performance Evaluation

To evaluate our faut-tolerant scheduling heuristic, we
have compared the performance of the proposed algorithm
with the algorithm proposed by Hashimoto and al. in [16],
called HBP (Height-Based Partitioning) which is the clos-
est to FTBAR that we have found in the literature. Since,
HBP assumes homogeneous systems and only use software
redundancy of the algorithm’s operations, FTBAR is down-
graded to these assumptions to make the comparison mean-
ingful. The goal of our simulations is to compare the fault-
tolerance overheads of HBP and FTBAR, both in the ab-
sence and in the presence of one processor failure.

6.1. Simulation Parameters

We have applied FTBAR and HBP heuristics to a set of
random algorithm graphs with a wide range of parameters.
A random algorithm graph is generated as follows: Given
the number of operations N , we randomly generate a set of
levels with a random number of operations. Then, opera-
tions at a given level are randomly connected to operations
at a higher level. The execution times of each operation
are randomly selected from a uniform distribution with the
mean equal to the chosen average execution time. Similarly,
the communication times of each data dependency are ran-
domly selected from a uniform distribution with the mean
equal to the chosen average communication time.

For generating the complete set of algorithm graphs,
we vary two parameters: N = 10, 20, ..., 80, and the



communication-to-computation ratio, defined as the aver-
age communication time divided by the average computa-
tion time, CCR = 0.1, 0.5, 1, 2, 5, 10.

6.2. Performance Results and Analysis

We present in this Section the performance results on the
fault-tolerance heuristic. We compute the fault-tolerance
overhead in the following way:

Overheads =
(FTSL) − (non FTSL)

(FTSL)
× 100

where the non FTSL (Fault Tolerant Schedule Length) is
produced by FTBAR with Npf = 0.

We have plotted in Figures 9 and 10 the average fault-
tolerance overheads (averaged over 60 random graphs) as a
function of N and CCR, both in the absence (Figure 9(a)
and 10(a)) and in the presence of one processor failure (Fig-
ure 9(b) and 10(b); here we have computed the average
overheads when each of the four processors fails, and plot-
ted the max overheads over these four processors).

Figure 9. Impact of the number of operations
for Npf = 1, P = 4 and CCR = 5

Figure 9 shows that average overheads increases with N .
This is due to the active replication of all operations and
communications. Figure 9 also shows that FTBAR perform
better than HBP.

Figure 10 shows that, when the average communication
time is strictly greater than the average execution time, the
average overheads decrease. For CCR ≤ 1, there is lit-
tle difference between HBP and FTBAR. In contrast, for

CCR ≥ 2, FTBAR performs significantly better than HBP
(by at least 20%). This is due to our schedule pressure
which tries to minimize the length of the critical path.

Figure 10. Impact of the communication-to-
computation ratio for Npf = 1, P = 4 and
N = 50

The time complexity of FTBAR is less than the time
complexity of HBP. The reason is that HBP investigates
more possibilities than FTBAR when selecting the proces-
sor for a candidate operation.

7. Conclusion and Future Work

The literature about fault-tolerance of distributed and/or
embedded real-time systems is very abundant. Yet, there
are few attempts to combine fault-tolerance and automatic
generation of distributed code for embedded systems.

In this paper, we have studied this problem and proposed
a software implemented fault-tolerance solution.

We have proposed a new scheduling heuristic, called FT-
BAR (Fault-Tolerance Based Active Replication), that pro-
duces automatically a static distributed fault-tolerant sched-
ule of a given algorithm on a given distributed architec-
ture. Our solution is based on the software redundancy of
both the computation operations and the communications.
All replicated operations send their results but only the one
which is received first by the destination processor is used;
the other results are discarded. The implementation uses a



scheduling heuristic for optimizing the critical path of the
distributed algorithm obtained. It is best suited to architec-
tures with point-to-point links. There are some communi-
cation overheads, but on the other hand, several failures in
a row can be tolerated. Also, depending on the failure de-
tection mechanism chosen, intermittent failures can be tol-
erated as well.

We have implemented our FTBAR heuristic within the
SYNDEX tool. SYNDEX is able to generate automatically
executable distributed code, by first producing a static dis-
tributed schedule of a given algorithm on a given distributed
architecture, and then by generating a real-time distributed
executive implementing this schedule. We have also imple-
mented the HBP (Height-Based Partitioning [16]) heuristic.
Although HBP only considers homogeneous architectures
and only tolerates one processor failure, it is the closest to
our work that we have found in the literature. The experi-
mental results shows that FTBAR performs better than HBP,
both in the absence and in the presence of failures.

Currently, we are performing extensive benchmark test-
ing of FTBAR on heterogeneous architectures. The first re-
sults show that the overheads increases with the number of
failures Npf .

Finally, our solution can only tolerate processor failures.
We are currently working on new solutions to take commu-
nication link failures and reliability into account. We also
plan to experiment our method on an electric autonomous
vehicle, with a 5-processor distributed architecture.
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