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In this paper we give exact or almost exact bounds for the continuous gathering problem on grids. Under

very general hypothesis on the traffic demand, we mainly prove that the throughput is determined by the

bottleneck around the base station. We deal with two cases: the base station located in the center and in

the corner. We use dual lower bounds and describe a protocol which is optimal when the traffic is uniform.

1 Introduction

The routing problem of steady traffic demands in a radio network has been studied extensively in

the literature. In [KMP08] it was proven that if traffic demands are sufficiently steady the problem

can be expressed in an independent form of the interference model as the Round Weighting Problem

(RWP). We deal with a special case of RWP that considers the gathering of the flow. We represent

nodes by the vertices of a transmission graph G = (V,E). The edges of this graph connect nodes

that can effectively communicate. The interference model is introduced by providing an implicit

definition of the set of possible rounds R . We take a simple model of interference where a round

is any set of pairwise disjoint edges at distance at least ds
I + 1 (Manhattan distance). It defines

a symmetric interference model that permits the calls to happen in both directions (download or

upload).

The RWP is then defined as follows: The traffic demands are represented by a flow demand

f (u,v) : V ×V → N and one wishes to find a (positive) weight function w : R → R
+ that enables the

flow demands to be carried over the network. The objective MinRW is then to minimize the total

weight (namely w(R ) = ∑R∈R w(R)).

In the case of a general transmission graph with an arbitrary traffic pattern the problem is

very difficult to approximate, indeed, to approximate the RWP within n1−ε is NP-Hard [KMP08].

A practically important case is the Gathering (or personalized broadcasting): the traffic pattern

corresponds then to a simple flow, i.e. all demands are directed toward a single node called the BS

(Base Station). Gathering is easier to approximate since a simple 4–approximation does exist, but

the problem remains NP-Hard. Instances on a grid are tractable mainly due to the local structure

of the grid. Note also that the structure of the transmission graph plays a central role, if G is a

grid or a unit disk graph the RWP admits a PTAS but remains NP-Hard.

In [BP05], a similar problem, the Round Scheduling Problem (RSP) was treated. The relation

with the RWP is the following: if one must repeat rounds scheduling many times then the problem
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is equivalent to the RWP . The RSP is quite harder to solve than our problem which can be be

considered either as a limited case or relaxation. Not surprisingly we obtain not only simpler

formulae than Bermond and Peters, but they are valid for a larger class of traffic patterns. Note

that, in [BP05] dI > 1 and it is not symmetric because they deal with the exact case of gathering

(directed interference). In this paper we study RWP on 2-dimensional grid graphs considering the

interference distance ds
I = 1 (but our method can be extended to any ds

I ). The most basic case is

ds
I = 0, where R is simply the set of the matchings of G. Since all the traffic demands have as

destination/source the BS ( f (u,v) = 0 when v 6= BS) we simply note f (u,BS) as f (u). We denote

S j the set of nodes at distance j of the BS, and E j = (S j,S j−1) the set of arcs of the grid connecting

the nodes in S j to S j−1. For example, S1 represents the set of 4 nodes neighbors of BS and E1

consists of the 4 edges ending in BS.

2 Lower bounds

First we recall the dual lower bound from [KMP08]: Given a (positive) length function l(e) on the

edges of the transmission graph, we define l(u,BS) or simply l(u) as the minimum length of a path

connecting u to BS. Since the problem is homogeneous the dual is indeed: Maximize
{

∑ l(u) f (u)
}

with l(R) ≤ 1,∀R ∈ R . Then MinRW ≥ ∑ l(u) f (u)
maxR∈R l(R) .

3 Uniform traffic case

In the uniform case, we consider that all the nodes have the same flow demand. Without loss of

generality, we suppose f (u) = 1 for all u ∈ V except BS. We denote T the total traffic demand

∑v∈V f (u). In this case, T = N −1 where N is the number of nodes of the grid. We define T ′ as

the traffic demand that must cross the arcs at distance 2 of BS in order to be gathered. Thus,

T ′ = T −∑u∈Γ(BS) f (u), where Γ(BS) denotes the set of neighbors of BS.

3.1 Base Station in the center

Theorem 1 Given a grid with the BS in the center, MinRW = T + T ′

4 = 5
4N − 9

4.

Proof: The proof has two parts. The first part consists in finding a feasible solution for the dual

problem. This solution is then, a lower bound for our RWP . In the second part, we find an upper

bound given by a feasible solution of the original problem. Since there is no gap between both

lower and upper bounds, the result follows.

(Lower Bound) The edges with strictly positive values are depicted in figure 1. The edges e ∈ E1

have l(e) = 1. It comes from the fact that at most one edge in E1 can be activated for each round.

The edges e ∈ E2 have l(e) = 1
4, because it is possible to activate at most 4 edges in a round. For

all the remaining edges l(e) = 0. The minimum length of the path connecting u to BS, l(u), is

therefore 5
4 except for the 4 neighbors of BS.

(Upper Bound) We gather the traffic using the 4 adjacent arcs to the BS. Moreover, all the flow

at distance larger than 2 will be collected by the 4 full arcs at distance 2 as shown in figures 1

and 2. We denote e1
i (1 ≤ i ≤ 4) the 4 arcs adjacent to the BS and e2

i the 4 arcs at distance 2.

We define Ri (R1, R2, R3 and R4) as the subset of rounds using the arc e1
i and R5 as the subset of

rounds using e2
i . Then, in order to attain the bound, we need to use only rounds in these subsets.
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Fig. 1: Dual values
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Fig. 2: Normal rounds Ri0n
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Fig. 3: Special rounds Ri0s

Because of ds
I = 1, to avoid interference, we will use different rounds for the calls in E j, E j+1

and E j+2. So, we have 13 types of rounds called R5 ∈ R5 and Ri j ∈ Ri, 1≤ i ≤ 4, 0≤ j ≤ 2. Ri j will

contain arcs either e1
i or arcs in E j+3p (p ≥ 1). R5 contains only the arcs e2

i . Note that, except

E2, each E j use only rounds type Ri, j mod 3. We will choose the weights such that w(Ri j) = T
12 and

w(R5) = T ′

4 . Doing so we attain the lower bound but we have a problem with the 4 non-filled nodes

in S2 (in figure 3) which cannot be directly routed to BS via the edges in e2
i . If we use an edge of

E2 but different from e2
i , we can activate at the same round at most 3 edges of E2 instead 4 (from

e2
i ) and we will not reach the lower bound.

To deal with this difficulty, we split each round of type Ri0 in two new rounds: The special round

Ri0s used to move the flow of one problematic node from S2 to S3 and the normal round Ri0n where

all the arcs are directed to the BS. The weights proposed for these rounds are w(Ri0s) = 1, and

w(Ri0n) = T
12 −1. Note that, for arcs in E j with j ≥ 3, calls used by both types of rounds Ri0s and

Ri0n are exactly the same. The differences between these types of rounds in arcs in E1, E2 and E3

are presented in figures 2 and 3. Finally, we have used the rounds Ri0s , Ri0n , Ri1, Ri2, R5, 1≤ i ≤ 4.

Their respective weights are w(Ri0s) = 1, w(Ri0n) = T
12−1, w(Ri j) = T

12, and w(R5) = T ′

4 .

Now, we need to show that there is a routing of the flow that respects the capacity induced of

the arcs by our round weights. Note first that, globally, the capacity by each Ei, i ≥ 2 is at least

T ′. This capacity is enough to transmit the flow desired between Ei+1 to Ei and so on. Now, we

propose a routing such that all the nodes in Si receive the same quantity of flow from Si+1. A

special case occurs when distributing the flow between the nodes in S3. As well as considering

the flow from S4 we need to consider the flow from the 4 special nodes in S2. Note that by the

symmetry of the grid, we can only take into account the routing of one quadrant of the grid, and

then we repeat and rotate the configuration to the rest of the quadrants. �

3.2 Base Station in the corner

Theorem 2 Given a grid with the BS in the corner, MinRW = T + T ′

2 + 1
2 = 3

2N −2.

Proof: The structure of the proof is similar to Theorem 1.

(Lower Bound) The values of the lengths l(e) are depicted in figure 4. The minimum length of

the path connecting u to BS, l(u), is therefore 3
2 except for X and Y which is l(u) = 1, and for the

node z which is l(u) = 2. Then MinRW ≥ T + T ′

2 + 1
2, where the term 1

2 can be explained by the

extra cost needed to send traffic from node z (the problematic node) to the usual route.

(Upper Bound) According to the dual values shown in figure 4, any scheme that costs about
3T
2 must route ∼ T

2 units of traffic through each of the nodes X and Y . We only need three



sets of rounds Ri, each set must be split as shown in figure 5 to completely cover the grid. Let

T ” = T ′− f (z) = T ′−1, we propose the respective weights: w(R1) = T
2 , w(R2) = T

2 , w(R3A) = T ”
2 and

w(R3B) = 1. The set R3 will be used to cover the arcs Ei when (i+1) mod 3 = 0, we use R1 and R2

otherwise. It follows that we can cover the arcs Ei at least T ” times. Thus, we used a total weight

of T + T ”
2 + 1 that matches the lower bound. A possible routing respecting our round weights

(induced capacity) is such that all the nodes in Si receive the same quantity of flow from Si+1. �
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4 Generalizations

The proof given for an arbitrary traffic can be generalized to most traffics as follows. From lemma 1,

we remark that outside the radius 3 ball the round R5 is never used. So, a weight of T/4 is unused

in most of the network and can be used to balance the traffic a priori. Thus, balancing the traffic

turns into a transportation problem in the grid. We can prove that a non uniform demand can be

re-routed to a uniform one if no node contains more than βT units of traffic, and the 5T/4 bound

holds. The same idea can also be applied to the case of an arbitrary BS location. The flow must

then be routed toward the radius 3 ball in a uniform way and this is possible as soon as the BS

is far enough (distance ≥ da) from the borders. The quality of the constants β,da depend on how

precise are the algorithms.

Another demonstration for the same results consists in finding k long non-interfering paths (with

k the degree of BS) for each node through the BS. The gathering protocol is then quite simple

since it sends the traffic of each node using the k paths in a balanced way. This should prove that

the gathering time is T (1+ 1
k )+o(T ) for most practical networks.
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Septièmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommuni-

cations (AlgoTel’05), pages 103–106, Presqu’̂ıle de Giens, May 2005.

[KMP08] Ralf Klasing, Nelson Morales, and Stéphane Pérennes. On the complexity of bandwidth

allocation in radio networks. Theoretical Computer Science, 2008. To appear.


