
HAL Id: hal-00359261
https://hal.science/hal-00359261

Submitted on 6 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Semantics and Implementation for Systems
with Interaction and Priority

Ananda Basu, Philippe Bidinger, Marius Bozga, Joseph Sifakis

To cite this version:
Ananda Basu, Philippe Bidinger, Marius Bozga, Joseph Sifakis. Distributed Semantics and Implemen-
tation for Systems with Interaction and Priority. Formal Techniques for Networked and Distributed
Systems – FORTE 2008, Jun 2008, Tokyo, Japan. pp.116–133, �10.1007/978-3-540-68855-6�. �hal-
00359261�

https://hal.science/hal-00359261
https://hal.archives-ouvertes.fr

Distributed Semantics and Implementation for

Systems with Interaction and Priority

Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis

Université Grenoble 1 - CNRS - VERIMAG
Centre Équation, 2 av de Vignate, 38610 Gières, France

Abstract. The paper studies a distributed implementation method for
the BIP (Behavior, Interaction, Priority) component framework for mod-
eling heterogeneous systems.

BIP offers two powerful mechanisms for describing composition of com-
ponents by combining interactions and priorities. A system model is lay-
ered. The lowest layer contains atomic components; the second layer, de-
scribes possible interactions between atomic components; the third layer
includes priorities between the interactions. The current implementation
of BIP is based on global state operational semantics. An Engine directly
interprets the operational semantics rules and computes the possible in-
teractions between atomic components from global states.

The implementation method is a translation from BIP models into dis-
tributed models involving two steps. The first translates BIP models into
partial state models where are known only the states of the components
which are ready to communicate. The second implements interactions in
the partial state model by using message passing primitives.

The main results of the paper are conditions for which the three models
are observationally equivalent. We show that in general, the translation
from global state to partial state models does not preserve observational
equivalence. Preservation can be achieved by strengthening the premises
of the operational semantics rules by an oracle. This is a predicate de-
pending on the priorities of the BIP model. We show that there are
many possible choices for oracles. Maximal parallelism is achieved for
dynamic oracles allowing interaction as soon as possible. Nonetheless,
these oracles may entail considerable computational overhead. We study
performance trade-offs for different types of oracles. Finally, we provide
experimental results illustrating the application of the theory on a pro-
totype implementation.

1 Introduction

A distributed system is a collection of loosely coupled independent components,
communicating by explicit message passing. The components are intrinsically
concurrent and their states may be known only through communication. We
cannot determine the exact global state of a distributed system, we can only
approximate it [4].

The paper studies a distributed implementation method for the BIP (Be-
havior, Interaction, Priority) component framework for modeling heterogeneous
systems [2]. The method consists of three steps:

• It starts from a global state model of the system to be implemented de-
scribed in BIP. The model represents the system behavior as a transition system
where transitions are atomic. The BIP execution platform uses an Engine which
coordinates the execution of the components. Atomicity of transitions implies
a strict alternation between the execution of components and the Engine: no
interaction is possible when some component is performing a computation.

• From the global state model, a partial state model is derived where we
distinguish between states from which components are ready for interaction and
states where components are busy by executing some internal computation. For
this model partial state knowledge may suffice for executing interactions. We
study conditions for the partial state model to be equivalent to the global state
model. The conditions are in the form of an oracle used by the BIP Engine to
safely execute interactions in the presence of uncertainty about the global state.

• From the partial state model, a distributed model is obtained where atomic
multiparty interactions of the partial state models are replaced by communica-
tion protocols. In this model, components exchange messages to communicate
with the Engine represented by an additional component.

The main results of the paper are conditions for which the three models are
observationally equivalent by considering as silent the actions corresponding to
internal computations of the initial global state model. They are described in
more details below.

BIP combines two powerful mechanisms for describing multiparty interac-
tions between components: interactions and priorities. A system model is lay-
ered. The lowest layer contains atomic components whose behavior is described
by state machines with data and functions described in C. As in process algebras,
atomic components can communicate by using ports. The second layer contains
interactions which are relations between communication ports of individual com-
ponents. Priorities are used to express scheduling policies by selecting amongst
the enabled interactions of the layer underneath.

The current implementation of BIP is based on global state semantics. From
a BIP model, a compiler is used to generate C++ code for a dedicated platform.
The platform uses an Engine that directly interprets the operational semantics
rules. For a given global state, the Engine computes from the set of the com-
munication ports offered by individual components and the set of interactions,
the set of the enabled interactions. Amongst these, the Engine chooses a maxi-
mal one, according to the priorities of the third layer, and notifies the involved
components which can continue their computation.

We define partial state semantics for BIP where the assumption of atomic
execution of transitions does not hold. This is a straightforward generalization
of global state semantics where interactions are separated from internal compu-
tation in the components. A component may be either in a busy state or in a
ready state. A busy state corresponds to the execution of some internal com-

putation. When the computation terminates, some ready state is reached. From
this state the component can participate in interactions and move again to some
busy state.

The implementation problem for a partial state model is to find an Engine
that may execute interactions even for partially known states, while preserv-
ing (observational) equivalence with the corresponding global state model. The
following example shows that in general, the two models are not equivalent.

✐☛ ✐☛ ✐☛ ✐☛
a, fa

a

b, fb

b

c, fc

c

d, fd

d

Interactions: γ

Priorities: π

(a) Global State Model

✐

✐

✕
☛ ✐

✐

✕
☛ ✐

✐

✕
☛ ✐

✐

✕
☛

a

a

fa b

b

fb c

c

fc d

d

fd

Interactions: γ

Priorities: π

(b) Partial State Model

Fig. 1. A System with Four Components

Example 1. Consider a BIP model consisting of four components A,B, C, D each
one offering cyclically an interaction through ports a, b, c, d followed respectively
by the execution of functions fa, fb, fc, fd (Figure 1(a)). We assume that A is a
sender and B,C,D are receivers. A can broadcast a message through a and the
set of the possible interactions is γ = {a, ab, ac, ad, abc, abd, acd, abcd}. Priority
rules are used to ensure that amongst all the possible interactions from a state
only a maximal one is possible. This is expressed by using a priority order on
interactions π and rules of the form xπxy where x and xy are interactions. These
rules say that whenever both interactions x and xy are enabled, only interaction
xy can be executed. That is, maximal progress is enforced. For this example, the
only possible interaction is abcd and thus the functions fa, fb, fc, fd are executed
synchronously.

The partial state model for this system is shown in Figure 1(b). It is possible,
due to the separation between interaction and internal computation, to reach a
configuration where the receivers are in a busy state. In that case, only the
ready components will be synchronized. Thus an arbitrary desynchronization of
the receivers with respect to the sender is possible.

Example 2. Consider again the previous example where broadcast is replaced by
three rendezvous: γ = {ab, bc, cd} and π is such that abπbc, cdπbc in the global
state system. This system executes forever the interaction bc. Consider the cor-
responding partial state system where interactions are separated from functions.
For this system, it is possible to execute the sequence ab.(fa.cd.fc.fb.ab.fd)

ω

which goes through states never enabling the interaction bc.

The above examples motivate the definition of partial state semantics where
the premises of the operational semantics rules include an oracle, a predicate
parameterized by a dependency relation between interactions. The dependency

relation is an abstraction of the priorities of the initial BIP model. The oracle
characterizes the partial states from which an interaction can be safely executed:
if an interaction a1 depends on an interaction a2, then a1 cannot be executed if
the system has some internal evolution leading to a state enabling a2. We show
that there are many possible choices for oracles. If the time for computing them is
negligible, best performance is achieved for oracles allowing interaction as soon
as possible in order to reduce waiting times of ready components. The worst
performing oracle is the one allowing interaction only when all the components
are at ready states. For this oracle partial and global state semantics coincide.

We study a transformation from the partial state model to a distributed one.
This consists in replacing atomic interactions by protocols using message pass-
ing. For distributed semantics, the Engine becomes an additional component.
The results are applied to obtain a multi-threaded implementation for BIP. We
analyze performance of this implementation for different types of oracles as well
as with respect to the global state semantics model.

The presented method is not specific to BIP and can be applied for the
implementation of systems in particular in two cases. First, for concurrent sys-
tems with fairness constraints which at implementation level, become scheduling
policies expressed by dynamic priorities. Second, for systems involving communi-
cation by broadcast. This requires mechanisms for identifying the maximal set of
interacting components that can be specified by using priorities. Consequently,
the proposed method can be used for correct implementation.

The paper is organized as follows. In section 2, we present global state se-
mantics and the associated partial state semantics for BIP. In section 3, we study
oracles and their properties. We show correctness of partial state semantics en-
forced by an oracle with respect to global state semantics. In section 4, we study
the transformation from partial state to distributed semantics. We also discuss
experimental results for a multi-threaded implementation, in particular for dif-
ferent choices of oracles. The last section includes conclusions and description of
future work. Proofs are omitted due to space limitation but appear in [1].

2 BIP – Basic Semantic Models

2.1 Global State Semantics

BIP is a component framework for constructing systems by superposing three
layers of modeling: Behavior, Interaction, and Priority.
Atomic Components We define atomic components as transition systems with
a set of ports labeling individual transitions. These ports are used for commu-
nication between different components.

Definition 1 (Atomic Component). An atomic component B is a labeled
transition system represented by a triple (Q,P,→) where Q is a set of states, P
is a set of communication ports, →⊆ Q×P ×Q is a set of possible transitions,
each labeled by some port.

For any pair of states q, q′ ∈ Q and a port p ∈ P , we write q
p
→ q′, iff

(q, p, q′) ∈→. When the communication port is irrelevant, we simply write q →

q′. Similarly, q
p
→ means that there exists q′ ∈ Q such that q

p
→ q′.

Interaction For a given system built from a set of n atomic components {Bi =
(Qi, Pi,→i)}

n
i=1, we assume that their respective sets of ports are pairwise dis-

joint, i.e. for any two i 6= j from {1..n} we have Pi ∩ Pj = ∅. We can therefore
define the set P =

⋃n

i=1 Pi of all ports in the system. An interaction is a set
a ⊆ P of ports. When we write a = {pi}i∈I , we suppose that for i ∈ I, pi ∈ Pi.

Definition 2 (Composite Component). A composite component (or simply
component) is defined by a composition operator parameterized by a set of in-

teractions γ ⊆ 2P . B
def
= γ(B1, . . . , Bn), is a transition system (Q, γ,→), where

Q =
⊗n

i=1 Qi and → is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi

→i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→ (q′1, . . . , q

′
n)

The inference rule says that a composite component B = γ(B1, . . . , Bn) can
execute an interaction a ∈ γ, iff for each port pi ∈ a, the corresponding atomic
component Bi can execute the transition labeled with pi; the states of compo-
nents that do not participate in the interaction stay unchanged.

Observe that, it is possible for a composite component to further communi-
cate on the ports initially provided by its atomic components
Priorities In composite components, many interactions can be enabled at the
same time, introducing a degree of non-determinism in the product behavior.
Non-determinism can be restricted by means of priorities, specifying which of
the interactions should be preferred among the enabled ones.

Definition 3 (Priority Model). A priority on B = γ(B1, . . . , Bn) is a rela-
tion π ⊆ γ×Q×γ. We write a1πqa2 for (a1, q, a2) ∈ π. Furthermore, we require
that for all q ∈ Q, πq is a strict partial order on γ. a1πqa2 means that interaction
a1 has less priority than a2 at state q.

Given a behavior B = (Q,P,→) defined as above, we construct a new be-
havior πB = (Q,P,→π) as follows:

q
a
→ q′ ∀a′ ∈ γ. aπqa

′ =⇒ q 6
a′

→

q
a
→π q′

Example 3. The examples 1 and 2 are straightforward to define in BIP. The sys-
tem Figure 1(a) is defined as πγ(A,B, C, D) where A, B, C and D are atomic
components with one state and one transition defined as X = ({qX}, {x}, (qX , x, qX))
for (X, x) ∈ {(A, a), (B, b), (C, c), (D, d)}.

We have γ = {a, ab, ac, ad, abc, abd, abcd}. The system γ(A,B, C, D) has only
one state q = (qA, qB , qC , qD) for which πq = {(x, xy) | (x, xy) ∈ γ2}. Example
2 is defined similarly for γ = {ab, bc, cd} and πq = {(ab, bc), (cd, bc)}.

Implementation The operational semantics rules are interpreted by the BIP
Engine. At a given global state, each atomic component publishes the ports of
the enabled transitions. From this information, the Engine computes the set of
the possible interactions, that is the interactions of γ such that each one of their
ports is published by some component. Amongst these interactions, the Engine
chooses non-deterministically one that satisfies the priority rules π and notifies
the involved components by communicating the corresponding port names.

2.2 Partial State Semantics

The model with global state semantics is based on the fact that transitions are
atomic and a global state is always defined. To obtain the partial state model
corresponding to a global state model, we 1) replace atomic components by their
partial state models; 2) extend the operational semantics rules for interactions
and priorities.
Atomic Components To model concurrent behavior, we associate with each
atomic component, its corresponding partial state model. Atomic components
with partial states behave as atomic components with the difference that each
transition is decomposed into a sequence of two transitions: an interaction (vis-
ible transition) followed by an internal computation or busy transition. Between
these two transitions, a new busy state is added. Busy states are transient states
considered by the Engine as undefined states of the component.

Definition 4 (Atomic Component with Partial States). Given an atomic
component B = (Q,P,→), we define the associated partial state model as the
transition system B⊥ = (Q ∪ Q⊥, P ∪ {β},) where

– Q⊥ = {qt | t ∈→} such that Q⊥ ∩ Q = ∅. Q⊥ is a set of busy states in
bijection with the set of transitions →.

– β is a port name not in P
– ⊆ (Q∪Q⊥)×P ∪{β}× (Q∪Q⊥) where if t = (q1, p, q2) ∈→, then q1

p
 qt

and qt
β
 q2.

Interaction We define below interactions for partial state models.

Definition 5. Given a BIP model built from a set of atomic components {Bi =
(Qi, Pi,→i)}

n
i=1, of the form γ(B1, . . . , Bn), we define the corresponding partial

state model γ⊥(B⊥
1 , . . . , B⊥

n) such that

– B⊥
i is the partial state model B⊥

i = (Qi ∪ Q⊥
i , Pi ∪ {βi}, i)

– γ⊥ = γ ∪ {βi}
n
i=1

Notice that γ⊥(B⊥
1 , . . . , B⊥

n) = (
⊗n

i=1(Qi ∪ Q⊥
i), γ⊥,). The transition re-

lation can be equivalently defined by the rules:

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi

 i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
 (q′1, . . . , q

′
n)

qi
βi

 q′i

(q1, . . . , qi, . . . , qn)
βi

 (q1, . . . , q
′
i, . . . , qn)

The first rule is the same as the composition rule for the global state semantics.
The second rule defines the busy transitions of the composite system.

The state space can be split into two disjoint sets
⊗n

i=1(Qi∪Q⊥
i) = Qg ∪Qp.

The set of global states Qg =
⊗n

i=1 Qi which is the set of states of γ(B1, . . . , Bn).
The set of partial states Qp where at least one component is busy.

Definition 6. For q, q′ ∈ Qp ∪ Qg, we write q
β
 q′ if q

βi

 q′ for some i.

Property 1. The relation
β
 is terminating and confluent. Thus, from any partial

state, a unique global state is eventually reached by executing β-transitions.

Priority The above property is used to define priorities for partial state models.
The priority relation at some partial state should agree with the priority relation
at the global state reached by executing β-transitions.

Definition 7. Given a BIP model πγ(B1, . . . , Bn), the corresponding partial
state model is π⊥γ⊥(B⊥

1 , . . . , B⊥
n) where π⊥ ⊆ γ × (Qg ∪ Qp) × γ such that

a1π
⊥
q a2 if ∃q′ ∈ Qg. q

β∗

 q′ ∧ a1πq′a2.

Note that π⊥ is a priority and it coincides with π on Qg.

Example 4. The partial state model for Example 3 has the atomic components
A⊥, B⊥, C⊥ and D⊥ with two states and two transitions defined by

X⊥ = ({qX , q⊥X}, {x, βX}, {(qX , x, q⊥X), (q⊥X , βX , qX)})

where (X, x) ∈ {(A, a), (B, b), (C, c), (D, d)}. For the first system, γ⊥ = {a, ab, ac, ad, abc, abd, abcd}∪
{βA, βB , βC , βD} and π⊥ is such that for all states q in γ⊥(A⊥, B⊥, C⊥, D⊥),
we have π⊥

q = {(x, xy) | (x, xy) ∈ γ2}. For the second system, we have γ⊥ =

{ab, bc, cd}∪{βA, βB , βC , βD} and π⊥ is such that for all states q in γ⊥(A⊥, B⊥, C⊥, D⊥),
we have π⊥

q = {(ab, bc), (cd, bc)}.

2.3 Comparing Global and Partial State Semantics

We study sufficient conditions for partial state models to be behaviorally equiva-
lent to global state models. We use observational equivalence [8] for this compar-
ison by considering that β-transitions are not observable. As noticed in the in-
troduction (Example 1), observational equivalence is not preserved. The systems
πγ(A,B, C, D) and π⊥γ⊥(A⊥, B⊥, C⊥, D⊥) are not observationally equivalent.
The global state model can perform only the maximal interaction abcd while in
the partial state model, non maximal synchronization is possible. For instance,
we have the transitions:

(qA, qB , qC , qD)
abcd
 (q⊥A , q⊥B , q⊥C , q⊥D)

β
 (qA, q⊥B , q⊥C , q⊥D)

a
 (q⊥A , q⊥B , q⊥C , q⊥D)

Thus, in general, a BIP model is not observationally equivalent to its partial
state model. Nonetheless, the following theorem shows that if π = ∅, γ(B1, . . . , Bn)
and γ⊥(B⊥

1 , . . . , B⊥
n) are observationally equivalent.

We define observational equivalence of two transition systems A = (QA, L ∪
{β},→A) and B = (QB , L∪{β},→B). It is based on the usual definition of weak
bisimilarity where β-transitions are considered unobservable.

Definition 8 (Weak Simulation). A weak simulation over A and B is a re-

lation R ⊆ QA × QB such that we have ∀(q, r) ∈ R, a ∈ L. q
a
→A q′ =⇒

∃r′. (q′, r′) ∈ R ∧ r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R. q
β
→A q′ =⇒ ∃r′. (q′, r′) ∈

R ∧ r
β∗

→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are
simulations. We say that A and B are observationally equivalent and we write
A ∼ B if for each state of A there is a weakly bisimilar state of B and conversely.

We use this definition to compare partial state and complete state semantics.

Theorem 1. γ(B1, . . . , Bn) ∼ γ⊥(B⊥
1 , . . . , B⊥

n)

3 Partial State Semantics with Oracles

Let γ(B1, . . . , Bn) be a system obtained as the composition of atomic compo-
nents Bi = (Qi, Pi,→i) by using a set of interactions γ ⊆ 2P where P =

⋃n

i=1 Pi.
The corresponding partial state system γ⊥(B⊥

1 , . . . , B⊥
n) consists of the compo-

nents B⊥
i = (Qi ∪ Q⊥

i , Pi ∪ {βi}, i) composed by using interactions in γ⊥. As
above, we take

⊗n

i=1(Qi ∪Q⊥
i) = Qg ∪Qp. We also suppose that π is a priority

for γ(B1, . . . , Bn), and π⊥ is its extension to partial states.

3.1 Basic Definitions and Properties

For a system γ⊥(B⊥
1 , . . . , B⊥

n), a state q ∈ Qg ∪ Qp and an interaction a ∈ γ,
we say that a is enabled at state q and we write enabled(q, a), if the transition

a is possible from state q. That is, q
a
 q′ for some state q′. We say that a is

disabled at state q and we write disabled(q, a), if there is an atomic component
in a ready state that prevents synchronization on a. That is, if a = {pi}i∈I there

is i ∈ I, qi ∈ Qi such that qi 6
pi

 .
For global states, disabled(q, a) is equivalent to q 6

a
 and in particular we

always have either disabled(q, a) or enabled(q, a). However, for partial states
the status (disabled or enabled) of an interaction a at a given state may be
unknown if some components involved in a are in busy states.

To compare partialness of states, we define a partial order relation over the
states of composite components.

Definition 9 (State Ordering). For q, r ∈ Qg ∪ Qp, q ≤ r ⇐⇒ ∀i ∈
{1..n}. (ri = qi ∨ qi ∈ Q⊥

i).

For a given relation π⊥, an oracle is a predicate O on (Qp ∪Qg)× γ used to
strengthen the premises of the semantic rule for γ⊥(B⊥

1 , . . . , B⊥
n). Oracles are de-

fined so that π⊥γ⊥
O

(B⊥
1 , . . . , B⊥

n) is observationally equivalent to πγ(B1, . . . , Bn)

where γ⊥
O

(B⊥
1 , . . . , B⊥

n) is the behavior restricted by the oracle. We introduce
first a notion of composition with an oracle and in Subsection 3.2, we introduce
oracles.

Definition 10 (Composite Components with Oracle). Given an oracle O

on (Qp ∪ Qg) × γ, we define B
def
= γ⊥

O
(B⊥

1 , . . . , B⊥
n) as the transition system

(Qp ∪ Qg, γ⊥,) where is the least set of transitions satisfying the rules

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi

 i q′i ∀i 6∈ I. qi = q′i O(q1, . . . , qn, a)

(q1, . . . , qn)
a
 (q′1, . . . , q

′
n)

qi
βi

 i q′i

(q1, . . . , qi, . . . , qn)
βi

 (q1, . . . , q
′
i, . . . , qn)

The following proposition says that a system with an oracle O strongly sim-
ulates ([8]) a system with oracle O′ such that O =⇒ O′.

Proposition 1. Let O and O′ be two oracles for the system γ⊥(B⊥
1 , . . . , B⊥

n),
such that O =⇒ O′. They define two systems B = γ⊥

O
(B⊥

1 , . . . , B⊥
n) = (Qg ∪

Qp, γ⊥,→O) and B′ = γ⊥
O′(B⊥

1 , . . . , B⊥
n) = (Qg ∪ Qp, γ⊥,→O′). Every state of

B is strongly similar to some state of B′.

3.2 Oracles

We defines oracles parameterized by a dependency relation ⊑ on interactions.
This relation contains π⊥ but it need not be an order as shown below.

Definition 11 (Oracle). A ⊑-oracle for a system γ⊥(B⊥
1 , . . . , B⊥

n) and a de-
pendency relation ⊑⊆ γ× (Qg ∪Qp)×γ, is a predicate O on (Qg ∪Qp)×γ such
that:
•(Dependency Enforcement)

O(q, a) =⇒
(

∀a′. a ⊑q a′ =⇒ disabled(q, a′) ∨ enabled(q, a′)
)

•(Soundness) q ∈ Qg =⇒ ∀a ∈ γ. O(q, a)

The dependency enforcement condition means that the oracle allows execu-
tion of a from state q if the status (enabled or disabled) of the interactions a′

that dominate a (i.e. a ⊑q a′) is known.

Property 2. If ⊑1⊆⊑2 and if O is a ⊑2-oracle, then it is a ⊑1-oracle.

We will now define several π⊥-oracles for the system γ⊥(B⊥
1 , . . . , B⊥

n) pro-
viding various degrees of parallelism and cost of implementation. There is a
compromise to make between the degree of parallelism allowed by an oracle, and
the cost for its implementation.
Ideal Oracle The best possible oracle is defined by

Oideal(q, a) ⇐⇒
(

∀a′. aπ⊥
q a′ =⇒ disabled(q, a′) ∨ enabled(q, a′)

)

However, such an oracle is difficult to implement. It requires that at a given
partial state q, the Engine is able to compute the relation π⊥

q which according

to the definition of π⊥ (Definition 7) boils down to computing the global state
q′ reachable from q. For this, in the general case, the Engine has to know the
transition relation of the global state system.
Dynamic Oracle We use now a dynamic approximation ⊑dyn of π⊥. The reach-

ability condition q
β∗

 q′ in the definition of π⊥ is replaced by a comparison q ≤ q′,
i.e. a ⊑dyn

q a′ ⇐⇒ ∃q′ ∈ Qg. q ≤ q′ ∧ aπq′a′. The dynamic oracle is defined by:

Odyn(q, a) ⇐⇒ (∀a′. a ⊑dyn
q a′ =⇒ enabled(q, a′) ∨ disabled(q, a′))

For the dynamic oracle, the Engine does not need a complete knowledge of the
state of the system in order to compute ⊑dyn

q for a given partial state q.
Static Oracle The static oracle Ostatic is defined via a static approximation
⊑st of π⊥: a ⊑st

q a′ ⇐⇒ ∃q′ ∈ Qg. aπq′a′. We write ⊑st instead of ⊑st
q as the

relation does not depend on q. The static oracle is defined by:

Ostatic(q, a) ⇐⇒ (∀a′. a ⊑st a′ =⇒ enabled(q, a′) ∨ disabled(q, a′))

Lazy Oracle The lazy oracle forbids all interactions from partial states. It waits
for all the atomic components to finish their computation in order to know all
the possible interactions. It is defined by Olazy(q, a) ⇐⇒ q ∈ Qg.

Proposition 2. Oideal, Odyn, Ostatic and Olazy are π⊥-oracles and we have,
Olazy =⇒ Ostatic =⇒ Odyn =⇒ Oideal.

The above result with Proposition 1 shows that these oracles provide an increas-
ing degree of parallelism.

3.3 Correctness with Respect to Global State Semantics

The systems πγ(B1, . . . , Bn) and π⊥γ⊥
O

(B⊥
1 , . . . , B⊥

n) are observationally equiv-
alent when O is a π⊥-oracle.

Theorem 2. Let π be a priority relation for the system γ(B1, . . . , Bn) and O
a π⊥-oracle for the system γ⊥(B⊥

1 , . . . , B⊥
n). The systems πγ(B1, . . . , Bn) and

π⊥γ⊥
O

(B⊥
1 , . . . , B⊥

n) are observationally equivalent.

4 Distributed Semantics

4.1 Implementation

The model of BIP components with partial states is a first step towards a dis-
tributed implementation of BIP by separating internal computations from inter-
actions. However, this model uses strong synchronization and therefore is still
not directly implementable on arbitrary platforms where rendezvous is usually
not available as a communication primitive.

e?p3p1

ββ

p2

p3

β β

e?...e?...

e!{p1, p2, p3} e!{p1, p2, p3}

e?p2

e?p1

e!... e!... e!...β

p2

p3p1

Fig. 2. Transformation from atomic BIP components (left) towards atomic components
with partial states (middle) and io-machines (right)

We propose a second step towards a concrete distributed implementation
of BIP components with partial states where multiparty interactions are re-
placed by asynchronous communication protocols (see Figure 2). The target
model is input-output systems (io-systems) that are collections of parallel input-
output machines (io-machines) communicating asynchronously by message pass-
ing through FIFO channels. This model is conceptually simple and directly
encompasses primitives offered by languages used for modeling of distributed
systems (such as SDL[7] or IO-automata[5]) or primitives usually available on
distributed execution platforms (e.g. asynchronous execution of threads or pro-
cesses, inter-process and inter-thread communication through FIFO queues, net-
work protocols).

The principle of implementation is sketched in figure 3. Given π⊥γ⊥(B⊥
1 , B⊥

2 , ..., B⊥
n)

and a π⊥-oracle O, the implementation is an io-system consisting of io-machines
Bio

i emulating the behavior of B⊥
i and an additional io-machine, the Engine

E(γ⊥, π⊥,O) realizing the coordination between them. Communication takes
place only between the atomic components and the Engine, and never directly
between different atomic components – this leads to an io-system with a cen-
tralized architecture.

B⊥

1
B⊥

2
B⊥

n

interactions : γ⊥

priorities : ≺⊥

Bio

1
Bio

2
Bio

n

E(γ⊥,≺⊥,O)

Fig. 3. Implementation: The Overall Structure

Formally, an io-system is a tuple S = (M, Act, {Ai = (Qi, →֒i)}i∈I) where

– M is a set of messages,

– Act is a set of actions α including outputs j!m – output of the message
m ∈ M to machine j ∈ I, inputs j?m – input of message m ∈ M sent by
machine j ∈ I or uninterpreted actions a,

– {Ai = (Qi, →֒i)}i∈I is a finite set of io-machines, where
• Qi is a finite set of states,
• →֒i⊆ Qi × Act × Qi is a finite set of transitions labeled with actions.

States of io-systems are represented by configurations {(qi, wi)}i∈I where
qi ∈ Qi is a local state and wi ∈ (I × M)∗ is the FIFO-queue content of io-
machine i. The semantics of io-systems is given as a labeled transition system

on configurations. For each transition qi

α
→֒i q′i of the io-machine i, we consider

the following transitions on configurations corresponding respectively to input,
output and uninterpreted actions:

– {..., (qi, (j, m) • w′
i), ...}

τ
→֒ {..., (q′i, w

′
i), ...} when α = j?m,

– {..., (qi, wi), (qj , wj), ...}
τ
→֒ {..., (q′i, wi), (qj , wj • (i,m)), ...} when α = j!m

– {..., (qi, wi), ...}
a
→֒ {..., (q′i, wi), ...} when α = a,

The implementations of atomic components are io-machines obtained as fol-
lows. Whenever a ready state is reached, they output a message to the Engine
containing (1) the sets of ports on which they are willing to interact and (2) their
local ready state. Then, they wait for a notification from the Engine indicating
the port selected for interaction. Depending on this port, they continue their
execution. Formally, given B⊥

i = (Qi ∪Q⊥
i , Pi ∪ {βi}, i), its corresponding io-

machine Bio
i = (Qi ∪ Q⊥

i , →֒i) has the same set of states as B⊥
i and transitions

defined by the following rules (see Figure 2):

– qi

e!(X,q′

i
)

→֒i q′i interaction request whenever qi

βi

 i q′i and X = {p | q′i
p

 i}

– qi

e?p
→֒i q′i interaction notification whenever qi

p

 i q′i

The Engine E(γ⊥, π⊥,O) is an io-machine (see Figure 4) realizing the coor-
dination between atomic io-machines for a given set of interactions γ⊥, priorities
π⊥ and a π⊥-oracle O. Iteratively, the Engine receives and stores the sets of ports
and the local states of components ready to interact. Depending on this informa-
tion, it seeks a feasible interaction, which is maximal with respect to priorities
and allowed by the oracle O. If such an interaction exists, the Engine executes
it by notifying sequentially, in some arbitrary order, all the involved compo-
nents. Formally, given π⊥γ⊥(B⊥

1 , B⊥
2 , ..., B⊥

n) and an oracle O, the Engine is the
io-machine (Qe, →֒e) where

• Qe = (γ ∪ {⊥}) ×
⊗n

i=1 2Pi ×
⊗n

i=1(Qi ∪ {⊥}) is the set of states of the
form (a⊥,X,q⊥) with X = (X1, ..., Xn) and q⊥ = (q⊥1 , ..., q⊥n) where

– a⊥ ∈ γ ∪ {⊥} is the interaction being currently executed, ⊥ if none;
– Xi ∈ 2Pi , is the set of ports on which component i is able to interact, empty

if still busy;

qi

e!(X, q′i)

q′i

e?p

q′′i

(a)

i?(Xi, qi)

i!pi

(b)

a

τ

a, ...

⊥, ...

request

interaction

interaction

notification

interaction

notification

resume

interaction

selection

interaction

request

Fig. 4. Principle of Implementation: (a) io-machines for atomic components and (b)
io-machine for the Engine

– q⊥i ∈ Qi ∪ {⊥} is the state qi if component i is ready to interact, ⊥ if still
busy.

• →֒e contains the following transitions

– (⊥,X,q⊥)
i?Xi,qi

→֒e (⊥,X[Xi/i],q⊥[qi/i]) interaction request, stores informa-
tion received from component i ready to interact.

– (⊥,X,q⊥)
a
→֒e (a,X,q⊥) interaction selection, whenever an interaction a

exists such that a ⊆ ∪n
i=1Xi, a is maximal with respect to priorities π⊥

and a is allowed by the oracle O at state q⊥. It consists in executing the
interaction and moving to a state from which all the components involved
will be notified.

– (a,X,q⊥)
i!pi

→֒e (a,X[∅/i],q⊥[⊥/i]) interaction notification and cleanup of the
i component involved in the interaction a, that is when a ∩ Xi = {pi} 6= ∅,

– (a,X,q⊥)
τ
→֒e (⊥,X,q⊥) resume, when all atomic components have been

notified, that is a ∩ ∪n
i=1Xi = ∅. It consists in moving back to a state where

requests are handled.

The correctness of the implementation is formally established by the following
theorem.

Theorem 3. Composite components with partial states π⊥γ⊥
O

(B1, B2, ..., Bn)
are weakly bisimilar to (M, Act, {Bio

1 , ..., Bio
n , E(γ⊥, π⊥,O)}), i.e. their io-system

implementation where τ is a silent action.

4.2 Experimental Results

Distributed Execution Platform We have implemented the distributed se-
mantics of BIP programs and included it into the BIP toolset[2]. This toolset is a

collection of tools dedicated to execution and analysis of BIP programs currently
providing:

• A compilation chain that transforms BIP programs into C/C++ code. Com-
pilation relies on model-based technologies available for Java under the Eclipse
platform. Starting from BIP programs, the compiler generates BIP models con-
forming to a full-fledged BIP meta-model developed using EMF1. On the models,
we can apply source-to-source transformations as well as static analysis tech-
niques. Finally, models are used to generate C/C++ code to be executed on a
dedicated platform, as follows.

• A platform for execution and analysis of the generated C/C++ code. The
execution platform includes an Engine and the associated software infrastructure
for multithreaded execution of the C/C++ code. Each atomic component is as-
signed to a thread, the Engine being a thread itself. The Engine implements the
distributed semantics and is parameterized by a dynamic or lazy oracle. Itera-
tively, the Engine computes feasible interactions available on ready components.
Then, if such interactions exist and the oracle allows them, the Engine selects
one for execution and notifies the involved components.
Benchmarks We present two examples illustrating the application of the results
on a prototype implementation. We evaluate for two different types of oracles,
the degree of parallelism over time, measured as the number of simultaneously
executing atomic components. Before providing experimental results, we analyze
the relationship between degree of parallelism and parameters of the system.

To simplify the analysis, consider a system consisting of n atomic components
always able to interact through their ports. We distinguish the following cases,
illustrated in Figure 5:

b

d
e
g
re

e
o
f
p
a
ra

ll
e
li
sm

b⋆

d

time

dynamic oracle

lazy oracle

no oracle
n

Fig. 5. Performance analysis

• For an implementation without oracle, the degree of parallelism is related
to the minimal cardinality b of blocking subsets of atomic components. A subset
of atomic components is blocking iff every interaction in the system requires at

1 Eclipse Meta-modeling Framework

least one component of the subset to participate. Now, the degree of parallelism
l is such that b ≤ l ≤ n. In fact, whenever less than b components are running
some interaction is possible and the Engine can eventually launch it;

• For an implementation with the lazy oracle, the maximal degree of par-
allelism is related to the maximal degree of interaction d, that is the maximal
number d of components involved in a single interaction. In this case, the degree
of parallelism l is such that 0 ≤ l ≤ d. Interactions can be executed only from
global states so there is no possibility of concurrency between interactions - the
Engine is not able to keep running more than d atomic components at time;

• Finally, for dynamic oracles, the degree of parallelism is related again to the
minimal cardinality b⋆ of some particular blocking sets of atomic components,
the ones which block all the maximal interactions. We have b⋆ ≤ b and the degree
of parallelism l achieved in this case is such that b⋆ ≤ l ≤ n. Using a similar
reasoning as in the case without oracle, whenever less than b⋆ components are
running, there should exist a maximal interaction ready and the Engine can
eventually lauch it.

As a first benchmark, we consider a linear chain consisting of a set of iden-
tical components connected serially as shown in Figure 6. A component Ci has
two ports, li and ri. It has a single control state Si, and two transitions labeled
by li and ri. The transition ri is always enabled, its guard being true, whereas
the transition li has a non-trivial guard gi. We model broadcast from each com-
ponent to its right neighbor by considering two types of interactions, 1) a set of
singleton interactions consisting of the ports ri; 2) a set of binary interactions
rili+1 between the neighboring components, and 3) the priority riπrili+1 for the
above interaction pair.

ri-1
true

li-1 ri-1

li-1
gi-1

Si-1 ri
true

li ri

li
gi

Si ri+1
true

li+1 ri+1

li+1
gi+1

Si+1

Interactions: {ri , ri li+1}i∈ I

Priorities: {ri ππππ ri li+1 }i∈ I

Ci-1 Ci Ci+1

Fig. 6. The Linear Chain

0 2

31

5

4 6

7

8 10

119

13

12 14

15

(a) (b)

in

out
ph:=ph+1

in

out

Priorities: {outiinj ππππoutkini, if(phi=phk)}

Interactions: {outjini if(phj=phi); i∈ [0,N], j∈ {i+2k}k∈∈∈ ∈ [i, ln(N)-1]}

0 2

31

5

4 6

7

8 10

119

13

12 14

15

(a) (b)

in

out
ph:=ph+1

in

out

in

out
ph:=ph+1

in

out

Priorities: {outiinj ππππoutkini, if(phi=phk)}

Interactions: {outjini if(phj=phi); i∈ [0,N], j∈ {i+2k}k∈∈∈ ∈ [i, ln(N)-1]}

Fig. 7. The Parallel Adder

Our experiment considers a system with 25 such components. Each compo-
nent executes 100 steps (transitions), getting busy for 50-60 milliseconds on an
l transition and 5-6 milliseconds on an r transition respectively. We performed
the experiment on a single-processor PC running linux. The busy times of the
atomic components were simulated by sleep system calls. We measured the de-

gree of parallelism in the system with respect to the execution time. Figure 8
shows the results obtained for dynamic and lazy oracles.

Without oracle, the degree of parallelism is 25 continuously. In fact, whenever
a component is ready, it can continue alone on the r interaction and the Engine
notifies it immediately. For the lazy oracle, the maximal degree of parallelism
equals the maximal degree of an interaction, which is 2. Whenever an interaction
takes place, the two participating atomic components are active simultaneously
for the first 5-6 ms, after which only the atomic component performing the l
transition remains busy for 50-60 ms. Therefore, the degree of parallelism stays
at an average close to 1. Finally, for dynamic oracle, the minimal blocking set
has cardinality 12 (as for a linear chain with n atoms, the minimal cardinality
is n/2, when every alternate atoms are busy blocking all the maximal interac-
tions). Hence, we have at least 12 atomic components executing at any time.
The measured degree of parallelism in this case, remains in average higher than
15.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

Dynamic Oracle
Lazy Oracle

Fig. 8. Degree of Parallelism for Linear Chain

The second benchmark treats a parallel adder originally presented in [9],
which adds 2m values in a hypercube multi-processor machine. When the algo-
rithm begins, the nodes hold the values to be added. On termination, the node
labeled 0 contains their sum. Figure 7 presents the BIP model of a pipelined
parallel-adder in a 4-dimensional hypercube with 24 nodes. Each node is mod-
eled as a BIP component with ports in and out, labeling two transitions from a
single control state, as shown in Figure 7(b). It also contains an array of values
to be added (not shown on the figure) and the variable ph which records the
index of current running addition on that node.

For each addition, every node receives partial addition results from its pre-
decessors, adds them to its own value, sends the resulting sum to its unique
successor and increments its ph variable. Communications between nodes are

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

No Oracle
Dynamic Oracle
Lazy Oracle

Fig. 9. Degree of Parallelism for Parallel Adder

modeled as interactions between the out port of a node and the in port of its
successor, with a transfer of value from the node to the successor. Priorities are
used to enforce correct order of the computation, i.e. a node cannot perform an
out unless it has synchronized through its in port with all its predecessors. The
final result of every addition is generated by the root node labeled 0.

The degrees of parallelism achieved, respectively without oracle and with
lazy and dynamic oracles, are shown in Figure 9. Without oracle, the degree
of parallelism is in average equal to 10. Let us notice that, without oracle, the
functional behavior is completely wrong as priorities are used to enforce the right
order of computation between nodes. With the lazy oracle, the maximal degree
of parallelism equals the maximal degree of interaction which is 2. However,
due to specific timing constraints on the execution of in and out transitions,
the degree of parallelism stays in average close to 1. Finally, the dynamic oracle
achieves a much better performance with an average degree of parallelism equal
to 7.

5 Conclusion

We study a distributed implementation method for BIP, a framework for the
description of component-based heterogeneous systems. BIP offers two powerful
mechanisms for composing components by using interactions and priorities. The
combination of interactions and priorities is expressive enough to express usual
composition operators of other languages as shown in [3]. In particular to model
broadcast, interactions do not suffice and other operators such as restrictions or
priorities are needed. Furthermore, priorities are essential for describing schedul-
ing policies, run-to-completion execution, urgency in real-time systems [6]. The
proposed implementation method is quite general and can be easily adapted to
other languages.

A key innovative idea is the translation of languages based on global state
semantics to observationally equivalent distributed models from which imple-
mentation is straightforward. The decomposition of the translation in two steps
allows separation of concerns in solving two main problems: the definition of
partial state semantics and the expression of composition in terms of message
passing primitives. Operational semantics provide an adequate framework for
formalizing the translation. The models are obtained by successive refinements
that preserve observational equivalence.

The main results show that whenever priorities are needed to express coordi-
nation between components, the operational semantics rules should be strength-
ened to take into account dependency between interactions. Oracles are very
simple controllers enforcing preservation of semantics. Maximal parallelism is
achieved for dynamic oracles allowing interaction as soon as possible. Nonethe-
less, these oracles may entail considerable computational overhead. As illustrated
by experimental results the degree of parallelism depends on the type of the or-
acle and topology of the interactions.

There are many open problems to be investigated in the proposed framework
for distributed implementation. These include the preservation of specific classes
of properties, and less centralized implementations for the Engine.

References

1. Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed
semantics and implementation for systems with interaction and priority. Technical
Report TR-2008-3, Verimag, Centre Équation, 38610 Gières, March 2008.

2. Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in BIP. In SEFM, pages 3–12, 2006.

3. Simon Bliudze and J. Sifakis. The algebra of connectors – structuring interaction
in BIP. In EmSoft, pages 11–20, 2007.

4. K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

5. Stephen J. Garland and Nancy A. Lynch. The ioa language and toolset: Sup-
port for designing, analyzing, and building distributed systems. Technical Report
MIT/LCS/TR-762, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, August 1998.

6. Gregor Gößler and Joseph Sifakis. Priority systems. In FMCO, pages 314–329,
2003.

7. ITU-T. Recommendation Z.100. Specification and Description Language (SDL).
Technical Report Z-100, International Telecommunication Union – Standardization
Sector, Genève, November 1999.

8. Robin Milner. Communication and concurrency. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1995.

9. M J Quinn. Designing efficient algorithms for parallel computers. McGraw-Hill,
Inc., New York, NY, USA, 1986.

