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ABSTRACT

In a large number of applications, engineers have to estimate
a function linked to the state of a dynamic system. To do so,
a sequence of samples drawn from this unknown function
is observed while the system is transiting from state to state
and the problem is to generalize these observations to un-
visited states. Several solutions can be envisioned among
which regressing a family of parameterized functions so as
to make it fit at best to the observed samples. However clas-
sical methods cannot handle the case where actual samples
are not directly observable but only a nonlinear mapping of
them is available, which happen when a special sensor has
to be used or when solving the Bellman equation in order to
control the system. This paper introduces a method based
on Bayesian filtering and kernel machines designed to solve
the tricky problem at sight. First experimental results are
promising.

1. INTRODUCTION

In a large number of applications, engineers have to estimate
a function linked to the state of a dynamic system. This
function is generally qualifying the system (e.g. the magni-
tude of the eletro-magnetic field in a wifi network according
to the power emitted by each antenna in the network). To do
s0, a sequence of samples drawn from this unknown func-
tion is observed while the system is transiting from state to
state and the problem is to generalize these observations to
unvisited states. Several solutions can be envisioned among
which regressing a family of parameterized functions so as
to make it fit at best to the observed samples. This is a well
known problem that is addressed by many standard methods
in the literature such as the kernel machines methods [1] or
neural networks [2].

Yet, several problems are not usually handled by stan-
dard techniques. For instance, actual samples are some-
times not directly observable but only a nonlinear mapping
of them is available. This is the case when a special sen-
sor has to be used (e.g. measuring a temperature using a
spectrometer or a thermocouple). This is also the case when

solving the Bellman equation in a Markovian decision pro-
cess with unknown deterministic transitions [3]. This is
important for (asynchronous and online) dynamic program-
ming, and more generally for control theory. Another prob-
lem is to handle online regression, that is incrementally im-
prove the regression results as new samples are observed by
recursively updating previously computed parameters.

In this paper we propose a method, based on the Bayesian
filtering paradigm and kernel machines, for online regres-
sion of non-linear mapping of observations. We have cho-
sen here to describe a quite general formulation of the prob-
lem in order to appeal a broader audience. Indeed the tech-
nique introduced below handles well non-linearities in a
derivative free way and it should be useful in other fields.

1.1. Problem statement

Through the rest of this paper, x will denote a column vector
and 7 a scalar. Let x = (x!,x%) € X = X! x X? where
X1 (resp. X?)is a compact set of R” (resp. R™). Let ¢ :
X1 x X2 — X! be a nonlinear transformation (transitions
in case of dynamic systems) which will be observed. Let
g be a nonlinear mapping such that g : f € RY — gr €
R¥*X"  The aim here is to approximate sequentially the
nonlinear function f : x € X — f(x) = f(x',x?) € R
from samples

(Xkatk = t(xbx%),yk = gf(xllcvxivtk))k

by a function fy(x) = fy(x',x2) parameterized by the
vector 6. Here the output is scalar, however the proposed
method can be straightforwardly extended to vectorial out-
puts. Note that as

(RX)RX - {g c (RXxXl)RX lgr :x€X — gf(X,t(X))}

this problem statement is quite general. Thus the work pre-
sented in this paper can be considered with g : f € RY —
gr € R? (g being known analytically), this case being more
specific. The interest of this particular formulation is that a
part of the nonlinearities has to be known analytically (the
mapping g) whereas the other part can be just observed (the
t function).



1.2. Outline

A kernel-based regression is used, namely the approxima-
tion is of the form fy(x) = S°7_, oy K(x,x;) where K
is a kernel, that is a continuous, symmetric and positive
semi-definite function. The parameter vector 6 contains the
weights («;);, and possibly the centers (x;); and some pa-
rameters of the kernel (e.g. the variance for Gaussian ker-
nels). These methods rely on the Mercer theorem [4] which
states that each kernel is a dot product in a higher dimen-
sional space. More precisely, for each kernel K, it exists a
mapping ¢ : X — F (F being called the feature space)
such that Vx,y € X, K(x,y) = (¢(x),¢(y)). Thus,
any linear regression algorithm which only uses dot prod-
ucts can be cast by this kernel trick into a nonlinear one by
implicitly mapping the original space X to a higher dimen-
sional one. Many approaches to kernel regression can be
found in the literature, the most classical being the Support
Vector Machines (SVM) framework [4]. There are quite
fewer Bayesian approaches, nonetheless the reader can re-
fer to [5] or [6] for interesting examples. To our knowledge,
none of them is designed to handle the regression problem
described in this paper.

As a preprocessing step a prior on the kernel to be used
is put (e.g. a Gaussian kernel with a specific width), and
a dictionary method [7] is used to compute an approximate
basis of p(X'). This gives a fair sparse and noise-independent
initialisation for the number of kernels to be used and their
centers. Following [8], the regression problem is cast into a
state-space representation

9k+1 =0 + vy, (1)

Yk = gfsk: (Xllgaxiatk) + ny

where vy, is an artificial process noise and ny is an obser-
vation noise. A Sigma Point Kalman Filter (SPKF) [9] is
used to sequentially estimate the parameters, as the samples
(XK, t(Xk), Yk )i are observed.

In the following sections, the SPKF approach and the
dictionary method will be first briefly presented. The pro-
posed algorithm, which is based on the two forementioned
methods, will then be exhibited, and the first experimen-
tal results will be shown. Eventually, future works will be
sketched.

2. BACKGROUND

2.1. Bayesian Filtering Paradigm

The problem of Bayesian filtering can be expressed in its
state-space formulation:

Sk+1 = Yk (Sk, Vi) 2
Y = hi(Sk, nk)

The objective is to sequentially infer E[sy|y;.x], the expec-
tation of the hidden state s;, given the sequence of obser-
vations up to time k, yi.x, knowing that the state evolu-
tion is driven by the possibly nonlinear mapping 5 and
the process noise vi. The observation yg, through the pos-
sibly nonlinear mapping hg, is a function of the state sy,
corrupted by an observation noise ny. If the mappings are
linear and if the noises v and n; are additional Gaussian
noises, the optimal solution is given by the Kalman filter
[10]: quantities of interest are random variables, and infer-
ence (that is prediction of these quantities and correction
of them given a new observation) is done online by prop-
agating sufficient statistics through linear transformations.
If one of these two hypothesis does not hold, approximate
solutions exist. See [11] for a survey on Bayesian filtering.

The Sigma Point framework [9] is a nonlinear exten-
sion of Kalman filtering (random noises are still Gaussian).
The basic idea is that it is easier to approximate a proba-
bility distribution than an arbitrary nonlinear function. Re-
call that in the Kalman filter framework, basically linear
transformations are applied to sufficient statistics. In the
Extended Kalman Filter (EKF) approach, nonlinear map-
pings are linearized. In the Sigma Point approach, a set of
so-called sigma points are deterministically computed us-
ing the estimates of mean and of covariance of the random
variable of interest. These points are representative of the
current distribution. Then, instead of computing a linear
(or linearized) mapping of the distribution of interest, one
calculates a nonlinear mapping of these sigma points, and
use them to compute sufficient statistics of interest for pre-
diction and correction equations, that is to approximate the
following distributions:

p(sk|Y1:k—1):/p(Sk|Sk—1)p(Sk—1|Y1:k—1)dsk—1
s

p(Yx[Sk)p(Sk|Y1:6-1)
SilYi.k) =
P8kt Js P(YiISk)p(Sk|Y1:k—1)dSk

Note that SPKF and classical Kalman equations are very
similar. The major change is how to compute sufficient
statistics (directly for Kalman, through sigma points com-
putation for SPKF). Table 1 sketches a SPKF update in the
case of additive noise, based on the state-space formulation,
and using the standard Kalman notations: s ;_; denotes a
prediction, sy an estimate (or correction), Py, ,, a covari-
ance matrix, 715, a mean and k is the discrete time index. The
reader can refer to [9] for details.

2.2. Dictionary method

As said in section 1, the kernel trick corresponds to a dot
product in a higher dimensional space F, associated with
a mapping ¢. By observing that although F is a (very)
higher dimensional space, ¢(X') can be a quite smaller em-



Table 1. SPKF Update

§k71\k71 ’ Psk—1|k—1

inputs:

outputs: TR S

Sigma points computation:
Compute deterministically sigma-point
set  Sp_1k—1 from S_ix—1 and Psk'—l\k,—l

Prediction step:

Compute Syk_1 from Yr(Sk_1jk—1,Vk) and
process noise covariance

Compute Spx—1 and P5k|k—1 from Sgjk_1

Correction step:
Observe yk

Yiik—1 = he(Skjk—1, k)
Compute Ypjx—1, Pyk‘ki1
from Sgjx—1, Ykx—1 and observation
noise covariance

K, =P Pt

Sklk—1Yk|k—17 Yk|k—1
Skt = Sklk—1 + K (Yr — Ukjk—1)
_ _ T
Psk\k' _Psk\k'—l Ky Py Ky

and Psk|k—1ayk\k—1

klk—1

bedding, the objective is to find a set of p points in A’ such
that (X)) ~ Span {¢(X1),...,¢(Xp)}.

This procedure is iterative. Suppose that samples X1, Xa, . . .

are sequentially observed. At time k, a dictionary Dy_1 =
(ij);n:’“fl C (xj)fz_ll of my_1 elements is available where
by construction feature vectors ¢(X;) are approximately lin-
early independent in F. A sample xy, is then observed, and
is added to the dictionary if ¢ (x}) is linearly independent
on Dj,_1. To test this, weights a = (a1, ..., am,_,)’ have
to be computed so as to verify

2
Mg —1
o= i | X et et @

Formally, if d;, = O then the feature vectors are linearly de-
pendent, otherwise not. Practically an approximate depen-
dence is allowed, and J; will be compared to a predefined
threshold v determining the quality of the approximation
(and consequently the sparsity of the dictionary). Thus the
feature vectors will be considered as approximately linearly
dependent if §;, < v.

By using the kernel trick and the bilinearity of dot prod-
ucts, equation (3) can be rewritten as

O = mﬂin {an(k_la — 2aTl~<k_1(xt) + K(xk7xk)} )

where (f(k,l)i,j = K(X;,%;) is @ mp_1 X myp_1 ma-
trix and (kp_1(x)); = K(x,%;) is a mgp_1 x 1 vector.
If p > v, x; = Xy, is added to the dictionary, other-
wise not. Equation (4) admits the analytical solution a; =
K ,;_111~<k,1 (x1). Moreover it exists a computationally effi-
cient algorithm which uses the partitioned matrix inversion
formula to construct this dictionary. See [7] for details.

Thus, by choosing a prior on the kernel to be used, and
by applying this algorithm to a set of N points randomly
sampled from X, a sparse set of good candidates to the
kernel regression problem is obtained. This method is the-
oretically well founded, easy to implement, computation-
ally efficient and it does not depend on kernels nor space’s
topology. Note that, despite the fact that this algorithm is
naturally online, this dictionary cannot be built (straightfor-
wardly) while estimating the parameters, since the parame-
ters of the chosen kernels (such as mean and deviation for
Gaussian kernels) will be parameterized as well. Observe
that only bounds on & have to be known in order to com-
pute this dictionary, and not the samples used for regression.

3. PROPOSED ALGORITHM

Recall that the objective here is to sequentially approximate
a nonlinear function, as samples (xy, tx = t(x5,X3), k)
are available, with a set of kernel functions. This param-
eter estimation problem can be expressed as a state-space
problem (1). Note that here f does not depend on time,
but we think that this approach can be easily extended to
nonstationary function approximation. In this paper the ap-
proximation is of the form

P
fo(x) = ZO@KO.} (xl,X})KU?(XQ,Xf), with  (5)
i=1

0= 101 (6D y (1) (0N (oD )T
I x|

2(07 )2

K2

and K _; (x7,x7) = exp( ), i =1,2

Note that Ko, (x,%;) = K51 02 ((x',x?), (x},x?)) =
K i (x, x})K,2(x?,x7) is a product of kernels, thus it is a
kernel. The optfmal number of kernels and a good initiali-
sation for the parameters have to be determined first.

To tackle this initial difficulty, the dictionary method is
used in a preprocessing step. A prior oy = (0, 0%) on the
Gaussian width is first put (the same for each kernel). Then
a set of N random points is sampled uniformly from X'. Fi-
nally, these samples are used to compute the dictionary. A
set of p points D = {x1,...,X,} is thus obtained such that
©(X) =~ Span{@s,(X1),...,9s,(Xp)} Where @, is the
mapping corresponding to K,,. Note that even though this
sparsification procedure is offline, the proposed algorithm
(the regression part) is online. Moreover, no training sam-
ple is required for this preprocessing step, but only classical
prior which is anyway required for the Bayesian filter (oy),
one sparsification parameter v and bounds for &'

A SPKF is then used to estimate the parameters. As for
any Bayesian approach an initial prior on the parameter dis-
tribution has to be put. The initial parameter vector follows



a Gaussian law, that is 0y ~ N (6y, g, ), where

) 11 12 2 0T
90:[a0,...,a0,’D 70’0,...70'0,1) ,O’O,...,UO] ,and
— 2 2 2 2 2
Egofdlag(aag,...,Uué,...,aaé,...,ng,...,aag,...)

In these equations, oy is the prior mean on kernel weights,
DI = [(x1)7,...,(x})T] is derived from the dictionary
computed in the preprocessing step, o7 is the prior mean

on kernel deviation, and o7, , oij (which is a row vector
0

with the variance for each component of xz, Vi), 0?70 are
respectively the prior variances on kernel weights, centers
and deviations. All these parameters (except the dictionary)
have to be set up beforehand. Let |§] = ¢ = (n + m + 3)p.
Note that §y € R? and ¥y, € R?¥9. A prior on noises has to
be put too: more precisely, vo ~ N (0, R,,) where R,, =
o2 Iy, I, being the identity matrix, and n ~ N(0, R,,),
where R,, = o2. Note that here the observation noise is
also structural. In other words, it models the ability of the
parameterization fg to approximate the true function of in-
terest f. Then, a SPKF update (which updates the sufficient
statistics of the parameters) is simply applied at each time
step, as a new training sample (X, tx, y) is available.

A specific form of SPKF is used, the so-called Square-
Root Central Difference Kalman Filter (SR-CDKF) param-
eter estimation form. This implementation uses the fact
that for this parameter estimation problem, the evolution
equation is linear and the noise is additive. This approach
is computationally cheaper: the complexity per iteration is
O(]0|%), whereas it is O(|#]) in the general case. See [9]
for details.

A last issue is to choose the artificial process noise. For-
mally, since the target function is stationary, there is no pro-
cess noise. But the parameter space has to be explored in or-
der to find a good solution, that is an artificial process noise
must be introduced. Choosing this noise is still an open
research problem. Following [9] a Robbins-Monro stochas-
tic approximation scheme for estimating innovation is used.
That is the process noise covariance is set to

2
R,, = (1—a)R,,_, + oK} (yk ~Yfy (xk,tk)> KF

Here « is a forgetting factor set by the user, and K, is the
Kalman gain obtained during the SR-CDKF update. This
approach is summarized in Table 2.

4. PRELIMINARY RESULTS

In this section the results of our preliminary experiments
are presented. The proposed artificial problem is quite ar-
bitrary, it has been chosen for its interesting nonlinearities
so as to emphasize on the potential benefits of the proposed
approach. More results focusing on the application of this
method to reinforcement learning are presented in [12].

Table 2. Proposed algorithm
inputs:v, N,ao, 0}, Caqy, Tyir Oug10v0r On

0, 3o

outputs:

Compute dictionary;
Vie{l...N}, x; ~Ux
Set X ={x1,...,xn}
D =Compute-Dictionary (X, v, go)
Initialization:
Initialize 6o, Yoy, Rng, R
for k=1,2,... do

Observe (X, tk, k)

SR—-CDKF update:

[ékvzgkak] = _

SR-CDKF-Update (Ox—1, 26, Xk, bk, ...
e Ykey Rvk_lan)

Artificial process noise update:

Ry = (1= )R, +aKi(ye — g7,  (%%,t6))* K

end for

Let X = [-10,10])? and f be a 2d nonlinear cardinal
sine: in(a) .
1 oy sin(z ztx
f(:Zj y L ) - .’1,‘1 100

Let the observed nonlinear transformation be

1
t(z*, %) =10 tanh(%) + sin(z?)

Recall that this analytical expression is only used to gener-
ate observations in this experiment but it is not used in the
regression algorithm. Let the nonlinear mapping g be

g7 (o' 0%, bl a) = (o' a*) = max f (t(a"2%), 2)
with v € [0,1] a predefined constant. This is a specific
form of the Bellman equation [3] with the transformation
t being a deterministic transition function. Recall that this

function is of special interest in optimal control theory. The
associated state-space formulation is thus

Ok+1 =0k + Vi (6)

Yk = fox (xi7xi) - ’V;rel%(}g o, (t(xllwxi)az) + ng

4.1. Problem statement and settings

At each time step k the filter observes x; ~ Uy (X uni-
formly sampled from X), the transformation t;, = t(z4, z7)
and y;, = f(x) — ymax,cx2 f(tg, 2). Once again the re-
gressor does not have to know the function ¢ analytically, it
just has to observe it. The function f is shown on Fig. 1(a)
and its nonlinear mapping on Fig. 1(b). For these exper-
iments the algorithm parameters were set to N = 1000,
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(b) Nonlinear mapping observed by the regressor.

Fig. 1. 2-dimensional nonlinear cardinal sine and its ob-
served nonlinear mapping.

o) =44, v =01, a0 = 0,0, = 005, « = 0.7, and
all variances (03, Ui{;’ aig, o2 )10 0.1, for j = 1,2. The
factor « was set to 0.9. Note that this empirical parameters
were not finely tuned.

4.2. Quality of regression

Because of the special form of gy, any bias added to f still
gives the same observations and it may exist other invari-
ances: the root mean square error (RMSE) between f and f
should not be used to measure the quality of regression. In-
stead the nonlinear mapping of f is computed from its esti-
mate f and is then used to calculate the RMSE. The quality
of regression is thus measured with the following RMSE:
(S (g5 (x,t(x)) — g5, (x,£(x)))?dx) 2. As it is computed
from f , it really measures the quality of regression, and as
it uses the associated nonlinear mapping, it will not take
into account the bias. Practically it is computed on 10*
equally spaced points. The function gy is what is observed
(Fig. 1(b)) and it is used by the SPKF to approximate the
function f (Fig. 1(a)) by fg (Fig. 2(a)). We compute g fe
from fg (Fig. 2(b)) and use it to compute the RMSE.

As the proposed algorithm is stochastic, the results have
been averaged over 100 runs. Fig. 3 shows an errorbar plot,
that is mean =+ standard deviation of RMSE. The average

™,

(b) Nonlinear mapping calculated from fg (x)

Fig. 2. Approximation of f(x)and associated approximated
nonlinear mapping.

number of kernels was 26.55 = 1.17. This results can be
compared with the RMSE directly computed from f , that is
([ren(fF(x)— fo(x))2dx) 2, which is illustrated on Table 3.
There is more variance and bias in these results because of
the possible invariances of the considered nonlinear map-
ping. However one can observe on Fig. 2(a) that a good
approximation is obtained.

Table 3. RMSE (mean =+ deviation) of g 7, and fg as a func-
tion of number of samples.

500 1000 1500
94, | 0.07240.022 | 0.031 +0.005 | 0.024 £ 0.003
fo ] 0.296 £0.149 | 0.108 £ 0.059 | 0.066 £ 0.035

Thus the RMSE computed from gy is a better quality
measure. As far as we know, no other method to handle
such a problem has been published so far, thus comparisons
with other approaches is made difficult. However the order
of magnitude for the RMSE obtained from g; is compa-
rable with the state-of-the-art regression approaches when
the function of interest is directly observed. This is demon-
strated on Table 4. Here the problem is to regress a linear
2d cardinal sine f (2!, 22) = Sinr(fl) + ’f—;. For the proposed
algorithm, the nonlinear mapping is the same as considered
before. We compare RMSE results (10? training points) to
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Fig. 3. RMSE (g fe) averaged over 100 runs.

Kernel Recursive Least Squares (KRLS) and Support Vec-
tor Regression (SVR). For the proposed approach, the ap-
proximation is computed from nonlinear mapping of obser-
vations. For KLRS and SVR, it is computed from direct
observations. Notice that SVR is a batch method, that is it
needs the whole set of samples in advance. The target of
the regressor is indeed gy, and we obtain the same order
of magnitude (however much nonlinearities are introduced
for our method and the representation is more sparse). The
RMSE on f is slightly higher for this contribution, but this
can be mostly explained by the invariances (as bias invari-
ance) induced by the nonlinear mapping.

Table 4. Comparative results (KRLS and SVR results are
reproduced from [7]). The first column gives RMSE (from
f and g 7 for the proposed algorithm, from f for the two
others), and the second one the percentage of support vec-
tor/dictionary vectors from the training sample used.

test error
Method f 9; %DV/SVs
Proposed Alg. | 2.45 x 1071 [ 4.5 x 1072 2.6%
KRLS 1.5 x 1072 7%
SVR 5.5 x 1072 60%

5. CONCLUSIONS AND FUTURE WORKS

An approach allowing to regress a function of interest f
from observations which are obtained through a nonlinear
mapping of it has been proposed. The regression is on-
line, kernel-based, nonlinear and Bayesian. A preprocess-
ing step allows to achieve sparsity of representation. This
method has proven to be effective on an artificial problem
and reaches good performance although much more non-
linearities are introduced. This approach is planned to be
extended to stochastic transformation function (the observed
part of nonlinearities) in order to solve a more general form
of the Bellman equation. The adaptive artificial process
noise is planned to be extended, and an adaptive observa-
tion noise is on study. Finally, the approximation fg being
a mapping of the random variable 0, it is a random variable.
An uncertainty information can thus be derived from it and

is planned to be linked to the quality of regression. Yet the
uncertainty reduction occurring when acquiring more sam-
ples (thus more information) could be quantified.
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