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Abstract

Under the action of growth factors, proliferating and nonproliferating hematopoietic
stem cells differentiate and divide, so as to produce blood cells. Growth factors act
at different levels in the differentiation process, and we consider their action on the
mortality rate (apoptosis) of the proliferating cell population. We propose a mathe-
matical model describing the evolution of a hematopoietic stem cell population under
the action of growth factors. It consists of a system of two age-structured evolution
equations modelling the dynamics of the stem cell population coupled with a delay dif-
ferential equation describing the evolution of the growth factor concentration. We first
reduce our system of three differential equations to a system of two nonlinear differential
equations with two delays and a distributed delay. We investigate some positivity and
boundedness properties of the solutions, as well as the existence of steady states. We
then analyze the asymptotic stability of the two steady states by studying the character-
istic equation with delay-dependent coefficients obtained while linearizing our system.
We obtain necessary and sufficient conditions for the global stability of the steady state
describing the cell population’s dying out, using a Lyapunov function, and we prove the
existence of periodic solutions about the other steady state through the existence of a
Hopf bifurcation.

Keywords: Age structured model, differential equations, distributed delay, asymptotic sta-
bility, Lyapunov function, Hopf bifurcation, blood cells model, stem cells, growth factors.

1 Introduction

Hematopoietic stem cells are undifferentiated cells, located in the bone marrow, with unique
capacities of differentiation (the ability to produce cells committed to one blood cell lin-
eage: white cells, red blood cells or platelets) and self-renewal (the ability to produce a

∗To appear in Discrete and Continuous Dynamical Systems Series B

1



M. Adimy, F. Crauste Growth Factor-Dependent Stem Cells Dynamics Model

cell with the same properties). These cells are at the root of the blood production process,
called hematopoiesis. They produce committed stem cells which in turn will differentiate in
precursor cells and, eventually, blood cells, which enter the bloodstream.

The differentiation of hematopoietic stem cells in one of the three blood cell type is
mediated by growth factors. They are molecules acting like hormones in the blood production
process, playing an activator / inhibitor role. A control operates between the number of
circulating blood cells (red blood cells, white cells and platelets) and the production of
growth factors: the less there are circulating blood cells, the more there are growth factors
produced. When the number of circulating blood cells is large enough, the release of growth
factors decreases. Growth factors act at every cell compartment (stem cells, committed stem
cells, precursors), mainly either by triggering the cell proliferation or by decreasing the cell
mortality (especially for proliferating cells), see for example [19, 22].

The probably most known growth factor is erythropoietin, or Epo, produced by the
kidneys to trigger the production of red blood cells. Different growth factors act to help the
production of red blood cells, white cells and platelets.

To our knowledge, mathematical modelling of hematopoietic stem cells dynamics has been
first performed by Mackey [23, 24]: he proposed a system of two delay differential equations
describing the evolution of a stem cell population divided in two compartments, proliferating
and nonproliferating cells. The model in [23] has been recently studied by Pujo-Menjouet
and Mackey [32] and Pujo-Menjouet et al [31]. In these works, the authors showed the
existence of a Hopf bifurcation that destabilizes the unique nontrivial steady state of the
model, leading to periodic solutions, and stressed the influence of each parameter (mortality
rates, introduction rate in the proliferating phase, cell cycle duration) of the model on the
amplitudes and periods of oscillating solutions.

Bernard et al [11, 12] adapted the model of Mackey [23] to study the production of white
cells, and Colijn and Mackey [15, 16] generalized the works in [11] to model the production
of all blood cell types.

In the above cited works, the models always take the form of a system of nonlinear
differential equations with a discrete delay, describing a constant cell cycle duration. Adimy
et al [3, 5, 6] analyzed the dynamics of the model in [23] assuming that all cell do not divide
at the same age and so the cell cycle duration is distributed according to a density function.
The authors obtained the existence of a Hopf bifurcation and applied their results to periodic
chronic myelogenous leukemia, a cancer of white blood cells known for exhibiting, in some
cases, very long periods oscillations compared to cell cycle durations.

The model in [23] has also been modified to take into account a structure in the stem
cell population (the structure being either age, maturity, or age-maturity) and the resulting
models have been widely studied. We mention the papers by Mackey and Rey [25, 26, 27],
Mackey and Rudnicki [28, 29], Dyson et al [17, 18], Adimy and Pujo-Menjouet [8], Adimy
and Crauste [1, 2], Adimy et al [4], and the references therein. In these works, considering
different assumptions about the cell cycle duration (constant, distributed according to a
density, maturity-dependent), the influence of pluripotent hematopoietic stem cells (the less
mature stem cells) on the stability of the entire process of hematopoiesis has been pointed
out.

In 1995 and 1998, Bélair et al [9] and Mahaffy et al [30] considered an age structured
system of two equations, coupled with a differential equation, modelling the dynamics of
hematopoietic stem cells under the action of growth factors. They assumed that the in-
troduction rate in the proliferating phase depended on the growth factor concentration and,
applying their model to the production of red blood cells (with erythropoietin as a growth fac-
tor), they managed to model normal hematopoiesis but stressed some difficulties to describe
pathological cases (in particular, they obtained the existence of oscillating solutions with
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periods that can be related to some data observed in patients with autoimmune hemolytic
anemia, a disease triggering oscillations of red blood cells, but their results were limited by
the lack of experimental data). We also mention a work by Adimy et al. [7], which deals with
a system of three delay differential equations describing the production of blood cells under
the action of growth factors. As in [9, 30], growth factors are assumed to act on the rate
of introduction in the proliferating phase. The authors apply their model to some periodic
hematological diseases, in particular chronic myelogenous leukemia, and obtain the existence
of very long periods oscillations for short cell cycle durations.

In this work, we consider the action of growth factors on the mortality rate of the pro-
liferating phase, known as apoptosis (a programmed cell death). To our knowledge, this
assumption has never been used in hematopoiesis modelling, although it is mentioned in
specialized literature (see, for example, [34]). Growth factors are known to decrease, in some
cases, the apoptotic rate so as to bring more cells to the division, and then increase the
blood cell production [19, 22, 37]. This assumption, contrary to the one saying that growth
factors act on the introduction rate from the nonproliferating phase to the proliferating one
[7, 9, 30], leads to a model with distributed delay, whose analysis is more complicated.

We model the dynamics of hematopoietic stem cells with an age structured model de-
scribing the evolution of proliferating and nonproliferating stem cells, coupled with a delay
differential equation describing the production of growth factors. Our model can be reduced
to a system of delay differential equations with two different discrete delays (corresponding to
the cell cycle duration and the time needed to release growth factors in the bloodstream), and
a distributed delay (describing the action of growth factors on the apoptosis rate). While
studying the local asymptotic stability of the steady states of our model, we are led to a
characteristic equation with delay-dependent coefficients. In that case, Beretta and Kuang
[10] developed a method that allows the study of the stability for such equations. Moreover,
due to the presence of two different delays, we use an approach proposed by Wei and Ruan
[36] and Ruan and Wei [33], which consists in analyzing the stability when one delay is equal
to zero and deduce the stability when both delays are nonzero with analytical tools.

In the next section, we present our model, which takes the form of an age structured
system of two equations, with nonlinear boundary conditions, coupled with a differential
equation with delay. We reduce it to a system of two delay differential equations using
an integration over the age variable and the method of characteristics. In section 3, we
study the positivity and boundedness properties of the solutions, and we determine steady
states of our model. Then, in section 4, we linearize the system about one of its steady
states, in order to perform the analysis of the local asymptotic stability, and we deduce the
characteristic equation. In section 5, we first obtain necessary and sufficient condition for the
global asymptotic stability of the steady state describing the cell population’s dying out with
a saturation of the growth factor concentration, using a Lyapunov function. Then we prove
the existence of a Hopf bifurcation for the other steady state, by studying the associated
characteristic equation with delay-dependent coefficients. We conclude with a discussion.

2 Structured Model of Blood Production

Let consider a population of hematopoietic stem cells, located in the bone marrow. This
population is divided in two compartments (see [13, 14]): proliferating and nonproliferating
cells. Proliferating stem cells are actually performing the main stages of cell cycle (growth,
DNA synthesis), in order to divide during mitosis in two daughter cells. These latter imme-
diately enter the nonproliferating phase, also known as resting phase, at birth. The resting
phase is a quiescent stage with respect to growth and maturation.
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Nonproliferating cells are assumed to differentiate at a constant rate δ > 0, which can
also take some natural mortality into account, and they are introduced in the proliferating
phase whenever during their life with a rate β, which is supposed to depend on the total
population of nonproliferating cells (see Mackey [23, 24], Mackey and Rudnicki [28, 29] or
Pujo-Menjouet et al [31, 32]).

As soon as a cell enters the proliferating phase, it is committed to divide a time τ later.
We assume (see [23, 28, 31, 32]) that the duration of the proliferating phase is the same for
all cells, so τ is constant. Thus, this parameter describes an average duration of the cell
cycle.

The number of proliferating cells is controlled by a particular mortality rate, known as
apoptosis. It is in fact a programmed cell death, aimed to eliminate deficient cells. We
assume that this mortality rate depends upon the concentration of growth factors, which can
increase or decrease the mortality in the proliferating phase (see [19, 22, 37]). Some growth
factors are known to reduce the apoptosis rate, leading to a more important production of
blood cells through division. This is the case for Epo: the more there is Epo released, the
more the apoptosis rate decreases. Hence we assume in this work that the apoptosis rate,
denoted by γ, is a positive function of the concentration of growth factor, denoted by E.
Since an increase in the growth factor concentration leads to a decrease of the apoptosis rate,
we assume that γ is a decreasing function of E.

Denote by n(t, a) and p(t, a) the populations of nonproliferating and proliferating hematopoi-
etic stem cells, respectively, which have an age a at time t. Note that the age represents the
time spent by a cell in one of the two phases. In the resting phase, the age variable ranges from
0 to infinity, whereas in the proliferating phase it varies between 0 and τ . The evolution of
the hematopoietic stem cell population is described by the following system of age-structured
partial differential equations,

∂n

∂t
(t, a) +

∂n

∂a
(t, a) = −δn(t, a) − β(N(t))n(t, a), (1)

∂p

∂t
(t, a) +

∂p

∂a
(t, a) = −γ(E(t))p(t, a), (2)

where N(t) denotes the total population of resting cells, that is

N(t) =

∫ +∞

0

n(t, a)da,

and E(t) is the growth factor concentration.
The introduction rate β is assumed to be a positive and decreasing function of N such

that [23, 31]
lim

N→+∞
β(N) = 0.

Typically, β is a Hill function [23, 32], defined by

β(N) = β0
θs

θs + Ns
, β0, θ, s > 0. (3)

The parameter β0 represents the maximal rate of introduction in the proliferating phase, θ
is the value for which β attains half of its maximum value, and s is the sensitivity of the rate
of reintroduction.

System (1)–(2) is completed by boundary conditions (for a = 0) and initial conditions
(for t = 0). The first ones describe the flux of cells entering each phase: new proliferating
cells are nonproliferating cells introduced with a rate β, and new resting cells come from the
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division of proliferating cells that have spent a time τ in the proliferating phase. Then the
boundary conditions of (1)–(2) are

n(t, 0) = 2p(t, τ), (4)

p(t, 0) =

∫ +∞

0

β(N(t))n(t, a)da = β(N(t))N(t). (5)

We also assume that, for t ≥ 0,
lim

a→+∞
n(t, a) = 0.

Initial conditions of (1)–(2) are given by nonnegative L1 functions n0 and p0 such that

n(0, a) = n0(a), a ≥ 0 and p(0, a) = p0(a), a ∈ [0, τ ]. (6)

The concentration of growth factor E(t) follows an evolution equation given by

E′(t) = −kE(t) + f(N(t − T )). (7)

The coefficient k describes the disappearance rate of the growth factor while in bloodstream,
whereas the function f acts as a negative feedback of the nonproliferating hematopoietic
stem cell population on the production of growth factor. A more realistic hypothesis would
be that the growth factor concentration is controlled by the number of circulating blood
cells. However, we make the implicit hypothesis that the number of circulating blood cells
is proportional to the number of nonproliferating hematopoietic stem cells, thus not taking
into account an evolution equation satisfied by the circulating blood cell population and then
assuming that f only depends upon N(t). The time delay T represents the time needed to
release growth factors in bloodstream after the stimulation by nonproliferating cells. This
time is very short, about one hour [38], but a destabilization of the feedback loop may increase
it.

We need to provide an initial condition for N on the interval [−T, 0], that is N(θ) =
N0(θ), θ ∈ [−T, 0], where N0 is a given nonnegative continuous function on [−T, 0] such that

N0(0) =
∫ +∞

0
n0(a)da.

The evolution equation (7) of the growth factor concentration E(t) has been introduced
by Bélair et al [9] and Mahaffy et al [30]. However, in [9] and [30], the authors do not take
into account the time needed to release growth factors, so T = 0 in their model.

Since f describes a negative feedback from the stem cell population on the growth factor
concentration, we assume that f is positive and decreasing, and satisfies (see [9, 30])

lim
N→+∞

f(N) = 0.

In [9, 30], the function f is given by

f(N) =
a

1 + KNr
, with a, K, r > 0.

The system we consider, modelling the dynamics of a hematopoietic stem cell population
under the action of growth factors, is then formed by equations (1) to (7). It consists of a
system of age-structured differential equations, coupled with a delay differential equation.
We are now going to check that system (1)–(6) reduces to a system of delay differential
equations.
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First, let see that using the method of characteristics (see Webb [35]), the solutions p(t, a)
of (2), (5) and (6), are given by

p(t, a) =



















p0(a − t) exp

(

−
∫ t

0

γ(E(s))ds

)

, if 0 ≤ t < a,

β(N(t − a))N(t − a) exp

(

−
∫ t

t−a

γ(E(s))ds

)

, if 0 ≤ a ≤ t.

(8)

Denote by P the total population of proliferating stem cells,

P (t) =

∫ τ

0

p(t, a)da.

Integrating system (1)–(2) with respect to the age variable, we obtain, for t ≥ 0,

N ′(t) = −δN(t) − β(N(t))N(t) + n(t, 0),

P ′(t) = −γ(E(t))P (t) + p(t, 0) − p(t, τ).
(9)

Using (4) and (5), system (9) becomes

N ′(t) = −δN(t) − β(N(t))N(t) + 2p(t, τ),
P ′(t) = −γ(E(t))P (t) + β(N(t))N(t) − p(t, τ).

(10)

Using (8), we finally obtain, for 0 ≤ t < τ ,

N ′(t) = −δN(t) − β(N(t))N(t) + 2p0(τ − t) exp

(

−
∫ t

0

γ(E(s))ds

)

,

P ′(t) = −γ(E(t))P (t) + β(N(t))N(t) − p0(τ − t) exp

(

−
∫ t

0

γ(E(s))ds

)

,

and, for t ≥ τ ,

N ′(t) = −δN(t) − β(N(t))N(t)

+2β(N(t − τ))N(t − τ) exp

(

−
∫ t

t−τ

γ(E(s))ds

)

, (11)

P ′(t) = −γ(E(t))P (t) + β(N(t))N(t)

−β(N(t − τ))N(t − τ) exp

(

−
∫ t

t−τ

γ(E(s))ds

)

. (12)

Then we find that the total populations N(t) and P (t) satisfy a system of differential equa-
tions with distributed delay.

Using a method of steps, we obtain that the system formed by (10) and equation (7) has
a unique nonnegative continuous solution defined on [0, max{τ, T}]. Hence we suppose that
t ≥ max{τ, T}.

Since equation (11) and the differential equation (7) do not depend on the proliferating cell
population P , solution of (12), we will focus on the study of the system of delay differential
equations formed by equations (7) and (11), that is



















N ′(t) = −δN(t) − β(N(t))N(t)

+2β(N(t − τ))N(t − τ) exp

(

−
∫ 0

−τ

γ(E(t + s))ds

)

,

E′(t) = −kE(t) + f(N(t − T )),

(13)
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defined for t ≥ max{τ, T}, with initial conditions given on the interval [0,max{τ, T}]. We
recall that β, γ and f are assumed to be positive and decreasing functions.

For each continuous initial condition, the system (13) has a unique continuous solution,
defined for t ≥ max{τ, T} (see Hale and Verduyn Lunel [20], Theorem 2.3, page 44).

From now on, we make a translation of the initial conditions of system (13) so as to define
them on the interval [−max{τ, T}, 0], as it can be found in Hale and Verduyn Lunel [20].

In the next section, we focus on some properties of (13), such as positivity and bounded-
ness of solutions, as well as the existence of steady states.

3 Properties of the Model and Existence of Steady States

We concentrate on the positivity and boundedness properties of the solutions (N(t), E(t)) of
system (13).

First notice that using a classical variation of constant formula, we obtain, for t ≥ 0,

E(t) = e−ktE(0) + e−kt

∫ t

0

ekθf(N(θ − T ))dθ. (14)

We state and prove the following result.

Proposition 3.1. The solutions of (13) are bounded and nonnegative. Moreover, either there
exists t ≥ 0 such that E(t) ≤ f(0)/k and then E(t) ≤ f(0)/k for all t > t, or limt→+∞ E(t) =
f(0)/k.

Proof. We first check that the solutions N and E of (13) are nonnegative. Suppose that
there exists t0 ≥ 0 such that N(t) > 0 for t < t0 and N(t0) = 0. Then, from (13), it follows
that

N ′(t0) = 2β(N(t0 − τ))N(t0 − τ) exp

(

−
∫ 0

−τ

γ(E(t0 + s))ds

)

> 0,

since β is strictly positive. Consequently, N(t) remains nonnegative for t ≥ 0. Thus, using
(14), the positivity of E(t) follows from the fact that f is positive.

Now, we show that the solutions are bounded. Since f is bounded (f is decreasing,
continuous and positive on [0,+∞) so 0 < f(N) ≤ f(0) for N ≥ 0), we deduce from (14)
that

|E(t)| ≤ e−kt|E(0)| + f(0)

k

(

1 − e−kt
)

≤ max

{

|E(0)|, f(0)

k

}

.

Therefore E is bounded. Moreover, if 0 ≤ E(0) ≤ f(0)/k, the above inequality implies that
E(t) ≤ f(0)/k for all t ≥ 0.

Consider the case E(0) > f(0)/k. Using (7), we easily obtain

E′(0) < −f(0) + f(N(−T )) ≤ 0.

The same reasoning holds as long as E(t) > f(0)/k. Hence E(t) is decreasing as long as
E(t) > f(0)/k.

If there exists t ≥ 0 such that E(t) = f(0)/k, then, using the same reasoning than in the
first part of this proof, we obtain that E(t) ≤ f(0)/k for t > t.

If E(t) > f(0)/k for all t ≥ 0, then E′(t) < 0 for all t ≥ 0. Consequently E(t) is a positive
decreasing continuous function. Then limt→+∞ E(t) exists and we show that it equals f(0)/k.
Set L = limt→+∞ E(t) and assume by contradiction that L > f(0)/k. From (7) and since f
is bounded by f(0), then

E′(t) + kE(t) = f(N(t − T )) ≤ f(0).
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Consequently, by taking the limit in the above inequality, we obtain kL ≤ f(0), which gives
a contradiction. Hence limt→+∞ E(t) = f(0)/k.

We now prove that N is bounded. The proof is similar to the one in [6, 28]. Let
(N(t), E(t)) be a solution of (13), and C ≥ 0 be a bound of E.

Since β is positive, decreasing, and tends to zero at infinity, there exists N0 ≥ 0 such that
2e−γ(C)τβ(N) < δ for N > N0. Set

N1 := 2e−γ(C)τ β(0)N0

δ
≥ 0.

Let N ≥ N1 be fixed and 0 ≤ y ≤ N . If y ≤ N0 then

2e−γ(C)τβ(y)y ≤ 2e−γ(C)τβ(0)N0 = δN1 ≤ δN.

If y > N0, then
2e−γ(C)τβ(y)y < δy ≤ δN.

Consequently,
2e−γ(C)τ max

0≤y≤N
β(y)y ≤ δN, for N ≥ N1. (15)

Now assume that lim supt→+∞ N(t) = +∞. Then there exists t0 > 0 such that

N(t) ≤ N(t0) for t ∈ [t0 − τ, t0), and N(t0) > N1.

Using (13) and (15), it follows that

N ′(t0) = −δN(t0) − β(N(t0))N(t0)

+2β(N(t0 − τ))N(t0 − τ) exp

(

−
∫ 0

−τ

γ(E(t0 + s))ds

)

,

≤ −δN(t0) − β(N(t0))N(t0) + 2e−γ(C)τβ(N(t0 − τ))N(t0 − τ),
≤ −δN(t0) − β(N(t0))N(t0) + δN(t0),
≤ −β(N(t0))N(t0).

Thus N ′(t0) < 0 and we obtain a contradiction. We deduce that N is bounded, and the
proof is complete.

From the above results, every solution (N(t), E(t)) of system (13) associated with non-
negative initial conditions is nonnegative and bounded.

We now investigate the existence of steady states of (13). Let (N, E) be a steady state
of (13). It satisfies dN/dt = dE/dt = 0, that is

{

[

δ + β(N)
]

N = 2e−γ(E)τβ(N)N,

kE = f(N).
(16)

A first steady state, (0, f(0)/k), describing the stem cell population’s dying out with a
saturation of growth factor concentration, always exists. A nontrivial steady state (N, E),
with N 6= 0, E 6= 0, would satisfy, from (16),

(

2e−γ(f(N)/k)τ − 1
)

β(N) = δ and E =
f(N)

k
. (17)

8
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Proposition 3.2. Assume that
(

2e−γ(f(0)/k)τ − 1
)

β(0) > δ. (18)

Then system (13) has two steady states: (0, f(0)/k) and (N∗, E∗), with N∗ > 0 and E∗ > 0
solutions of (17).

If (18) does not hold, then (0, f(0)/k) is the only steady state of system (13).

Proof. Define, for N ≥ 0, the function χ by

χ(N) = 2e−γ(f(N)/k)τ − 1.

Since f and γ are decreasing, the mapping N 7→ γ(f(N)/k) is increasing. Thus χ is decreas-
ing. Moreover,

χ(0) = 2e−γ(f(0)/k)τ − 1 and lim
N→+∞

χ(N) = 2e−γ(0)τ − 1.

One has to note that χ is not necessarily positive. In fact, either 2e−γ(0)τ − 1 > 0 and χ is
positive, or 2e−γ(0)τ − 1 < 0 and there exists Ñ > 0, which is unique, such that χ(Ñ) = 0.
Since χ is decreasing, χ(N) > 0 for N < Ñ and χ(N) < 0 for N > Ñ , in this latter case.

First consider the case 2e−γ(0)τ − 1 > 0. Then χ is positive and decreasing on [0, +∞).
Since β is also positive and decreasing on [0, +∞), then the function ξ(N) = χ(N)β(N) is
decreasing and satisfies

ξ(0) =
(

2e−γ(f(0)/k)τ − 1
)

β(0) and lim
N→+∞

ξ(N) = 0.

Consequently, the equation ξ(N) = δ (which gives the existence of a positive steady state,
see (17)) has a solution if and only if (18) holds true, and the solution is unique.

Suppose now that 2e−γ(0)τ − 1 < 0. Then, on the interval (Ñ , +∞), the function χ
is negative and so is the function ξ. On the interval [0, Ñ ], the function χ is positive and
decreasing, so ξ is decreasing with ξ(0) =

(

2e−γ(f(0)/k)τ − 1
)

β(0) and ξ(Ñ) = 0. The
equation ξ(N) = δ then has a solution if and only if (18) holds true, and the solution then
belongs to [0, Ñ ].

This concludes the proof.

Remark 1. Condition (18) is equivalent to

β(0) > δ and 0 ≤ τ <
1

γ(f(0)/k)
ln

(

2β(0)

δ + β(0)

)

:= τ∗. (19)

This describes the fact that the maximal introduction rate β(0) has to be larger than the
mortality rate δ and the cell cycle duration τ cannot be too long for system (13) to exhibit
an other steady state than the one describing the cell’s dying out.

Using the Implicit Function Theorem, one can check that the steady states N∗(τ) and
E∗(τ) are continuously differentiable functions of τ ∈ [0, τ∗). Moreover, N∗(τ) is decreasing,
E∗(τ) is increasing, and (N∗(0), E∗(0)) = (β−1(δ), f(β−1(δ))/k) and

lim
τ→τ∗

(N∗(τ), E∗(τ)) = (0, f(0)/k).

In the following, we analyze the asymptotic behavior of the solutions of system (13) by
studying the asymptotic stability of its steady states. To that aim, we deduce the linearized
system of (13) and we obtain the associated characteristic equation in the next section.

9
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4 Linearized System and Characteristic Equation

Let (N, E) be a steady state of system (13), that is, from Proposition 3.2, either (N, E) =
(0, f(0)/k) or (N, E) = (N∗, E∗). We set

X(t) = N(t) − N and Y (t) = E(t) − E.

Assume that the functions β, γ and f are continuously differentiable. The linearized
system of (13) around (N, E) is then















X ′(t) = −
(

δ + β
)

X(t) + 2βe−γ(E)τX(t − τ)

−α(N, E)e−γ(E)τ

∫ 0

−τ

Y (t + s)ds,

Y ′(t) = −kY (t) + f ′(N)X(t − T ),

(20)

where
β = β(N) + Nβ′(N) and α(N, E) = 2Nβ(N)γ′(E).

One can notice that α(N, E) ≤ 0, since γ is decreasing, with α(0, ·) = 0.
If β is given by (3), with s > 1, the function N 7→ Nβ(N) is increasing for N ≤ θ/(s−1)1/s

and decreasing for N > θ/(s − 1)1/s. Therefore, in this case, β is nonnegative when N is
close to zero and negative when N is large enough.

Set

A0 =

(

−
(

δ + β
)

0
0 −k

)

, A1 =

(

2βe−γ(E)τ 0
0 0

)

and

A2 =

(

0 −α(N, E)e−γ(E)τ

0 0

)

, A3 =

(

0 0
f ′(N) 0

)

.

The characteristic equation associated with system (20) is then defined by

det

(

λI − A0 − e−λτA1 −
∫ 0

−τ

eλθdθA2 − e−λT A3

)

= 0, λ ∈ C.

After calculations, this equation reduces to

(λ + k)(λ + δ + β − 2βe−γ(E)τe−λτ ) + f ′(N)α(N, E)e−γ(E)τe−λT

∫ 0

−τ

eλθdθ = 0. (21)

We recall that the steady state (N, E) of (13) is locally asymptotically stable if all eigen-
values of (21) have negative real parts, and the stability can only be lost if pure imaginary
roots appear. The steady state is unstable if eigenvalues with positive real parts exist.

One can note that in the general case, that is when (21) cannot be simplified, it is quite
difficult to study the sign of the real parts of eigenvalues of (21), due to the presence of
discrete and distributed delays as well as two different delays τ and T . In this case (see
section 5.2), we will use an analytical approach proposed by Wei and Ruan [36] and Ruan
and Wei [33], which consists in determining the stability of the steady state when one delay
is equal to zero and deduce the stability when both delays are nonzero with analytical tools.

In the next section, we successively analyze the local asymptotic stability of the two
steady states of system (13), (0, f(0)/k) and (N∗, E∗), by studying the sign of the real parts
of eigenvalues of (21).

10
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5 Asymptotic Stability and Hopf Bifurcation

We concentrate, in this section, on the asymptotic stability of the steady states (0, f(0)/k)
and (N∗, E∗) of (13). We first show that (0, f(0)/k) is globally asymptotically stable when
it is the only steady state of (13), and that it becomes unstable when (N∗, E∗) appears.
Then, we will focus on the local asymptotic stability of (N∗, E∗) and show the existence of
a Hopf bifurcation that destabilizes the steady state and leads to the appearance of periodic
solutions.

5.1 Global Asymptotic Stability of the Steady State (0, f(0)/k)

When (N, E) = (0, f(0)/k), then α(0, f(0)/k) = 0 and β = β(0), so (21) becomes

(λ + k)(λ + δ + β(0) − 2β(0)e−γ(f(0)/k)τe−λτ ) = 0. (22)

It follows that λ = −k is a negative real eigenvalue of (22) and all other eigenvalues λ are
roots of

∆0(λ) := λ + δ + β(0) − 2β(0)e−γ(f(0)/k)τe−λτ . (23)

Theorem 5.1. The steady state (0, f(0)/k) of (13) is globally asymptotically stable if and
only if

(

2e−γ(f(0)/k)τ − 1
)

β(0) ≤ δ. (24)

Proof. Define the set C of continuous functions mapping the interval [−max{τ, T}, 0] into
R

+. For (ϕ,ψ) ∈ C × C, we define

V (ϕ,ψ) =

∫ ϕ(0)

0

θβ(θ)dθ + e−τγ(f(0)/k)

∫ 0

−τ

[ϕ(θ)β(ϕ(θ))]
2
dθ.

One can note that V does not depend on ψ. Define

G =

{

(ϕ,ψ) ∈ C × C ; ψ ≤ f(0)

k

}

.

We are going to show that V is a Lyapunov function on G relative to system (13) (see [20]).
V is continuous on the closure of G (with Cl(G) = G) and

V̇ (ϕ,ψ) = ϕ′(0)β(ϕ(0))ϕ(0) + e−τγ(f(0)/k)
[

ϕ(0)2β(ϕ(0))2 − ϕ(−τ)2β(ϕ(−τ))2
]

.

Since, from (13),

ϕ′(0) = −(δ + β(ϕ(0)))ϕ(0) + 2β(ϕ(−τ))ϕ(−τ) exp

(

−
∫ 0

−τ

γ(ψ(s))ds

)

,

we deduce

V̇ (ϕ, ψ) =
[

−δ + (2e−τγ(f(0)/k) − 1)β(ϕ(0))
]

β(ϕ(0))ϕ(0)2

−e−τγ(f(0)/k) [ϕ(0)β(ϕ(0)) − ϕ(−τ)β(ϕ(−τ))]
2

+2ϕ(0)β(ϕ(0))ϕ(−τ)β(ϕ(−τ))

[

exp

(

−
∫ 0

−τ

γ(ψ(s))ds

)

− e−τγ(f(0)/k)

]

.

From condition (24) and since β is decreasing, for all ϕ ∈ C,

−δ + (2e−τγ(f(0)/k) − 1)β(ϕ(0)) ≤ (2e−τγ(f(0)/k) − 1) [β(ϕ(0)) − β(0)] ≤ 0,

11
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and since (ϕ,ψ) ∈ G, ψ ≤ f(0)/k so

exp

(

−
∫ 0

−τ

γ(ψ(s))ds

)

− e−τγ(f(0)/k) ≤ 0.

Consequently V̇ (ϕ,ψ) ≤ 0 for (ϕ, ψ) ∈ G, and V is a Lyapunov function on G.

Following the notations in [20], we define the set S =
{

(ϕ,ψ) ∈ Cl(G); V̇ (ϕ,ψ) = 0
}

.

Let (ϕ,ψ) ∈ S be given. Then

ϕ(0) = 0 and ϕ(0)β(ϕ(0)) = ϕ(−τ)β(ϕ(−τ)) and

∫ 0

−τ

γ(ψ(s))ds = τγ(f(0)/k).

It follows that

S =

{

(ϕ,ψ) ∈ C × C ; ϕ(0) = ϕ(−τ) = 0 and ψ ≡ f(0)

k

}

.

Now let M be the largest set in S invariant with respect to (13). Then (ϕ,ψ) ∈ M if and

only if (Nϕ
t , Eψ

t ) ∈ S for all t ≥ 0, where Nϕ
t and Eψ

t are defined by

Nϕ
t (θ) = Nϕ(t + θ) and Eψ

t (θ) = Eψ(t + θ), θ ∈ [−max{τ, T}, 0],

and (Nϕ, Eψ) is the unique solution of (13) associated with initial conditions (ϕ,ψ).
If (ϕ,ψ) ∈ M we then obtain that

Nϕ(t) = Nϕ(t − τ) = 0 and Eψ(t) =
f(0)

k
, for t ≥ 0.

It follows that Nϕ ≡ 0 and Eψ ≡ f(0)/k. Therefore M = {(0, f(0)/k)}.
Since V is a Lyapunov function on G and all solutions of (13) are bounded (see Proposition

3.1), then all solutions (N(t), E(t)) of (13) such that E(t) ≤ f(0)/k for t large enough (thus
the solutions remain in G, from Proposition 3.1) converge to (0, f(0)/k).

Now, let (N(t), E(t)) be a solution of (13) such that E(t) > f(0)/k for all t ≥ 0. From
Proposition 3.1, E(t) converges to f(0)/k. Let us check that N(t) tends to zero in this case.

From Proposition 3.1, E(t) is a decreasing and continuous function which tends to f(0)/k
at infinity. Therefore limt→+∞ E′(t) = 0. Consequently, with (7), we obtain

lim
t→+∞

f(N(t − T )) = f(0).

Since f(N) < f(0) for N > 0, we deduce that N(t) tends to zero when t tends to infinity.
Eventually, all solutions of system (13) tends to (0, f(0)/k) when condition (24) holds

true.
Suppose now that condition (24) no longer holds, that is condition (18) holds true. Con-

sider the function ∆0, defined in (23), as a function of real λ. Then

d∆0

dλ
(λ) = 1 + 2β(0)τe−γ(f(0)/k)τe−λτ > 0.

Hence the function ∆0 is increasing. Moreover,

lim
λ→−∞

∆0(λ) = −∞ and lim
λ→+∞

∆0(λ) = +∞.

Consequently, ∆0 has a unique real root, namely λ0. Since (18) is fulfilled, then ∆0(0) < 0
and λ0 > 0, so ∆0 has at least one root with positive real part, and the steady state (0, f(0)/k)
is unstable.

This concludes the proof.

12
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We have proved in Theorem 5.1 that the steady state (0, f(0)/k) is globally asymptotically
stable when (24) holds true, that is when it is the only steady state of system (13).

In the next section we focus on the local asymptotic stability of the steady state (N∗, E∗)
of (13). In particular, we study the existence of a Hopf bifurcation that would destabilize
the steady state and create periodic solutions.

5.2 Local Asymptotic Stability of (N∗, E∗) and Hopf Bifurcation

We assume, throughout this section, that condition (18) holds, or equivalently (19), to ensure
the existence of the positive steady state (N∗, E∗) of system (13). From Theorem 5.1, the
only other steady state of (13) is then unstable.

While studying the local asymptotic stability of (N∗, E∗), we have to determine the sign
of the real parts of eigenvalues of (21). The presence of two different delays, τ and T , makes
it more difficult than in the case of a single time delay. Hence, we are going to study the
stability of (N∗, E∗) when one delay is equal to zero, and deduce the stability of (N∗, E∗)
when both delays are nonzero using analytical tools (see [33, 36]). Due to the structure of
equation (21), we are led to choose T = 0 in a first time, otherwise (if τ = 0) there would
be no exponential term anymore, in equation (21), and we would not be able to conclude
to the stability when both τ and T are positive. The final result we will obtain will give
the asymptotic stability of (N∗, E∗) for values of T smaller than the ones of τ . This is in
agreement with biological meaning, since the time T needed to release growth factor after
the stimulation is very short (about one hour) compared to cell cycle durations (between a
few hours and several days).

From now on, we set β∗ = β = β(N∗) + N∗β′(N∗).
We first check, in the next lemma, that (N∗, E∗) is locally asymptotically stable when

τ = 0, for all T ≥ 0.

Lemma 5.1. Assume that β(0) > δ and τ = 0. Then the steady state (N∗, E∗) of system
(13) is locally asymptotically stable for all T ≥ 0.

Proof. When τ = 0 and (N, E) = (N∗, E∗), the characteristic equation (21) becomes

(λ + k)(λ + δ + β∗ − 2β∗) = 0.

Hence, this equation has only two eigenvalues, λ = −k < 0 and λ = β∗ − δ = N∗β′(N∗) < 0.
The conclusion follows.

Let us assume, in a first time, that T = 0. Then, when (N, E) = (N∗, E∗), equation (21)
becomes

(λ + k)(λ + δ + β∗ − 2β∗e−γ(E∗)τe−λτ ) + f ′(N∗)α∗e−γ(E∗)τ

∫ 0

−τ

eλθdθ = 0, (25)

with α∗ = α(N∗, E∗) = 2N∗β(N∗)γ′(E∗).
Since (N∗, E∗) is locally asymptotically stable when τ = 0, the stability can be lost as τ

increases away from 0, with τ < τ∗ (τ∗ defined in (19)), only if pure imaginary characteristic
roots appear.

In the following, we investigate the existence of pure imaginary roots of (25). We first
state and prove the following lemma.

Lemma 5.2. λ = 0 is not a characteristic root of (21), and so neither it is of (25), when
(N, E) = (N∗, E∗).

13
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Proof. Assume that λ = 0 is an eigenvalue of (21) or (25). Then

k(δ + β∗ − 2β∗e−γ(E∗)τ ) + f ′(N∗)α∗e−γ(E∗)τ τ = 0.

From (17), since β is decreasing and N∗ > 0, then

δ + β∗ − 2β∗e−γ(E∗)τ =
(

1 − 2e−γ(E∗)τ
)

N∗β′(N∗) > 0.

Moreover, since α∗ < 0 and f is decreasing, it follows that

k(δ + β∗ − 2β∗e−γ(E∗)τ ) + f ′(N∗)α∗e−γ(E∗)τ τ > 0,

and we obtain a contradiction. This ends the proof.

Since λ = 0 is not an eigenvalue of (25), we deduce that λ is a characteristic root of (25)
if and only if

∆(λ, τ) = 0 and λ 6= 0,

where

∆(λ, τ) := λ(λ + k)(λ + δ + β∗ − 2β∗e−γ(E∗)τe−λτ ) + f ′(N∗)α∗e−γ(E∗)τ
(

1 − e−λτ
)

.

Simple computations give

∆(λ, τ) = λ3 + a1λ
2 + a2λ + a3 +

[

b1λ
2 + b2λ + b3

]

e−λτ ,

with
a1 = δ + k + β∗, b1 = −2β∗e−γ(E∗)τ ,

a2 = k(δ + β∗), b2 = −2kβ∗e−γ(E∗)τ ,

a3 = f ′(N∗)α∗e−γ(E∗)τ , b3 = −f ′(N∗)α∗e−γ(E∗)τ .

Using (17), one can easily check that

a1 + b1 > 0, a2 + b2 > 0 and a3 + b3 = 0.

Remark 2. One can notice that all coefficients ai and bi, i = 1, 2, 3, depend on the time
delay τ ∈ [0, τ∗), since the steady states N∗ and E∗ depend on τ (see (17)). We will not
explicitly write the dependence of the coefficients ai and bi on τ in the following, but we will
think of them as ai(τ) and bi(τ), i = 1, 2, 3.

We now look for the existence of pure imaginary roots of (25). Let λ = iω, ω ∈ R

and ω 6= 0, be such that ∆(iω, τ) = 0, τ ∈ [0, τ∗). Separating real and imaginary parts of
∆(iω, τ), we find

(−b1ω
2 + b3) cos(ωτ) + b2ω sin(ωτ) = a1ω

2 − a3, (26)

b2ω cos(ωτ) − (−b1ω
2 + b3) sin(ωτ) = ω3 − a2ω. (27)

One can notice that if ω satisfies (26)–(27) then so is −ω. Hence, we only look for positive
ω satisfying (26)–(27), with τ ∈ [0, τ∗).

Adding the squares of both sides of equations (26) and (27), we obtain that ω must satisfy

(−b1ω
2 + b3)

2 + b2
2ω

2 = (a1ω
2 − a3)

2 + ω2(ω2 − a2)
2,

that is
ω6 + (a2

1 − 2a2 − b2
1)ω

4 + (a2
2 + 2b1b3 − 2a1a3 − b2

2)ω
2 + a2

3 − b2
3 = 0. (28)

14
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We set
A(τ) := a2

1 − 2a2 − b2
1 and B(τ) := a2

2 + 2b1b3 − 2a1a3 − b2
2. (29)

Since a3 + b3 = 0, (28) reduces to

ω2F (ω2, τ) = 0,

with
F (X, τ) = X2 + A(τ)X + B(τ).

Hence, finding ω > 0 solution of (28) is equivalent to determining positive roots X of F (X, τ),
defined for τ ∈ [0, τ∗). Since F is a second degree polynomial function in X, the following
lemma is straightforward.

Lemma 5.3. The polynomial function F (X, τ), τ ∈ [0, τ∗), has positive roots if and only if

B(τ) < 0 or A2(τ) ≥ 4B(τ) ≥ 0 > A(τ). (30)

If no τ ∈ [0, τ∗) fulfills condition (30), then the characteristic equation (25) has no pure
imaginary root. Consequently, from Lemma 5.1, all eigenvalues of (25) have negative real
parts and the steady state (N∗, E∗) is locally asymptotically stable for all τ ∈ [0, τ∗).

Remark 3. We are going to check that condition (30) may be satisfied for τ in a nontrivial
interval I = [0, τ), 0 < τ ≤ τ∗, with an appropriate function β.

Using the definitions of the coefficients ai and bi, i = 1, 2, 3, the coefficients A(τ) and
B(τ), defined in (29), are given by

A(τ) = (δ + β∗)2 + k2 −
(

2β∗e−γ(E∗)τ
)2

and

B(τ) = k2N∗β′(N∗)
[

1 − 2e−γ(E∗)τ
] [

δ + β∗ + 2β∗e−γ(E∗)τ
]

+2α∗f ′(N∗)e−γ(E∗)τN∗β′(N∗)
[

2e−γ(E∗)τ − 1
]

− 2α∗f ′(N∗)e−γ(E∗)τk.

Since α∗, f ′(N∗) and β′(N∗) are negative and 2e−γ(E∗)τ − 1 > 0, a sufficient condition to
obtain B(τ) < 0 is

δ + β∗ + 2β∗e−γ(E∗)τ ≤ 0. (31)

Note that it is not easy to obtain sufficient conditions for A(τ) < 0.
Condition (31) is equivalent to

δ + (1 + 2e−γ(E∗)τ )β(N∗(τ)) ≤ −(1 + 2e−γ(E∗)τ )N∗(τ)β′(N∗(τ)).

One can notice that, for τ ∈ [0, τ∗), 1 < 1 + 2e−γ(E∗)τ ≤ 3. Consequently, we look for
τ ∈ [0, τ∗) such that

δ + 3β(N∗(τ)) ≤ −N∗(τ)β′(N∗(τ)).

Since N∗(τ) is a continuous and decreasing function of τ , with 0 < N∗(τ) ≤ β−1(δ), it is
sufficient to find x ∈ (0, β−1(δ)] such that

δ + 3β(x) ≤ −xβ′(x). (32)

With β given by (3), with θ = 1, equation (32) is equivalent to

δX2 + (2δ + 3β0 − sβ0)X + δ + 3β0 ≤ 0 and X = xs ∈ (0, (β−1(δ))s]. (33)

15



M. Adimy, F. Crauste Growth Factor-Dependent Stem Cells Dynamics Model

We set µ = β0/δ > 1. Since (β−1(δ))s = (β0 − δ)/δ, (33) is equivalent to

X2 + [2 + µ(3 − s)]X + 1 + 3µ ≤ 0 and X ∈ (0, µ − 1]. (34)

Then, after easy but tedious computations, one can see that there exists s̃ > 1 such that,
for s ≥ s̃, the equation X2 + [2 + µ(3 − s)]X + 1 + 3µ = 0 has two roots 0 ≤ X1 < X2.
Moreover, one can check that X2 > µ − 1, and X1 < µ − 1 if and only if s > 4µ/(µ − 1),
where 4µ/(µ − 1) ≥ s̃. Consequently, (34) is satisfied on an interval (X1, µ − 1] provided
that s > 4µ/(µ − 1). Going back to τ , and noticing that N∗(0)s = µ − 1, we conclude that
there exists τ , defined by N∗(τ)s = X1, such that (31) is satisfied for τ ∈ [0, τ), provided that
s > 4µ/(µ − 1). In this case, B(τ) < 0 and (30) holds for τ ∈ [0, τ).

Assume that I = [0, τ), with τ ≤ τ∗, is an interval in which condition (30) holds, and let
us denote, without loss of generality, by Xl, l = 1, 2, the positive roots of F (·, τ), for τ ∈ I.
We set ωl =

√
Xl, and we remember that ωl depends on τ .

Let θl(τ) ∈ [0, 2π], τ ∈ I, be the unique solution of

cos(θl(τ)) =
(b2 − a1b1)ω

4
l + (a1b3 − a3b1 − a2b2)ω

2
l − a3b3

b2
1ω

4
l + (b2

2 − 2b1b3)ω2
l + b2

3

,

sin(θl(τ)) =
b1ω

5
l + (a1b2 − a2b1 − b3)ω

3
l + (a2b3 − a3b2)ωl

b2
1ω

4 + (b2
2 − 2b1b3)ω2

l + b2
3

.

One can check, using (26) and (27), that iωc, with ωc = ωl(τc) > 0, satisfies ∆(iωc, τc) = 0,
and so is a pure imaginary characteristic root of (25), if and only if

ωl(τc)τc = θl(τc) + 2jπ, for some j ∈ N,

that is, if τc is a root of the function Zj
l , defined by

Zj
l (τ) = τ − θl(τ) + 2jπ

ωl(τ)
, τ ∈ I, with j ∈ N.

The following theorem is due to Beretta and Kuang [10].

Theorem 5.2. Assume that the function Zj
l (τ) has a positive root τc ∈ I for some j ∈ N.

Then a pair of simple purely imaginary roots ±iω(τc) of (25), with ω(τc) > 0, exists at τ = τc

and

sign

{

dRe(λ)

dτ

∣

∣

∣

∣

λ=iω(τc)

}

= sign
{

2ω(τc)
2 + A(τc)

}

sign

{

dZj
l (τ)

dτ

∣

∣

∣

∣

τ=τc

}

. (35)

We can easily observe that Zj
l (0) < 0. Moreover, for all τ ∈ I, Zj

l (τ) > Zj+1
l (τ), with

j ∈ N. Therefore, if Z0
l has no root in I, then the functions Zj

l have no root in I and, if

the function Zj
l (τ) has positive roots τ ∈ I, for some j ∈ N, there exists at least one root

satisfying
dZj

l

dτ
(τ) > 0.

We can conclude the existence of a Hopf bifurcation as stated in the next theorem.

Theorem 5.3. Assume that condition (18) holds true, T = 0, and (30) is fulfilled on an
interval I = [0, τ), with τ ≤ τ∗.

(i) If the function Z0
l (τ) has no positive root in I, then the steady-state (N∗, E∗) is locally

asymptotically stable for all τ ∈ [0, τ).
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(ii) If the function Z0
l (τ) has at least one positive root in I, then there exists τc ∈ I such that

the steady-state (N∗, E∗) is locally asymptotically stable for 0 ≤ τ < τc and becomes
unstable for τ ≥ τc, with a Hopf bifurcation occurring when τ = τc, if and only if
F (·, τc) has a positive root ω(τc)

2 such that

∂F

∂X
(ω(τc)

2, τc) > 0.

Proof. First, we prove (i). If Z0
l (τ) has no positive root in I, the above remark on the

properties of the Zj
l functions implies that no Zj

l function has roots in I. Consequently, the
characteristic equation (25) has no pure imaginary root and, from Lemma 5.1, all eigenvalues
of (25) have negative real parts. Therefore, the steady-state (N∗, E∗) is locally asymptotically
stable for all τ ∈ [0, τ).

Second, we prove (ii). If the function Z0
l (τ) has at least one positive root in I, then there

exists at least one τc ∈ I such that Zj
l (τc) = 0, for some j ∈ N, and

dZj
l

dτ
(τc) > 0.

For τ = τc, the characteristic equation (25) has a pair of simple conjugate pure imaginary
roots iω(τc) (see Theorem 5.2), ω(τc) > 0 satisfying F (ω(τc)

2, τc) = 0. We denote by τc

the smaller τ ∈ I satisfying these properties. Then, for τ < τc, all eigenvalues of (25) have
negative real parts so (N∗, E∗) is locally asymptotically stable, and it becomes unstable for
τ = τc. A Hopf bifurcation occurs at (N∗, E∗) for τ = τc if and only if

dRe(λ)

dτ

∣

∣

∣

∣

λ=iω(τc)

> 0,

that is, from (35), if
2ω(τc)

2 + A(τc) > 0.

Since ω(τc)
2 is a root of F (·, τc), this condition is equivalent to

∂F

∂X
(ω(τc)

2, τc) > 0.

This concludes the proof.

We now return to the case T 6= 0. In order to study the local asymptotic stability of the
positive steady state (N∗, E∗) of (13) when both delays τ and T are nonzero, we first prove a
result dealing with the sign of the real parts of characteristic roots of (21) in the next lemma.

Lemma 5.4. If all roots of equation (25) have negative real parts for a given τ > 0, then
there exists a Tc(τ) > 0 such that all roots of equation (21) have negative real parts when
T < Tc(τ).

Proof. Assume that equation (25) has no root with nonnegative real part for τ > 0. Thus,
equation (21) with T = 0 and τ > 0 has no root with nonnegative real part.

Regard T as a parameter. Clearly, the left hand side of equation (21) is analytic in λ and
T . Following Theorem 2.1 of Ruan and Wei [33], as T varies, the sum of the multiplicity of
zeros of the left hand side of equation (21) in the open right half-plane can only change if a
zero appears on or crosses the imaginary axis.

Since equation (21) with T = 0 has no root with nonnegative real part, there exists a
Tc(τ) > 0 such that all roots of equation (21) with T < Tc(τ) have negative real parts.
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Using Theorem 5.3, we obtain the next theorem dealing with the asymptotic stability of
the steady state (N∗, E∗) of (13) when both time delays τ and T are nonzero.

Theorem 5.4. Assume that condition (18) holds true.

(1) If no τ ∈ [0, τ∗) fulfills condition (30), then for any τ ∈ [0, τ∗), there exists a Tc(τ) > 0
such that the steady state (N∗, E∗) of system (13) is locally asymptotically stable when
T ∈ [0, Tc(τ)).

(2) If (30) is fulfilled on an interval I = [0, τ), with 0 < τ ≤ τ∗, and the function Z0
l (τ)

has no positive root in I, then for any τ ∈ [0, τ), there exists a Tc(τ) > 0 such that the
steady state (N∗, E∗) of system (13) is locally asymptotically stable when T ∈ [0, Tc(τ)).

(3) If (30) is fulfilled on an interval I = [0, τ), with τ ≤ τ∗, and there exists τc < τ
satisfying (ii) of Theorem 5.3, then for any τ ∈ [0, τc), there exists a Tc(τ) > 0 such
that the steady state (N∗, E∗) of system (13) is locally asymptotically stable when T ∈
[0, Tc(τ)).

Proof. The points (1) and (2) are straightforward, since with these assumptions all charac-
teristic roots of (25) have negative real parts for τ ∈ [0, τ∗) (respectively, τ ∈ [0, τ)). So we
conclude with Lemma 5.4.

For (3), from Theorem 5.3 it follows that all roots of equation (25) have negative real
parts when τ ∈ [0, τc). We also conclude with Lemma 5.4.

Remark 4. When the Hopf bifurcation occurs, periodic solutions appear. Moreover, since
all solutions of (13) are bounded (see Proposition 3.1), the instability of (N∗, E∗) can only be
associated with oscillating solutions. Therefore, following the Hopf bifurcation, system (13)
exhibits oscillating solutions.

6 Discussion

We analyzed, in the previous sections, a mathematical model of stem cells dynamics, taking
into account the action of growth factors (which are external factors) on cell proliferation.
This model is based on the models of Mackey [23], Mackey and Rudnicki [28] and Bélair et
al [9]. It consists of a system of two age structured partial differential equations, modelling
the evolution of the stem cell population (divided in proliferating and resting cells), coupled
with a delay differential equation describing the production of growth factors. The action of
growth factors is supposed to modify the rate of apoptosis, the mortality in the proliferating
phase. We reduced this system to a system of two delay differential equations, with two
delays and a distributed delay.

The mathematical analysis first stressed basic properties of the solutions, such as positiv-
ity and boundedness. We then studied the stability of the two steady states of the reduced
model. A necessary and sufficient condition for the global asymptotic stability of the first
steady state, corresponding to the cells’ dying out, was obtained using a Lyapunov function.

The analysis of the local asymptotic stability of the second steady state consisted in
studying first the model when one delay is equal to zero, and then deduce the stability when
both delays are nonzero using analytical tools. The stability study of the model with one
delay equal to zero has been performed by determining the sign of real parts of eigenvalues
of a characteristic equation with delay-dependent coefficients. It stressed the existence of a
Hopf bifurcation that can destabilize the steady state and lead to the appearance of oscillating
solutions.
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In previous mathematical studies of hematopoietic stem cells dynamics, oscillating so-
lutions have shown their importance in the understanding of some diseases affecting blood
cells, known to exhibit oscillations of circulating blood cells (see, for example, [5, 6, 7, 9,
11, 15, 16, 23, 24, 30, 31, 32]). These diseases are called periodic hematological diseases
[21]. They can affect all blood cell types (periodic chronic myelogenous leukemia [5, 31],
cyclical neutropenia [11]) or only one blood cell type (autoimmune hemolytic anemia [9, 30],
which affects red blood cells). Periods of the oscillations observed in patients may vary from
few days (19-21 days for cyclical neutropenia) to months (70-80 days for chronic myelogenous
leukemia). Periodic hematological diseases are originated from the pluripotent hematopoietic
stem cell population, a mutation of one cell being brought throughout successive divisions.

Hence, the existence of oscillating solutions in models of hematopoietic stem cells can
sometimes be related to periodic hematological diseases, as it can be found in [5, 6, 11, 31].
In this study, we showed that the influence of growth factors, which are exterior to the
process of hematopoiesis, should not be neglected in stem cells dynamics, since it adds some
information on the behavior of hematopoietic stem cells, and the action of growth factors
can lead to the existence of oscillating solutions in the stem cell population.

Future works should investigate numerically the existence of oscillating solutions, as ob-
tained for example in [5, 6, 11, 31]. The delay-dependent coefficients of the characteristic
equation (21) may lead to stability switches [10], that would prove very rich dynamics of the
model. This part will be strongly dependent on experimental data available, especially about
growth factors. As they become more and more popular in biology, because of their influence
on various medical process (they are primarily used for cure treatments), the literature now
provides a lot of information and data about the way they act on stem cells differentiation.
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