
HAL Id: hal-00190018
https://telearn.hal.science/hal-00190018

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First version of Amaya offering a template mechanism
Vincent Quint, Émilien Kia, Étienne Vandeput, Irène Vatton

To cite this version:
Vincent Quint, Émilien Kia, Étienne Vandeput, Irène Vatton. First version of Amaya offering a
template mechanism. 2007. �hal-00190018�

https://telearn.hal.science/hal-00190018
https://hal.archives-ouvertes.fr

Start date of project: February 01, 2006 Duration: 36 months

Project no. FP6-028038

Palette

Pedagogically sustained Adaptive LEarning Through the
exploitation of Tacit and Explicit knowledge

Integrated Project

Technology-enhanced learning

D.INF.02 – First version of Amaya offering a template mechanism

Due date of deliverable: January 31, 2007
Actual submission date: February 19, 2007

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework
Programme

Dissemination Level

PU Public

Keywords: Document authoring, structured documents, template
Responsible Partner: INRIA

MODIFICATION CONTROL

Version Date Status Modifications made by

1 02-02-2007 draft Émilien Kia, Vincent Quint, Irène Vatton

2 12-02-2007 draft Géraldine Vidou, Yannick Naudet

3 13-02-2007 draft Liliane Esnault

4 13-02-2007 Final Vincent Quint

Deliverable manager

Vincent Quint (INRIA)

List of Contributors

Émilien Kia (INRIA), Vincent Quint (INRIA), Étienne Vandeput (ULG), Irène Vatton
(INRIA)

List of Evaluators

Liliane Esnault (AESCRA-EM Lyon), Yannick Naudet (CRP-HT), Géraldine Vidou
(CRP-HT)

Summary

This document presents the first version of the templating mechanism implemented in the
Amaya authoring tool. It briefly introduces the notion of a template and the XTiger
language used to represent templates in Amaya. It summarizes the main features for
template-driven editing that are introduced in this initial version of the software, as well as
the current limitations. Some examples are given. Appendices contain the specification of
the XTiger language and the section of the user's manual dedicated to templates.

FP6-028038

2

TABLE OF CONTENT

1. Introduction...5
2. Main features...6
3. Current limitations ...9
4. References..9
5. Appendix 1: the XTiger language..10

5.1. Types in XTiger ...11
5.1.1. Basic types ..11
5.1.2. Target language types ...11
5.1.3. Component..11
5.1.4. Union...12

5.2. Type definitions ...13
5.2.1. Head element ..14
5.2.2. XTiger libraries...14
5.2.3. Using libraries...15

5.3. The template body..15
5.3.1. Inclusion of types..16
5.3.2. Free content areas ...17
5.3.3. Repeated elements ..18
5.3.4. Optional elements ...20
5.3.5. Attributes...20

5.4. Resources and processing ..22
6. Appendix 2: user manual ...23

6.1. What is a template?..23
6.2. Selecting templates ..23
6.3. Creating a document instance ..24
6.4. Visualizing template elements ...24
6.5. Editing a document instance ..24

6.5.1. Editing in a repeat element ...25
6.5.2. Editing in an option element ...25
6.5.3. Editing in a use element ...25
6.5.4. Editing in a bag element ...25

7. Appendix 3: a sample template..27

3

1. Introduction

Most popular XML document formats used on the web, such as XHTML or SVG, are very
flexible: they allow many different types of documents to be represented. This is an
advantage in a wide space such as the Web, as a broad range of documents can be handled
consistently. XHTML, for instance, is used to represent not only traditional Web pages, but
also complex technical documents, sophisticated e-commerce forms or rich media slides,
and all these documents can be accessed with a single browser. But this flexibility makes
document authoring a complex task. When producing a specific type of document, an
author is faced with all the possibilities provided by XHTML, and she has to make a
number of difficult decisions. If multiple similar documents have to be produced
consistently, for a particular use or for some specific application, authors have to make a
consistent use of the XHTML document format, which has proven to be very difficult.

The XTiger language (eXtensible Templates for Interactive Guided Editing of Resources)
was created to tackle this problem. It allows a document designer to specify how the
document format (XHTML, for instance) has to be used for representing a certain type of
document. XTiger relies on the notion of template. A template is a skeleton representing a
given type of document, expressed in the format of the final documents to be produced (say
XHTML). The format of the final documents is called the target language and must be an
XML language. The skeleton contains some statements, expressed in the XTiger language,
that specify how this minimal document can evolve and grow, while keeping in line with
the intended type of the final documents. Some parts of the template may be frozen, if they
have to appear as is in the final document. Some parts may be modified when producing the
final document, some others may be added either freely or under some constraints. It is the
role of the XTiger language to specify these possibilities and constraints.

When a XTiger template is available for a type of document, the role of an authoring tool is
to follow the XTiger statements and to help the author to build a document that will be
consistent with the rules of its type. The present document introduces a new version of the
Amaya authoring tool that implements these principles. It describes the main features of
template-driven editing in Amaya, it mentions the limitation of the initial version of the
software, and provides a few examples of its use. Appendices provide details about the
XTiger language, and the user interface.

The design principles of the XTiger language and the main features of template-driven
editing in Amaya are presented in D.INF.01 [1], which defines the architecture of
information services in Palette. More information about the XTiger language and its
position relatively to other document/web technologies are presented in [2].

The software presented here is part of version 9.54 of the Amaya authoring tool. It can be
downloaded from the Amaya web site: http://www.w3.org/Amaya/User/BinDist.html
Note that the templating feature has to be activated. The procedure is described at:
http://www.w3.org/Amaya/Templates/

D.INF.02

5

http://www.w3.org/Amaya/User/BinDist.html
http://www.w3.org/Amaya/Templates/

2. Main features

This deliverable is the first release of the Amaya authoring tool that supports
template-driven editing based on the XTiger language. Its purpose is to demonstrate the
main features of this new editing mode. The implementation is not complete yet, but what
is available in this initial release should be enough to make experiments, to collect
comments and to prepare the next release, which will offer a broader support for XTiger
templates.

In this version, the main features are:

• document instantiation,
• display of XTiger elements,
• repeated structures,
• creation of unions,
• editing in bags.

Document instantiation is the process by which a new document is created from a template.
The new document contains a link to its XTiger template and copies of the XTiger elements
that will be used by the editor to guide the user. This is achieved by the new command
File>New>From_template (Fig. 1). The new document (Fig. 2) can be created on the local
file system or on a remote Web server, like any new document in Amaya. Moreover, the
template may be a local resource as well as a remote resource available on a web server.

Fig. 1: Creating a new document from a template

FP6-028038

6

Fig. 2: A new document created from a template

XTiger elements are displayed under the form of colored boxes that delineate the XHTML
structure they contain and control (Fig. 3). They are also displayed in the structure view
with a different color (green) that allows to clearly separate them from the XHTML
structure in which they are embedded. Finally, they have been added, again with the
distinctive green color, to the selection path displayed at the bottom of the document
window.

D.INF.02

7

Fig. 3: Adding a new component (section) to a repeat element

Repeated structures are the parts of a document that can appear multiple times in sequence
at a given position in a document, under the control of a XTiger repeat element. Fig. 3
shows two sections (large blue boxes), which are part of a repeat element (purple box).
This version of Amaya allows an author to easily create and delete repeated structures,
while conforming with the constraints (number of occurrences, type of elements) expressed
by the repeat element. In Fig. 3, clicking the purple '+' icon creates a new section.

Unions introduce some flexibility in a template by offering several possible types for a
given element. This is reflected to the user through a pop-up menu presenting all the
options defined in the template.

Bags are areas (see green boxes in Fig. 3) that can be edited freely or with a few constraints
on the type of usable elements. The constraints expressed in the template are controlled by
the editor and the component defined in the template are proposed to the user (Fig. 4).

Fig. 4: Creating a new component (a figure) in a section

FP6-028038

8

3. Current limitations

Although the main features for template-driven editing are available, some other, made
possible by the XTiger language are still missing, or are not complete:

• attribute element
• optional elements

The attribute element of XTiger controls attributes that authors want to associate to
XHTML elements. In this initial version, it is simply ignored.

The option element from XTiger makes some parts of a document structure optional. Its
main functionality is available, but deletion of an existing optional element is not
recommended.

XTiger elements are supposed to be used in any part of an XHTML structure. However, in
this initial version, it is not recommended to use them in tables or in definition lists (dl in
XHTML).

Finally, there is no support for creating and editing the XTiger templates themselves. The
recommended technique is to use Amaya to create a skeleton XHTML document, and then
to use a text editor (or the source view in Amaya) to introduce XTiger elements in the
skeleton.

4. References

[1] A. Boukottaya, F. Campoy Flores, R. Deltour, V. Quint, Ch. Vanoirbeek, I. Vatton, K.
Zouba, D.INF.01: Report on the design of extension mechanisms for creating templates,
using templates for editing and customizing the user interface, and of extensions to be
integrated in the information reuse tool (M3), 15 May 2006 (pdf, html)

[2] F. Campoy Flores, V. Quint, I. Vatton, "Templates, Microformats and Structured
Editing", DocEng 2006, ACM Symposium on Document Engineering, 10-13 October 2006,
Amsterdam, The Netherlands, pp. 188-197 (pdf, html)

D.INF.02

9

https://bscw.ercim.org/bscw/bscw.cgi/d150688/Palette.D.INF.01.pdf
https://bscw.ercim.org/bscw/bscw.cgi/d151196-3/*/*/*/Palette.D.INF.01.html
http://www.cwi.nl/events/2006/DocEng2006/
http://wam.inrialpes.fr/publications/2006/DocEng/DocEng2006.pdf
http://wam.inrialpes.fr/publications/2006/DocEng/DocEng2006.html

5. Appendix 1: the XTiger language

When talking about XTiger, it is important to make a distinction between two kinds of
documents: a template and its instances. A template is the skeleton presented above,
containing XTiger elements and defining a certain type of document. It is the seed used to
produce a series of documents, called instances, that are derived from the template
according to the statements expressed by the embedded XTiger elements. In the rest of the
paper, we use the term instance instead of final document.

The statements expressed by XTiger elements are supposed to be interpreted by a document
authoring tool. Starting from a template, the tool helps the user to follow the XTiger
statements, thus ensuring that the instance being edited will stick to the document type
specified by the template.

XTiger templates may be used to specify the overall structure of a large document, as well
as the fine details of some of its parts. This latter feature allows in particular to express how
to use microformats in large documents.

XTiger is not an XML document type like XHTML, SVG or MathML. XTiger is always
used in combination with a target language, which is an XML document type. The XTiger
elements interspersed in a template are not supposed to be displayed in the same way as
elements of the target language. Instead, the role of these XTiger elements is to specify
what elements and attributes of the target language must, should or could be present at
these positions in the document instance. That is the core of the language, which specifies
the structure and (parts of) the content of documents.

This specificity is complemented with additional features that make the language easier to
use. For instance, structure fragments can be defined only once and used at several places,
in one or several templates. This facilitates a modular construction of templates, by sharing
reusable pieces of structure stored in libraries.

As XTiger is used to describe structures, and because it is always mixed with XML
languages, it is itself an XML language. XML namespaces are used to distinguish between
XTiger elements and elements from the target language. This distinction allows existing
web browsers to simply ignore the XTiger elements and to display a template as if these
elements were not present.

The XTiger namespace is http://wam.inrialpes.fr/xtiger. For the sake of
readability, all examples in this document use prefix xt: for XTiger element names, while
names from the target language are not prefixed.

The target language used in the following examples is XHTML, but it might be any other
XML language as well. The first example below is a piece of XTiger language that defines
a component called "author". This component is constituted by a XHTML paragraph that
contains a few XHTML span and br elements, with classes from the hCard microformat.

FP6-028038

10

The "author" component can be used to generate the XHTML structure representing an
author in document instances, following the hCard microformat.

<xt:component name="author">
<p class="vcard">

<xt:use types="string" label="name">Author name</xt:use>

<xt:use types="string" label="address">Address ...</xt:use>

<xt:use types="string" label="email">email ...</xt:use>

</p>
</xt:component>

5.1. Types in XTiger

In XTiger, types are used to specify pieces of structure that may occur at several places in a
template or in several templates. XTiger offers a few basic types and allows constructed
types to be built. Constructed types are built with constructors that combine XTiger basic
types and types from the target language. Two constructors are available: component and
union.

5.1.1. Basic types

XTiger offers three basic types:

• number representing integers and floating point numbers,
• boolean representing boolean values (true or false),
• string representing variable length character strings.

5.1.2. Target language types

As XTiger always works with a target language and is used to produce documents in that
language, it may use elements and attributes from the target language. For instance, when
the target language is XHTML, elements h1, h2, p, strong, span, cite are target language
types.

5.1.3. Component

Component is a constructor that creates a new constructed type by specifying an XML
structure assembling other types, which may be basic types, target languages types and

D.INF.02

11

constructed types (unions and other components). The type thus created has a name that
allows it to be referred from other XTiger elements. This name must be unique in the
template where it is defined.

The XTiger element component is used to define a component type:

<!ELEMENT component ANY>
<!ATTLIST component

name NMTOKEN #REQUIRED>
Attributes:
name

The name of the type. This attribute must be unique in the template and is mandatory.

Content:
The content of the component element defines the structure of the new type. It may be
any XML structure that combines target language elements (possibly with attributes)
and XTiger elements allowed in the template body.

An example :

<xt:component name="hello">
<p>Hello world!</p>

</xt:component>

This example defines a type called "hello" that is a XHTML paragraph (the target language
of the template where this elements occurs is XHTML) containing the text "Hello World !".
It uses a target language type (p element).

5.1.4. Union

Union is a constructor that defines a new type as a choice between several types, each of
which being a basic type, a target language type, or a constructed type (component or other
union). The new type has a name that allows it to be used in other XTiger elements. This
name must be unique in the template where it is defined.

The XTiger element union is used to define a union type:

<!ELEMENT union EMPTY>
<!ATTLIST union

name NMTOKEN #REQUIRED
include CDATA #REQUIRED
exclude CDATA #IMPLIED>

Attributes:
name

The name of the type. This attribute must be unique in the template and is mandatory.

FP6-028038

12

http://www.w3.org/Amaya/Templates/XTiger-spec.html#L1400

include
A list of names separated by spaces. These names can be basic types (number, boolean,
string), names of elements from the target language (div, h1, h2, p, ... for XHTML), or
the name attribute of a component or another union. This attribute is used to define the
options that constitute the union. This attribute is mandatory.

exclude
This attribute is a list of names separated by spaces. These names can be basic types
(number, boolean, string), names of elements from the target language (div, h1, h2, p,
...), or the name attribute of a component or another union. This attribute is used to
exclude some elements that are part of the union as defined by the include attribute.
This attribute is optional.

Content:
empty.

XTiger provides four predefined unions that may be used in any type definition:

anySimple
includes all basic types (number, string and boolean)

anyElement
includes all elements defined in the target language.

anyComponent
includes all components defined in the template.

any
includes anySimple, anyElement and anyComponent.

Example :

<xt:union name="hello_or_p" include="hello p"/>
<xt:union name="headings" include="h1 h2 h3 h4 h5 h6"/>
<xt:union name="headings1to4" include="headings" exclude="h5 h6"/>

With these definitions, the hello_or_p union provides a choice between the hello
component and the p element. The headings union provides a choice between all HTML
headings (h1 to h6). The headings1to4 union provides a choice between all HTML
headings except h5 and h6.

5.2. Type definitions

The definitions of components and unions presented above must appear in the head of an
XTiger template, or in a XTiger library imported by a template.

D.INF.02

13

Type definitions do not appear in document instances. Instead, instances include a
Processing Instruction that refers to their template, which contains type definitions and
reference to libraries containing additional type definitions.

5.2.1. Head element

The head element collects definitions of components and unions that are used in the
template. It also refers to the libraries that contain additional components and/or unions
used in the template. This is done with the import element.

There is always a head element in a template, but only one. It may appear anywhere in the
template, but it cannot be the root of the document. In XHTML documents it is
recommended to insert it in the XHTML head element.

<!ELEMENT head ((component | union | import)*) >
<!ATTLIST head

version CDATA #REQUIRED
templateVersion CDATA #IMPLIED>

Attributes:
version

Version of the XTiger language used in the template. For the XTiger language defined
in this specification, the value of the version attribute must be "0.8". This attribute is
mandatory.

templateVersion
Version of the template. A template may evolve over time, when the type of document
it represents is modified and several versions are available. This version number may
be used to make sure that the right version of the template is used for a given document
instance.

Content:
The head element contains any number (including 0) of component, union and
import elements, but no other elements.

5.2.2. XTiger libraries

A XTiger library is an XML document containing definitions of constructed types
(components and/or unions). Libraries allow types to be declared only once and to be
shared between different templates. A XTiger library is defined by the root element
library. Its content model is the same as the head element of a template. Like the head
element, a library can import other XTiger libraries using the import element.

<!ELEMENT library ((component | union | import)*)>

<!ATTLIST head

version CDATA #REQUIRED

templateVersion CDATA #IMPLIED>

FP6-028038

14

5.2.3. Using libraries

When a template or a library uses constructed types defined in a library, that library must be
explicitly imported in the template or library that uses it by an import element.

<!ELEMENT import EMPTY >
<!ATTLIST import

src CDATA #REQUIRED>
Attributes:
src

URI of the imported library. This attribute is mandatory.

Content:
empty.

All components and unions declared in the imported library are inserted at the position of
the import element. Some imported components and unions can be redeclared (same name
attribute) in the current head or library element. The order of import elements in a head
or library is important: a component or a union defined in an imported library with the
same name attribute as a previous definition replaces that previous definition.

5.3. The template body

A template contains a set of type definitions grouped in the head element but also the
skeleton of a target language document and some XTiger statements that are used to
generate instances. The latter (skeleton and statements) is called the template body. A copy
of it serves as initial instance when a new document is created from the template. The head
element and its definitions are not copied in the instance.

All target language elements included in the template body appear in all document
instances exactly as they are in the template. Their content is preserved and can not be
modified in instances. This is the static part of the template.

There is also a dynamic part in a template, i.e. a part that can be modified under the control
of XTiger elements. The XTiger elements that control the dynamic part are:

• use, for including elements defined by their type,
• bag, for defining free content areas,
• repeat, for repeating elements of a given type,
• option, for defining an optional part,
• attribute, for specifying how to use target language attributes and their values.

D.INF.02

15

5.3.1. Inclusion of types

The use element indicates what type(s) of element can appear at that position in an
instance. Only one element of the specified type(s) can appear at that position in an instance
document.

<!ELEMENT use ANY>
<!ATTLIST use

label NMTOKEN #REQUIRED
types CDATA #REQUIRED
currentType CDATA #IMPLIED

Attributes:
label

Label associated with the use element. This attribute allows authors of instances to
make a difference between the many XTiger elements that appear in a document. It is
mandatory.

types
A list of space separated names. A single name is also allowed. Each name is either a
basic type (number, boolean, string), an element of the target language (h1, h2, p,
...), or the name attribute of a component or a union. The element to be inserted at that
position in an instance must be of one of these types, but there is no constraint on the
descendants of the inserted elements, provided they comply with the DTD or schema
of the target language, when target language elements are used. This attribute is
mandatory.

currentType
Name of the selected type, when a choice has been made. This attribute is present only
in instances. It should not be used in a template.

Content:
The use element may have a content. If a content is present, it must be of one of the
types listed in the types attribute. This content is considered as an initial value that
will be present in an instance. It may be replaced by an instance author by another
content, provided it is compliant with the types attribute.

When a component and only that component is used only once in the template, the use
element may be replaced by a component element. This is a shortcut. Its semantics are the
same that a use element at that position which refers to the component.

Example 1:

<xt:use label="birthday" types="string">

Your birth date here

</xt:use>

FP6-028038

16

In this example "Your birth date here" is the content that will be displayed when a new
instance is created from the template. This string can be freely replaced by an instance
author by any other string, but only by a string.

Example 2:

<xt:head version="0.8">
<xt:component name="short_date">

<xt:use label="day" types="number">20</xt:use> /
<xt:use label="month" types="number">10</xt:use> /
<xt:use label="year" types="number">1981</xt:use>

</xt:component>
...
</xt:head>
...
<xt:use label="birthday" types="short_date"/>

This example shows how a component can be used to make sure that the user will enter a
date in the dd/mm/yyyy format.

<xt:use label="date" types="em short_date">

20 october 1981

</xt:use>

Here, the content of the xt:use element may be either an XHTML em element or a
short_date component. Only one of them can be inserted at that position in an instance.
The current content 20 october 1981 is a valid value, because it is an em. It
does not need to be also a short_date.

5.3.2. Free content areas

The use element puts strong constraints on the structure and/or content of a part of a
document. It is sometimes useful to have more flexibility. That is the role of the bag
element. It indicates that any number of elements may appear at that position in an instance
document, and it specifies the allowed types for these elements.

<!ELEMENT bag ANY>
<!ATTLIST bag

label NMTOKEN #REQUIRED
types CDATA #REQUIRED>

Attributes:
label

Label associated with the bag element. This attribute allows authors of instances to
make a difference between the many XTiger elements that appear in a document. It is
mandatory.

D.INF.02

17

types
A list of space separated names. A single name is also allowed. Each name is either a
basic type (number, boolean, string), an element of the target language (h1, h2, p,
...), or the name attribute of a component or a union. The elements to be inserted at that
position in an instance must be of one of these types, and all their descendants too. The
types attribute is mandatory.

Content:
The bag element may have a content. If a content is present, it must follow the
constraints set by the types attribute. This content is considered as an initial value that
will be present in an instance. It may be replaced by an instance author by another
content, provided it remains compliant with the types attribute.

Example:

<p>
<xt:bag label="para" types="string em strong code">
This paragraph contains strings
and <code>any</code> combination of emphasis,
<code>code</code> and strong elements.
</xt:bag>

</p>

5.3.3. Repeated elements

It is often useful to be able to repeat a part of the document structure several times. In this
case, the structure to be repeated must first be declared as a component. It can then be used
with a xt:repeat element in the template body.

<!ELEMENT repeat (use+ | component)>
<!ATTLIST repeat

label NMTOKEN #REQUIERED
minOccurs CDATA #IMPLIED "0"
maxOccurs CDATA #IMPLIED "*"
currentOccurs CDATA #IMPLIED>

Attributes:
label

Label associated with the repeat element. This attribute allows authors of instances to
make a difference between the many XTiger elements that appear in a document. It is
mandatory.

minOccurs
Minimum number of times the component must be repeated. If this attribute is absent,
the minimum is 0.

FP6-028038

18

maxOccurs
Maximum number of times the component may be repeated. "*" means no upper
bound. If this attribute is absent, it is equivalent to "*".

currentOccurs
Current number of times the included component is repeated. This attribute is set only
in document instances. It should not be present in a template body.

Content:
A use element indicates (with its types attribute) the type of the component to be
repeated. Basic types are not allowed. If the types attribute of the use element is a list
of several types, the repeated elements may have any of these types. Several use
elements may be present in a repeat element in a template to provide initial values to
several repeated elements.

Instead of a use element, the content may be a single component element, when this
component is used only there in the whole template. This is equivalent to defining this
component in the head of the template and putting a use element (that refers to that
virtual component) in the repeat element.

Example:

<xt:head version="0.8">
<xt:component name="bib_item">

<xt:repeat label="authors" minOccurs="1" maxOccurs="5">

<xt:component name="author">
<xt:use label="given_name" types="string"/>
<xt:use label="family_name" types="string"/>

</xt:component>
</xt:repeat>
...

</xt:component>
...

</xt:head>
...
<h2>Bibliography</h2>

<xt:repeat label="bib_list" minOccurs="1">
<xt:use label="entry" types="bib_item"/>

</xt:repeat>

This example describes a bibliography section which includes at least one bib_item
component. Each of these components contains several authors.

D.INF.02

19

5.3.4. Optional elements

It is often useful to indicate that some part of the document is optional. This is done with
the option element. This element is equivalent to an xt:repeat element with
maxOccurs="1" and minOccurs="0".

<!ELEMENT option ANY>

<!ATTLIST option

label NMTOKEN #REQUIRED

checked (true|false) #IMPLIED "true">

Attributes:
label

Label associated with the option element. This attribute allows authors of instances to
make a difference between the many XTiger elements that appear in a document. It is
mandatory.

checked
Indicates whether the optional element is present (true) or not (false). If this
attribute is not present, the element is there (true). This attribute is usually not present
in a template. It is used in document instances.

Content:
The piece of document that is optional.

Example:

<xt:option label="bibliography">
<component name="biblio">

<h2>Bibliography</h2>

<xt:repeat label="bib_list" minOccurs="1">
<xt:use label="entry" types="bib_item"/>

</xt:repeat>

</component>
</xt:option>

This example defines a component called biblio and makes it optional at the position where
it appears in the template body.

5.3.5. Attributes

XTiger provides a way to control attributes from the target language. This is achieved by
inserting an attribute element as a child of a target language element. The attribute
element makes an attribute of its parent element mandatory, fixed, or prohibited. If several
attributes of a single target language element have to be controlled, several attribute
elements must be used, one for each of these attributes.

FP6-028038

20

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

name NMTOKEN #REQUIRED

type (number, string, list) #IMPLIED "string"

use (required, optional, prohibited) #IMPLIED "required"

default CDATA #IMPLIED

fixed CDATA #IMPLIED

values CDATA #IMPLIED>

Attributes:
name

Name of the attribute of the parent element that is constrained. This attribute is
mandatory.

type
Type of the constrained attribute (number, string, list). If the type attribute is not
present, the default type "string" is assumed.

use
Indicates whether the constrained attribute is required, optional, or prohibited. If an
attribute is required by its DTD, this attribute will be added even if the template makes
it prohibited or optional. If attribute use is not present, the default value "required" is
assumed.

default
Default value of the constrained attribute. This value can be replaced by another value
in the instance. Attribute default is optional.

fixed
Fixed value of the constrained attribute. Attribute fixed is optional

values
List of possible values. Possible values are separated by spaces. Attribute values is
optional.

Content:
empty.

Example:

<div>
<xt:attribute name="class" use="optional"

values="comment example info" default="comment"/>
...

</div>

This example shows a XHTML div element whose class attribute is made optional with
value limited to the three options comment, example and info. The default value is set to
comment.

D.INF.02

21

5.4. Resources and processing

When working with XTiger templates, three different kinds of resources are involved:

Template file
A template defines the skeleton of a document and the constructed types (components
and unions) it uses. Template files have the .xtd extension.

XTiger libraries
Libraries are lists of constructed type definitions. They can be imported by templates
and other libraries. Library files have the .xtl extension.

Document instances
Instances are documents generated from templates. Instance files have the usual
extension of their target language.

When a user creates a document from a template, the new document instance is created as a
copy of the template. However, the xt:head element with its type definitions is kept by the
authoring tool, but it is not copied in the document instance.

The template is linked to the new instance by a processing instruction:
<?xtiger template="URI/of/the/template.xtd" version="0.8"
templateVersion="xx" ?>
which is inserted at the beginning of the instance, in the same way CSS style sheets are
linked to XML documents. With this link, the authoring tool can find all the type
definitions needed during editing sessions. All other XTiger elements (use, bag, repeat,
option, attribute) as well as all target language elements are kept in the copy that
constitutes the initial instance. XTiger types that appear in these elements are replaced by
references to their definition in the template (actually, by references to a parsed
representation of types in core memory which is more compact).

FP6-028038

22

6. Appendix 2: user manual

This appendix contains the Template section from the Amaya user manual.

6.1. What is a template?

Templates are used to produce multiple documents of the same type. A template is a
skeleton representing a given type of document, expressed in the format of the final
documents to be produced (XHTML, for instance). The format of the final documents is
called the target language and must be an XML language.

In a template, the skeleton document contains some statements, expressed in the XTiger
(eXtensible Templates for Interactive Guided Editing of Resources) language, that specify
how this minimal document can evolve and grow, while keeping in line with the intended
type of the final document. Documents produced from this skeleton following the XTiger
statements are called instances of the template. Some parts of the template may be frozen, if
they have to appear in document instances as they are. Some parts may be changed when
producing an instance document, some others may be added either freely or under some
constraints.

The file containing a template must have a .xtd extension.

A template comes often with a set of accompanying resources (images, style sheets,
scripts). A template is a web resource, that can be stored in the local file system or shared
on a remote web server.

6.2. Selecting templates

You can create your own templates, using the XTiger language. However, in the current
version of Amaya, no specific support is provided for creating or updating templates. You
can also use the templates available on the Amaya web site at
http://www.w3.org/Amaya/Templates/

You are free to store templates anywhere, in your local file system or remotely.

To ease selection among your favorite templates, there is a Templates section in the
Preferences dialogue (Edit>Preferences). Use it to register the templates that Amaya will
propose when you create a new document. When registering a local template, you can call a
file browser with the browse button to locate and select the files to be added to the list. You
can also enter the URI of remote templates in the input area below the list. Use the buttons
on the right side of the list to remove a template or to change the order of templates in the
list.

Registering templates in this list is not mandatory. When you create a new document
instance, you can also choose a template that is not in that list.

D.INF.02

23

http://www.w3.org/Amaya/Templates/

6.3. Creating a document instance

To create a new document instance from a template, use entry New>From_template in the
File menu. It displays a dialogue box where you can select:

• The directory where the template is located if it is a local file that is not registered
in the list of templates

• The template itself, either by selecting in the list of registered templates or by
typing the URI or file name of a template that is not in the list

• The URI or file name of the document instance you want to create
• Where to open the new document (Replace current, In new tab, In new window)
• The Title of the new document (this is mandatory)

6.4. Visualizing template elements

When a document instance is displayed, Amaya shows the XTiger elements under the form
of colored frames that enclose XHTML elements.

• A use element is shown as a dashed blue box
• A bag element is shown as a dashed green box
• A repeat element is shown as a dashed purple box
• An option element is shown as a dashed yellow box
• The attribute element is not displayed in the main view, as it only impacts the

Attributes menu.

The XTiger elements can also be seen in the structure view. Open this view with the
Show_structure entry of the View menu. In the structure view, XTiger elements are
displayed in green, while the XHTML elements are in blue. XTiger elements are also
shown in the Source view, but with no special color.

Another way to understand the nesting of XTiger elements with XHTML elements is the
selection path displayed at the bottom of the document window. There, you can see the list
of all elements in the structure of the document from the root element to the current
selection. It is updated every time the selection is changed. In this path, XTiger elements
are displayed in green and XHTML elements in black. For XTiger elements, it is not the
name of the element that is displayed there (use, bag, repeat, option) but the label of these
elements, as declared in the template.

6.5. Editing a document instance

Editing is allowed only inside the repeat, option, use, and bag elements, i.e. within the
colored dashed boxes. The rest of the document is the fixed part of the template and can not
be modified.

FP6-028038

24

6.5.1. Editing in a repeat element

In a repeat box (purple), you can create a new instance of the repeated structure or you
can delete one. This is controlled by the template, which may impose a minimum and/or a
maximum number of occurrences of the repeated structure. When creating new occurrences
of the repeated structure is allowed, click one of the purple '+' icons to create a new
occurrence at that location. You get a pop up menu that tells you what can be inserted at
that position. By clicking in that pop-up menu, you create a new occurrence of the
corresponding type. In some cases the template offers only one type of occurrence. The
pop-up menu then contains a single entry, to clearly state what will be created. If you click
outside the menu, nothing is created.

Another way to create new occurrences of the repeated structure is to select an existing
occurrence, or to put the caret at the end of an occurrence, and to press the Return key. A
new occurrence of the repeated structure is then created, provided the maximum number of
occurrences is not reached. The type of the new occurrence is then the same as the one that
was selected when pressing the Return key.

When an existing occurrence is empty or fully selected and the Backspace or Delete key is
pressed, the element is deleted, provided the minimum number of occurrences is not
reached.

6.5.2. Editing in an option element

option boxes (yellow) display a 'tick' icon in the top left corner. If the box is empty,
clicking this icon creates the optional structure. If the optional structure is already present,
this removes it.

6.5.3. Editing in a use element

Most use elements (blue) allow you just to enter free text or to freely replace/edit existing
text. Other use elements offer a choice between different types of elements that can be
inserted at that position. In that case, a triangle icon is displayed in the top left corner of the
box. By clicking this icon, you can select one of the allowed types through a pop-up menu.
When you have chosen a type, the corresponding structure is generated and you can freely
edit its content.

6.5.4. Editing in a bag element

In a bag box (green), you can insert any number of elements of the types specified by the
template. When you want to insert a XHTML element, do it the usual way. It may happen
that some elements are not allowed by the template. These elements are greyed out in the
menus (in the current version, this feature is not implemented, but prohibited elements are
not created).

D.INF.02

25

Templates introduce new structures (called components) built from XHTML elements. The
"XML element types" panel lists them and allows you to insert them in bags (green boxes).
For inserting a component at the current position, select its name in the panel and click the
Apply button at the bottom of the panel. You can also double-click its name.

FP6-028038

26

7. Appendix 3: a sample template

Here is the XTiger template used to edit this document:

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- This XTiger template defines the structure of a deliverable

for the FP6 project Palette
-->
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:t="http://wam.inrialpes.fr/xtiger"
xml:lang="en" lang="en">

<head>
<meta http-equiv="content-type" content="text/xml; charset=iso-8859-1" />
<title>Palette FP6-028038</title>
<link rel="stylesheet" type="text/css" href="Palette-Deliv.css" />

<t:head version="0.8" templateVersion="1.0">
<t:component name="figure">

<div class="figure">
<t:attribute name="id" use="optional"/>
<p><t:use types="string" label="caption">Caption</t:use></p>

</div>
</t:component>

<t:component name="codeExample">
<div class="example">

<t:attribute name="id" use="optional"/>
<t:use types="pre" label="code"><pre>Some code</pre></t:use>
<p><t:use types="string" label="caption">Caption</t:use></p>

</div>
</t:component>

<t:component name="section">
<div class="section">

<h2><t:use types="string" label="heading">Section
Heading</t:use></h2>

<t:bag types="anyElement codeExample figure" label="sectionBody">
<p>First paragraph of section ...</p>

</t:bag>
</div>

</t:component>
</t:head>

</head>

<body>
<div class="cover">
<div class="logos">
<img alt="Palette logo" src="PaletteLogoWording.png" width="210" style="float: left"
/> </div>

<div class="cover-project">

D.INF.02

27

<p class="projnum">Project no. FP6-028038</p>

<p class="projacronym">Palette</p>

<p class="projname">Pedagogically sustained Adaptive LEarning Through the
exploitation of Tacit and Explicit knowledge</p>

<p class="instrument">Integrated Project</p>

<p class="thematic-priority">Technology-enhanced learning</p>

<h1 class="delivname"><t:use types="string"
label="delivNumber">D.XXX.nn</t:use> – <t:use types="string"
label="title">Title of Deliverable</t:use></h1>

<p class="duedate">Due date of deliverable: <t:use types="string"
label="date">Month dd, yyyy</t:use></p>

<p class="actualdate">Actual submission date: <t:use types="string"
label="date">Month dd, yyyy</t:use></p>

<p class="startdate">Start date of project: February 01, 2006</p>

<p class="duration">Duration: 36 months</p>

<p class="orgname">Organisation name of lead contractor for this deliverable:
<t:use types="string" label="lead">Acronym accoding to DoW</t:use></p>

<table border="1" class="dissemination">
<tbody>

<tr>
<td colspan="2" class="dissemhead">Project co-funded by the European

Commission within the Sixth Framework Programme</td>
</tr>
<tr>

<td colspan="2" class="dissemlevel">Dissemination Level</td>
</tr>
<tr>

<td class="dissemlev1"><t:use types="string"
label="code">PP</t:use></td>
<td class="dissemlev2"><t:use types="string"

label="dissemination">Restricted to other programme participants
(including the Commission Services)</t:use></td>

</tr>
</tbody>

</table>

<p class="keywords">Keywords: <t:use types="string" label="keywords">list of
comma-separated keywords.</t:use></p>

<p class="resp-partner">Responsible Partner: <t:use types="string"
label="partner">Acronym or the partner according to the DoW</t:use></p>

FP6-028038

28

</div>
</div>

<div class="history">
<table border="1">

<tbody>
<tr>

<th colspan="4" class="modif-head">MODIFICATION CONTROL</th>
</tr>
<tr align="center">

<td>Version</td>
<td>Date</td>
<td>Status</td>
<td>Modifications made by</td>

</tr>
<tr>

<td align="center"><t:use types="string" label="version">n</t:use></td>
<td align="center"><t:use types="string"
label="date">DD-MM-YYYY</t:use></td>
<td align="center"><t:use types="string"
label="status">draft</t:use></td>
<td><t:use types="string" label="manager">Given name & family name

of deliverable manager</t:use></td>
</tr>
<tr>

<td align="center"><t:use types="string" label="version">n</t:use></td>
<td align="center"><t:use types="string"
label="date">DD-MM-YYYY</t:use></td>
<td align="center">Final</td>
<td><t:use types="string" label="manager">Given name & family name

of deliverable manager</t:use></td>
</tr>

</tbody>
</table>
<dl class="people">

<dt>Deliverable manager</dt>
<dd><p><t:use types="string" label="manager">Given name & family name

(Acronym of the partner according to the DoW)</t:use></p>
</dd>

<dt>List of Contributors</dt>
<dd>

<p>
<t:use types="string" label="contributors">Given name & family

name (Acronym of the partner according to the DoW)</t:use>
</p>

</dd>
<dt>List of Evaluators</dt>

<dd>
<p>

<t:use types="string" label="evaluators">Given name & family
name (Acronym of the partner according to the DoW)</t:use>

</p>

29

</dd>
</dl>

<div class="summary">
<p class="summary-head">Summary</p>
<t:bag types="anyElement" label="summary">

<p>10 lines maximum</p>
</t:bag>
</div>
</div>

<div class="toc">
<p class="toc-head">TABLE OF CONTENT</p>
<t:bag types="anyElement" label="toc">

Create table of content here
</t:bag>
</div>

<div class="body">
<t:repeat minOccurs="2" label="body">

<t:use types="section" label="section"></t:use></t:repeat>
</div>
</body>
</html>

FP6-028038

30

	D.INF.02 – First version of Amaya offering a template mechanism
	1. Introduction
	2. Main features
	3. Current limitations
	4. References
	5. Appendix 1: the XTiger language
	5.1. Types in XTiger
	5.1.1. Basic types
	5.1.2. Target language types
	5.1.3. Component
	5.1.4. Union

	5.2. Type definitions
	5.2.1. Head element
	5.2.2. XTiger libraries
	5.2.3. Using libraries

	5.3. The template body
	5.3.1. Inclusion of types
	5.3.2. Free content areas
	5.3.3. Repeated elements
	5.3.4. Optional elements
	5.3.5. Attributes

	5.4. Resources and processing

	6. Appendix 2: user manual
	6.1. What is a template?
	6.2. Selecting templates
	6.3. Creating a document instance
	6.4. Visualizing template elements
	6.5. Editing a document instance
	6.5.1. Editing in a repeat element
	6.5.2. Editing in an option element
	6.5.3. Editing in a use element
	6.5.4. Editing in a bag element

	7. Appendix 3: a sample template

