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Abstract

Hematopoiesis is a complex biological process that leads to the production and reg-

ulation of blood cells. It is based upon differentiation of stem cells under the action

of growth factors. A mathematical approach of this process is proposed to carry out

explanation on some blood diseases, characterized by oscillations in circulating blood

cells. A system of three differential equations with delay, corresponding to the cell cycle

duration, is analyzed. The existence of a Hopf bifurcation for a positive steady-state is

obtained through the study of an exponential polynomial characteristic equation with

delay-dependent coefficients. Numerical simulations show that long period oscillations

can be obtained in this model, corresponding to a destabilization of the feedback regu-

lation between blood cells and growth factors. This stresses the localization of periodic

hematological diseases in the feedback loop.

Keywords: delay differential equations, characteristic equation, delay-dependent coefficients,
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1 Introduction

Hematopoiesis is the process by which erythrocytes (red blood cells), leukocytes (white blood
cells) and thrombocytes (platelets) are produced and regulated. These cells perform a variety
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of vital functions such as transporting oxygen, repairing lesions, and fighting infections.
Therefore, the body must carefully regulate their production. For example, there are 3.5 ×
1011 erythrocytes for each kilogram of body weight, so almost 7% of the body mass is red
blood cells. The turnover rate is about 3×109 erythrocytes/kg of body weight each day, which
must be carefully regulated by several O2 sensitive receptors and a collection of growth factors
and hormones. Although understanding of blood production process evolves constantly, the
main outlines are clear.

Blood cells, that can be observed in blood vessels, are originated from a pool of hematopoi-
etic pluripotent stem cells, located in the bone marrow of most of human bones. Hematopoi-
etic pluripotent stem cells, which are undifferentiated cells with a high self-renewal and differ-
entiation capacity, give rise to committed stem cells, which form bands of cells called colony
forming units (CFU). These committed stem cells are specialized in the sense that they can
only produce one of the three blood cell types: red blood cells, white cells or platelets. Colony
forming units differentiate in precursor cells, which are not stem cells anymore, because they
have lost their self-renewal capacity. These cells eventually give birth to mature blood cells
which enter the bloodstream.

One can see that the hematopoiesis process is formed by a succession of complex differ-
entiations from hematopoietic pluripotent stem cells to precursors. These different differen-
tiations, occurring in the bone marrow, are mainly mediated by growth factors. They are
proteins acting, in some way, like hormones playing an activator/inhibitor role. Each type
of blood cell is the result of specific growth factors acting at a specific moment during the
hematopoiesis process.

The red blood cells production, for example, called erythropoiesis, is mainly mediated by
erythropoietin (EPO), a growth factor produced at 90% by the kidneys. Erythropoietin is
released in the bloodstream due to tissue hypoxia. It stimulates the erythropoiesis in the
bone marrow, causing an increase in circulating red blood cells, and consequently an increase
in the tissue pO2 levels. Then the release of erythropoietin decreases and a regulation of
the process is observed: there is a feedback control from the blood to the bone marrow.
In extreme situations, like bleeding or moving to high altitudes, where needs in oxygen are
important, erythropoiesis is accelerated.

White blood cells are produced during leukopoiesis and the main growth factors act-
ing on their regulation are Granulocyte-CSF (Colony Stimulating Factor), Macrophage-
CSF, Granulocyte-Macrophage-CSF, and different interleukins (IL-1, IL-2, IL-6, IL-8, etc.).
Platelets are mainly regulated by thrombopoietin (TPO), which acts similarly to erythropoi-
etin.

The hematopoiesis process sometimes exhibits abnormalities in blood cells production,
causing the so-called dynamical hematological diseases. Most of these diseases seem to be
due to a destabilization of the pluripotent hematopoietic stem cell compartment caused by
the action of one or more growth factors. For erythropoiesis, abnormalities in the feedback
between erythropoietin and the bone marrow production are suspected to cause periodic
hematological disorders, such as autoimmune hemolytic anemia. Cyclic neutropenia, one
of the most intensively studied periodic hematological diseases characterized by a fall of
neutrophils (white blood cells) counts every three weeks, is now known to be due to a desta-
bilization of the apoptotic (mortality) rate during the proliferating phase of the cell cycle.

Mathematical models of hematopoiesis have been intensively studied since the end of the
1970s. To our knowledge, Mackey [9, 10] proposed the first model of hematopoiesis in 1978
and 1979. This model takes the form of a delay differential equation. Since then it has
been modified and studied by many authors, including Mackey. The works of Mackey and
Rudnicki [14, 15] and Mackey and Rey [11, 12, 13] deal with age-maturity structured models
of hematopoiesis based on the model of Mackey [9]. Recently, Pujo-Menjouet et al. [18, 19]
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have studied the model of Mackey [9, 10] and obtained the existence of periodic solutions,
with long periods comparing to the cell cycle duration, describing phenomena observed during
some periodic hematological diseases. However, the influence of growth factors has never been
explicitly incorporated in these models.

In 1995 and 1998, Belair et al. [3] and Mahaffy et al. [16] considered a mathematical model
for erythropoiesis. The model is a system of age and maturity structured equations, which
can be reduced to a system of delay differential equations. They showed that their model
fitted well with experimental observations in normal erythropoiesis but they stressed some
difficulties to reproduce pathological behavior observed for periodic hematological diseases.

In this paper we consider a system of differential equations modelling the evolution of
hematopoietic stem cells in the bone marrow, of mature blood cells in the bloodstream and
of the concentration of some growth factors acting on the stem cell population. A delay
naturally appears in the model, describing the cell cycle duration. This approach is based
on the early work of Mackey [9, 10] and the recent work of Belait et al. [3] and Mahaffy
et al. [16] dealing with erythropoiesis. Our aim is to show that oscillations in such models
are mainly due to the destabilization of the feedback loop between blood cells and growth
factors, causing periodic hematological diseases.

The paper is organized as follows. We first describe the biological background leading to
the mathematical model. After showing the existence of a positive equilibrium, we analyze
its local asymptotic stability. This analysis is performed through the study of a characteristic
equation which takes the form of a third degree exponential polynomial with delay-dependent
coefficients. Using the approach of Beretta and Kuang [4], we show that the positive steady-
state can be destabilized through a Hopf bifurcation and stability switches can occur. We
illustrate our results with numerical simulations and show that long period oscillations can
be observed in this model, as it can be observed in patients with some periodic hematological
diseases.

2 The Model

In the bone marrow, hematopoietic stem cells are divided in two groups: proliferating and
non-proliferating, or quiescent, cells. The existence of a quiescent phase, also called G0 phase,
in the cell cycle has been proved, for example, by Burns and Tannock [5]. Quiescent cells
represent the major part of hematopoietic stem cells, that is about 90% of the hematopoietic
stem cell population. Proliferating cells are cells actually in cycle: they are committed
to divide during mitosis after, in particularly, having synthesized DNA. Immediately after
division, proliferating cells enter the G0 phase where they can stay their entire life.

We denote by Q(t) and P (t) the quiescent and proliferating cell populations at time t,
respectively. In the proliferating phase, apoptosis, which is a programmed cell death, controls
the cell population and eliminates deficient cells. We assume that the apoptosis rate, denoted
by γ, is constant and nonnegative. In the G0 phase, cells can disappear, by natural death,
with a rate δ. They also differentiate in mature blood cells with a rate g(Q)/Q, where the
function g is assumed to be nonnegative with g(0) = 0, because no cell can become mature
when there is no hematopoietic stem cell, and continuously differentiable. Moreover, we
assume that the function Q 7→ g(Q)/Q is nondecreasing for Q ≥ 0, which is equivalent to

0 ≤ g′(0) ≤
g(Q)

Q
≤ g′(Q) for Q > 0. (1)

It follows, in particularly, that g is nondecreasing and limQ→+∞ g(Q) = +∞.
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Quiescent cells can also be introduced in the proliferating phase during their life in order
to ensure the population renewal, at a nonconstant rate β. It is generally accepted that β
depends on the total population of non-proliferating cells [9, 21]. However, the production
of mature blood cells is also mediated by growth factors through the stem cell population:
growth factors induce differentiation and maturation of hematopoietic cells via the stem cell
compartment. Thus, the dependence of β on growth factors must be represented. We assume
that β is continuously differentiable. Moreover, in the particular case of erythropoiesis, β is
an increasing function of the erythropoietin concentration, because a release of erythropoietin
increases the production of red blood cells. Hence, we assume that β is an increasing function
of the growth factor concentration, with β(Q, 0) = 0, and a nonincreasing function of the G0

phase population [9].
Thus, the equations modelling the differentiation of hematopoietic stem cells in the bone

marrow are

dQ

dt
= −δQ(t) − g(Q(t)) − β(Q(t), E(t))Q(t)

+2e−γτβ(Q(t − τ), E(t − τ))Q(t − τ), (2)

dP

dt
= −γP (t) + β(Q(t), E(t))Q(t)

−e−γτβ(Q(t − τ), E(t − τ))Q(t − τ), (3)

where E(t) is the growth factor concentration at time t. The parameter τ > 0 denotes the
average time needed by a proliferating cell to divide, that is, τ is an average cell cycle duration.
The last term in equation (2) represents the amount of cells coming from the proliferating
phase at division. They are in fact quiescent cells introduced in the proliferating phase
one generation earlier. The factor 2 represents the division of each proliferating cell in two
daughter cells.

At the end of their development, precursors give birth to mature blood cells, which are
introduced in the bloodstream. We denote by M(t) the population of circulating mature
blood cells. These cells only proceed from G0 cells at the rate g(Q). Mature blood cells are
degraded, in the bloodstream, at a rate µ ≥ 0. Red blood cells usually live an average of 120
days, whereas platelets live about one week and white blood cells only few hours. Mature
blood cell population satisfies the differential equation

dM

dt
= −µM(t) + g(Q(t)).

The growth factor concentration is governed by a differential equation with an explicit
negative feedback. This feedback describes the control of the bone marrow production on the
growth factor production, explained in the previous section. This control acts by the mean of
circulating blood cells: the more circulating blood cells the less growth factor produced. We
denote by f the feedback control. The function f depends on the population of circulating
cells M and is positive, decreasing and continuously differentiable. Then

dE

dt
= −kE(t) + f(M(t)),

where k ≥ 0 is the disappearance rate of the growth factor. In fact, the action of the mature
blood cell population on the production of growth factor is not immediate: it is slightly
delayed, but this delay is negligible in front of the cell cycle duration, so we do not mention
it.
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At this point, one can notice that system (2)–(3) is not coupled: the population in
the proliferating phase is not needed in the description of the hematopoiesis process, since
circulating blood cells only come from quiescent cells. From a mathematical point of view,
the solution of (2) does not depend on the solution of (3) whereas the converse is not true.
Consequently, we concentrate on the system of delay differential equations





dQ

dt
= −δQ(t) − g(Q(t)) − β(Q(t), E(t))Q(t)

+2e−γτβ(Q(t − τ), E(t − τ))Q(t − τ),

dM

dt
= −µM(t) + g(Q(t)),

dE

dt
= −kE(t) + f(M(t)).

(4)

First, one can notice that the solutions Q(t), M(t) and E(t) of system (4) are nonnegative.
Let us suppose, by contradiction, that there exists t0 > 0 and ε > 0 such that Q(t) > 0

for t < t0, Q(t0) = 0 and Q(t) < 0 for t ∈ (t0, t0 + ε). Then, since g(0) = 0,

dQ

dt
(t0) = 2e−γτβ(Q(t0 − τ), E(t0 − τ))Q(t0 − τ) > 0.

This yields a contradiction. Hence Q(t) is nonnegative. Since the functions g and f are
nonnegative, we similarly obtain that M(t) and E(t) are nonnegative.

Secondly, one can notice that the solutions of (4) are bounded when δ + g′(0) > 0.
We first concentrate on the solution E(t). Using a classical variation of constant formula,

we obtain, for t ≥ 0,

E(t) = e−ktE(0) + e−kt

∫ t

0

eksf(M(s))ds.

Since the function f is decreasing and bounded, we have

E(t) ≤ e−ktE(0) +
f(0)

k
(1 − e−kt).

This yields that, if E(0) ≤ f(0)/k, then E(t) ≤ f(0)/k and, if f(0)/k < E(0), then E(t) ≤
E(0). Consequently, E(t) is bounded.

Now we focus on the solution Q(t). If Q is bounded then the mapping t 7→ g(Q(t)) is
bounded so we will obtain that M(t) is bounded using similar arguments than for the above
case.

Let C > 0 be a bound of E and assume that limQ→∞ β(Q, E) = 0, for all E ≥ 0, and that
δ+g′(0) > 0. If 2e−γτβ(0, C) ≥ δ+g′(0), then, since the mapping Q 7→ β(Q, E) is decreasing
and tends to zero at infinity, there exists Q0 ≥ 0 such that 2e−γτβ(Q0, C) = δ + g′(0) and
2e−γτβ(Q, C) < δ + g′(0) for Q > Q0. If 2e−γτβ(0, C) > δ + g′(0) then this result holds for
Q0 = 0.

We then set

Q1 := 2e−γτ β(0, C)Q0

δ + g′(0)
.

Let Q ≥ Q1 be fixed and let 0 ≤ y ≤ Q. If y ≤ Q0, then

2e−γτβ(y, C)y ≤ 2e−γτβ(0, C)Q0 = (δ + g′(0))Q1 ≤ (δ + g′(0))Q.

On the other hand, if y > Q0, then

2e−γτβ(y, C)y < (δ + g′(0))y < (δ + g′(0))Q.
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Thus,
2e−γτ max

0≤y≤Q
β(y, C)y ≤ (δ + g′(0))Q, for Q ≥ Q1.

We assume now, by contradiction, that lim supQ(t) = +∞. Then there exists t0 > τ such
that

Q(t) ≤ Q(t0), for t ∈ [t0 − τ, t0], and Q(t0) > Q1.

Since the function E 7→ β(Q, E) is increasing, we deduce, from (1), that

Q′(t0) ≤ g′(0)Q(t0) − g(Q(t0)) − β(Q(t0), E(t0))Q(t0) < 0.

We obtain a contradiction so Q is bounded.
These results are stated in the following proposition.

Proposition 2.1. Assume that limQ→∞ β(Q, E) = 0, for all E ≥ 0, and that δ + g′(0) > 0.
Then the solutions of system (4) are bounded.

A solution (Q, M, E) of (4) is a steady-state or equilibrium if

dQ

dt
=

dM

dt
=

dE

dt
= 0,

that is 



δQ + g(Q) = (2e−γτ − 1)β(Q, E)Q,

µM = g(Q),

kE = f(M).

(5)

We make some remarks. It would be nonsense to suppose that the rates µ and k may vanish,
because we cannot allow the blood cell population to grow indefinitely and growth factor is
necessarily degraded while in blood. Hence, we assume that µ > 0 and k > 0.

Since g(0) = 0, it follows that (0, 0, f(0)/k) is always a steady-state of (4) that we will call
in the following the trivial equilibrium of (4). This steady-state corresponds to the extinction
of the cell population with a saturation of the growth factor concentration.

From now on and in the following, we assume that

lim
Q→+∞

β

(
Q,

1

k
f

(
1

µ
g(Q)

))
= 0. (6)

Since limQ→+∞ g(Q) = +∞ and limM→+∞ f(M) = 0, this property holds true if β(Q, 0) = 0,
for all Q ≥ 0, or limQ→+∞ β(Q, E) = 0, for all E ≥ 0.

Let us assume that (4) has a nontrivial positive steady-state (Q∗, M∗, E∗), that is, Q∗ > 0,
M∗ > 0 and E∗ > 0 satisfy (5). Then

(
2e−γτ − 1

)
β(Q∗, E∗)=δ +

g(Q∗)

Q∗
, M∗=

1

µ
g(Q∗) and E∗=

1

k
f(M∗). (7)

Necessarily, we have
2e−γτ − 1 > 0,

which is equivalent to

τ <
ln(2)

γ
. (8)
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We assume that (8) holds. Since Q∗ > 0 and

E∗ =
1

k
f(M∗) =

1

k
f

(
1

µ
g(Q∗)

)
,

we must have
(
2e−γτ − 1

)
β

(
Q∗,

1

k
f

(
1

µ
g(Q∗)

))
= δ +

g(Q∗)

Q∗
. (9)

Let us define

β̃(Q) := β

(
Q,

1

k
f

(
1

µ
g(Q)

))
. (10)

Since f is decreasing, g is nondecreasing and β(Q, E) is decreasing with respect to Q and
increasing with respect to E, we obtain

β̃′(Q)=
∂β

∂Q

(
Q,

1

k
f

(
1

µ
g(Q)

))
+

g′(Q)

kµ
f ′

(
1

µ
g(Q)

)
∂β

∂E

(
Q,

1

k
f

(
1

µ
g(Q)

))
< 0.

Therefore, β̃ is decreasing,

β̃(0) = β

(
0,

1

k
f(0)

)
and lim

Q→+∞
β̃(Q) = 0.

Moreover, from (1), the function Q 7→ δ + g(Q)/Q is nondecreasing. Consequently, equation
(9) has a positive solution, which is unique, if and only if

δ + g′(0) <
(
2e−γτ − 1

)
β

(
0,

1

k
f(0)

)
. (11)

These results are summarized in the next proposition.

Proposition 2.2. Assume that µ > 0 and k > 0.

(i) If

δ + g′(0) >
(
2e−γτ − 1

)
β

(
0,

1

k
f(0)

)
, (12)

then system (4) has a unique steady-state (0, 0, f(0)/k);

(ii) If condition (11) holds, then system (4) has two steady-states: a trivial one (0, 0, f(0)/k)
and a nontrivial positive one (Q∗, M∗, E∗), where Q∗ is the unique positive solution of
(9), M∗ = g(Q∗)/µ and E∗ = f(M∗)/k.

The above proposition indicates that system (4) undergoes a transcritical bifurcation when
δ +g′(0) = (2e−γτ − 1)β(0, f(0)/k). Since the trivial steady-state (0, 0, f(0)/k) corresponds,
biologically, to the extinction of the cell population and a saturation of the growth factor
concentration, it is not the more interesting equilibrium. It describes a pathological situation
that can only lead to death without appropriate treatment. Therefore we focus on the local
stability analysis of the other steady-state (Q∗, M∗, E∗). One can check that condition (11),
which ensures the existence of this steady-state, is equivalent to

δ+g′(0)<β

(
0,

f(0)

k

)
and 0≤τ <τmax :=

1

γ
ln




2β
(
0, f(0)

k

)

δ+g′(0)+β
(
0, f(0)

k

)



 . (13)

One can notice that, using the implicit function theorem, we can easily show that the
steady-states Q∗, M∗ and E∗ are continuously differentiable with respect to the cell cycle
duration τ . Moreover, Q∗ and M∗ are decreasing functions of τ and E∗ is an increasing
function of τ , with limτ→τmax

(Q∗(τ), M∗(τ), E∗(τ)) = (0, 0, f(0)/k).
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3 Local Stability Analysis

We concentrate on the study of the stability of the nontrivial equilibrium (Q∗, M∗, E∗).
Hence, we assume throughout this section that µ, k > 0 and condition (13) holds.

We investigate the local asymptotic stability of the steady-state (Q∗, M∗, E∗). The delay
is often seen as a destabilization parameter (see, for example, Metz and Diekmann [17], Fortin
and Mackey [6]), so we perform this stability analysis with respect to the delay parameter τ ,
which represents the cell cycle duration. We recall that Q∗, M∗ and E∗ satisfy (7).

We linearize (4) around the equilibrium (Q∗, M∗, E∗). Set

q(t) = Q(t) − Q∗, m(t) = M(t) − M∗ and e(t) = E(t) − E∗.

The linearized system is





dq

dt
= −Aq(t) + Bq(t − τ) − Ce(t) + De(t − τ),

dm

dt
= −µm(t) + Gq(t),

de

dt
= −ke(t) − Hm(t),

(14)

where the real coefficients A, B, C, D, G and H are defined by

A = δ + g′(Q∗) + β(Q∗, E∗) + β′
1(Q

∗, E∗)Q∗,

B = 2e−γτ [β(Q∗, E∗) + β′
1(Q

∗, E∗)Q∗] ,

C = β′
2(Q

∗, E∗)Q∗ > 0,

D = 2e−γτβ′
2(Q

∗, E∗)Q∗ > 0,

G = g′(Q∗) > 0,

H = −f ′(M∗) > 0.

(15)

One can notice that these coefficients depend, explicitly or implicitly, on the parameter τ
through the equilibrium values Q∗, M∗ and E∗. However, we do not stress this dependence
when we write the coefficients. Moreover, from the assumptions on β, g and f , the coefficients
C, D, G and H are strictly positive.

In the above definitions, we have used the notations

β′
1(Q, E) :=

∂β

∂Q
(Q, E) and β′

2(Q, E) :=
∂β

∂E
(Q, E).

Furthermore, one can notice that

A − B = g′(Q∗) −
g(Q∗)

Q∗
−
(
2e−γτ − 1

)
β′

1(Q
∗, E∗)Q∗ ≥ 0

and
D − C =

(
2e−γτ − 1

)
β′

2(Q
∗, E∗)Q∗ > 0.

System (14) can be written in the matrix form

dX

dt
= A1X(t) + A2X(t − τ)

8
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with

X(t) =




q(t)

m(t)

e(t)


 , A1 =




−A 0 −C

G −µ 0

0 −H −k


 and A2 =




B 0 D

0 0 0

0 0 0


 .

Consequently, the characteristic equation of (14) is given by

det
(
λI −A1 −A2e

−λτ
)

= 0,

which reduces to

(λ + µ)(λ + k)
(
λ + A − Be−λτ

)
− GH

(
C − De−λτ

)
= 0. (16)

We recall the following result: the trivial solution of system (14), or equivalently the steady-
state of system (4), is asymptotically stable if all roots of (16) have negative real parts, and
the stability is lost only if characteristic roots cross the axis from left to right, or right to
left, that is if purely imaginary roots appear.

Remark 1. If we linearize system (4) around its trivial steady-state (0, 0, f(0)/k), we obtain

A = δ + g′(0) + β(0, f(0)/k) > 0, D = 0,

B = 2e−γτβ(0, f(0)/k) > 0, G = g′(0) > 0,

C = 0, H = −f ′(0) > 0.

Therefore, the characteristic equation (16) of the linearized system, around the trivial steady-
state, becomes

(λ + µ)(λ + k)
(
λ + A − Be−λτ

)
= 0.

It follows that λ = −µ < 0, λ = −k < 0 or

λ + A − Be−λτ = 0. (17)

Studying the sign of the real parts of the roots of (17), we obtain the following proposition
which deals with the local asymptotic stability of the trivial steady-state of (4).

Proposition 3.1. Assume that µ > 0 and k > 0. If condition (12) holds, then the trivial
steady-state of system (4) is locally asymptotically stable for all τ ≥ 0, and if condition (11)
holds, then it is unstable for all τ ≥ 0.

Proof. First notice that, when τ = 0, λ = B − A so λ > 0 if condition (11) holds and λ < 0
if condition (12) holds.

Let τ > 0 be fixed. Setting ν = λτ , the characteristic equation (17) is equivalent to

(ν + Aτ)eν − Bτ = 0.

From [8], we know that Re(ν) < 0 if and only if

Aτ > −1, Aτ − Bτ > 0, and Bτ < ζ sin(ζ) − Aτ cos(ζ),

where ζ is the unique solution of

ζ = −Aτ tan(ζ), ζ ∈ (0, π).

9
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Since A > 0 and τ > 0, condition Aτ > −1 is satisfied.
If we assume that condition (12) holds, then A > B so Aτ − Bτ > 0. By contradiction,

suppose that Bτ > ζ sin(ζ) − Aτ cos(ζ). Then, from the definition of ζ,

Bτ > −
Aτ

cos(ζ)
.

Since A > B > 0, it follows that

1 > −
1

cos(ζ)
.

Consequently, cos(ζ) > 0 and ζ ∈ (π/2, π). We deduce that tan(ζ) > 0 so

−Aτ tan(ζ) < 0 < ζ.

This gives a contradiction. Therefore Bτ < ζ sin(ζ) − Aτ cos(ζ), and all roots of (17) have
negative real parts. The trivial steady-state is then locally asymptotically stable for all τ > 0.

Assume now that condition (11) holds. Then A < B and Aτ − Bτ < 0. Consequently,
for all τ > 0, (17) has roots with nonnegative real parts and the trivial steady-state is
unstable.

The above results indicate that the trivial steady-state of (4) is locally asymptotically
stable when it is the only equilibrium and unstable as soon as the nontrivial equilibrium
exists. When the transcritical bifurcation occurs, that is when the two steady-states coincide,
the trivial steady-state is stable.

We now return to the analysis of the local asymptotic stability of the nontrivial steady-
state (Q∗, M∗, E∗) of system (4).

Equation (16) takes the general form

P (λ, τ) + Q(λ, τ)e−λτ = 0 (18)

with

P (λ, τ) = λ3 + a1(τ)λ2 + a2(τ)λ + a3(τ),

Q(λ, τ) = a4(τ)λ2 + a5(τ)λ + a6(τ),

where
a1(τ) = µ + k + A, a4(τ) = −B,

a2(τ) = µk + A(µ + k), a5(τ) = −B(µ + k),

a3(τ) = µkA − GHC, a6(τ) = −Bµk + GHD.

We can check that, for all τ ∈ [0, τmax),

a1(τ) + a4(τ) = µ + k + A − B > 0,

a2(τ) + a5(τ) = µk + (A − B)(µ + k) > 0,

and
a3(τ) + a6(τ) = µk(A − B) + GH(D − C) > 0.

We will remember, in the following, that

ai(τ) + ai+3(τ) > 0 for i = 1, 2, 3. (19)

10
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Let us examine the case τ = 0. This case is of importance, because it can be necessary
that the nontrivial positive steady-state of (4) is stable when τ = 0 to be able to obtain the
local stability for all nonnegative values of the delay, or to find a critical value which could
destabilize the steady-state (see Theorem 3.2).

When τ = 0, the characteristic equation (18) reduces to

λ3 + [a1(0) + a4(0)]λ2 + [a2(0) + a5(0)]λ + a3(0) + a6(0) = 0. (20)

The Routh-Hurwitz criterion says that all roots of (20) have negative real parts if and only
if

a1(0) + a4(0) > 0,

a3(0) + a6(0) > 0,

and
[a1(0) + a4(0)][a2(0) + a5(0)] > a3(0) + a6(0). (21)

From (19), it follows that all characteristic roots of (20) have negative real parts if and only
if (21) holds.

Proposition 3.2. When τ = 0, the nontrivial steady-state (Q∗, M∗, E∗) of (4) is locally
asymptotically stable if and only if

(µ + k) [µk + (A − B)(µ + k + A − B)] > GH(D − C), (22)

where A, B, C, D, G and H are given by (15).

In the following, we investigate the existence of purely imaginary roots λ = iω, ω ∈ R,
of (18). Equation (18) takes the form of a third degree exponential polynomial in λ. In
2001, Ruan and Wey [20] gave sufficient conditions for the existence of zeros for such an
equation, but only in the case where the coefficients of the polynomial functions P and Q
do not depend on the delay τ , that is when the characteristic equation (18) is given by
P (λ) + Q(λ)e−λτ = 0. Since all the coefficients of P and Q depend on τ , we cannot apply
their results directly. In 2002, however, Beretta and kuang [4] established a geometrical
criterion which gives the existence of purely imaginary roots for a characteristic equation
with delay dependent coefficients. We are going to apply this criterion to equation (18) in
order to obtain stability results for equation (14). In the following, we use the same notations
as in Beretta and Kuang [4] to make things easier for the reader.

We first have to verify the following properties, for all τ ∈ [0, τmax):

(i) P (0, τ) + Q(0, τ) 6= 0;

(ii) P (iω, τ) + Q(iω, τ) 6= 0;

(iii) lim sup
{∣∣∣Q(λ,τ)

P (λ,τ)

∣∣∣ ; |λ| → ∞, Reλ ≥ 0
}

< 1;

(iv) F (ω, τ) := |P (iω, τ)|2 − |Q(iω, τ)|2 has a finite number of zeros.

Properties (i), (ii) and (iii) can be easily verified. Let τ ∈ [0, τmax). Using (19), a simple
computation gives

P (0, τ) + Q(0, τ) = a3(τ) + a6(τ) > 0.

Moreover,

P (iω, τ) + Q(iω, τ) =
[
−(a1(τ) + a4(τ))ω2 + a3(τ) + a6(τ)

]

+i
[
−ω3 + (a2(τ) + a5(τ))ω

]
,

11



M. Adimy, F. Crauste and S. Ruan Hematopoiesis mediated by growth factors

so (ii) is true. Finally, ∣∣∣∣
Q(λ, τ)

P (λ, τ)

∣∣∣∣ ∼
|λ|→∞

∣∣∣∣
a4(τ)

λ

∣∣∣∣ ,

therefore (iii) is also true.
Now, let F be defined as in (iv). Since

|P (iω, τ)|2 = ω6 +
[
a2
1(τ) − 2a2(τ)

]
ω4 +

[
a2
2(τ) − 2a1(τ)a3(τ)

]
ω2 + a2

3(τ)

and
|Q(iω, τ)|2 = a2

4(τ)ω4 +
[
a2
5(τ) − 2a4(τ)a6(τ)

]
ω2 + a2

6(τ),

we have
F (ω, τ) = ω6 + b1(τ)ω4 + b2(τ)ω2 + b3(τ)

with
b1(τ) = a2

1(τ) − 2a2(τ) − a2
4(τ),

b2(τ) = a2
2(τ) + 2a4(τ)a6(τ) − 2a1(τ)a3(τ) − a2

5(τ),

b3(τ) = a2
3(τ) − a2

6(τ).

One can check that
b1(τ) = µ2 + k2 + A2 − B2,

and
b2(τ) = µ2k2 + (A2 − B2)(µ2 + k2) + 2GH [C(µ + k + A) − BD] ,

b3(τ) = µ2k2(A2 − B2) + G2H2(C2 − D2) + 2µkGH(BD − AC),

where A, B, C, D, G and H are given by (15). It is obvious that property (iv) is satisfied.
Now assume that λ = iω, ω ∈ R, is a purely imaginary characteristic root of (18).

Separating real and imaginary parts, we can show that (ω, τ) satisfies

− a1(τ)ω2 + a3(τ) = −
[
−a4(τ)ω2 + a6(τ)

]
cos(ωτ) − a5(τ)ω sin(ωτ), (23)

−ω3 + a2(τ)ω = −a5(τ)ω cos(ωτ) +
[
−a4(τ)ω2 + a6(τ)

]
sin(ωτ). (24)

One can check that, if (ω, τ) is a solution of system (23)–(24), then (−ω, τ) is also a solution
of (23)–(24). Hence, if iω is a purely imaginary characteristic root of (18), its conjugate has
the same property. Consequently, we only look in the following for purely imaginary roots of
(18) with positive imaginary part.

System (23)–(24) yields

cos(ωτ) =
(a5 − a1a4)ω4 + (a1a6 + a3a4 − a2a5) ω2 − a3a6

a2
4ω

4 + (a2
5 − 2a4a6)ω2 + a2

6

, (25)

sin(ωτ) =
a4ω

5 + (a1a5 − a2a4 − a6)ω3 + (a2a6 − a3a5)ω

a2
4ω

4 + (a2
5 − 2a4a6)ω2 + a2

6

, (26)

where we deliberately omit the dependence of the ai on τ .
A necessary condition for this system to have solutions is that the sum of the squares of

the right hand side terms equals one. By remarking that system (25)–(26) can be written

cos(ωτ) = Im

(
P (iω, τ)

Q(iω, τ)

)
and sin(ωτ) = −Re

(
P (iω, τ)

Q(iω, τ)

)
,

then this condition is
|P (iω, τ)|2 = |Q(iω, τ)|2.

12
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That is
F (ω, τ) = 0.

The polynomial function F can be written as

F (ω, τ) = h(ω2, τ),

where h is a third degree polynomial, defined by

h(z, τ) := z3 + b1(τ)z2 + b2(τ)z + b3(τ). (27)

We set
∆(τ) = b2

1(τ) − 3b2(τ), (28)

and, when ∆(τ) ≥ 0,

z0(τ) =
−b1(τ) +

√
∆(τ)

3
. (29)

We then have the following lemma (see [20]).

Lemma 3.1. Let τ ∈ [0, τmax) and ∆(τ) and z0(τ) be defined by (28) and (29), respectively.
Then h(·, τ), defined in (27), has positive roots if and only if

b3(τ) < 0 or b3(τ) ≥ 0, ∆(τ) ≥ 0, z0(τ) > 0 and h(z0(τ), τ) < 0. (30)

Proof. Details of the proof are given in [20], Lemma 2.1.

Conditions ∆(τ) ≥ 0, z0(τ) > 0 and h(z0(τ), τ) < 0 cannot be easily checked. In the
following lemma we express them using the coefficients bi, i = 1, 2, 3.

Lemma 3.2. Let τ ≥ 0 be such that b3(τ) ≥ 0. Then ∆(τ) ≥ 0, z0(τ) > 0 and h(z0(τ), τ) < 0
if and only if

(i) b2(τ) < 0 or b1(τ) < 0 ≤ b2(τ) <
b2
1(τ)

3
, and

(ii) 2∆(τ)z0(τ) + b1(τ)b2(τ) − 9b3(τ) > 0.

Proof. Let τ be given such that b3(τ) ≥ 0. We do not mention, in the following, the depen-
dence of the coefficients bi on τ .

We have
∆ ≥ 0 if and only if b2

1 ≥ 3b2.

If b2 < 0, this result holds true. Otherwise, it is necessary that b2
1 ≥ 3b2. In this latter case,

if b1 < 0, then z0 > 0 and, if b1 ≥ 0, then z0 > 0 if and only if b2 < 0. Therefore z0 > 0 if
and only if

b2 < 0 or b1 < 0 ≤ b2 <
b2
1

3
. (31)

Under the assumption (31), h′, given by

h′(z) = 3z2 + 2b1z + b2,

has two roots,

z− = −
1

3
(b1 + d) and z+ = −

1

3
(b1 − d)

13
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with z− < z+ and d =
√

b2
1 − 3b2 (in fact z+ = z0 > 0). A simple computation gives

h(z+) =
2

27
(b3

1 − d3) −
b1b2

3
+ b3.

Noticing that

b3
1 − d3 = (b1 − d)(2b2

1 − 3b2 + b1d) = −3z+(b2
1 + b1d + d2),

we obtain

h(z+) < 0 ⇔
2

3
z+(b2

1 + b1d + d2) + b1b2 − 3b3 > 0.

Moreover,
b2
1 + b1d + d2 = d2 + b1(b1 + d) = d2 − 3b1z−.

So

h(z+) < 0 ⇔
2

3
d2z+ − 2b1z+z− + b1b2 − 3b3 > 0.

Since z+z− = b2/3, we eventually obtain

h(z+) < 0 ⇔ 2d2z+ + b1b2 − 9b3 > 0.

This ends the proof.

From the previous lemma, condition (30) is equivalent to

b3(τ) < 0 or b3(τ) ≥ 0 and (i)-(ii) hold true. (32)

Let us show on an example that condition (32) is satisfied.
Note that b3 can be expressed as

b3(τ) = µ2k2(A − B)(A + B) + G2H2(C − D)(C + D)
+2µkGH(B(D − C) + C(B − A)),

where A, B, C, D, G and H are defined by (15). Since C − D < 0 and B − A ≤ 0, then
b3(τ) < 0 if A + B ≤ 0 and B ≤ 0. Moreover, from the definition of B, it follows that B ≤ 0
if A + B ≤ 0. Consequently, a sufficient condition for b3(τ) < 0 is A + B ≤ 0.

Let us assume that g is a linear function, given by g(Q) = GQ, with G > 0, and that
β(Q, E) = β1(Q)β2(E), with β1(Q) = 1/(1 + Qn), n > 0, and β2 an increasing function
satisfying β2(0) = 0. Then, for τ = 0,

A + B = [4β1(Q
∗) + 3β′

1(Q
∗)Q∗]β2(E

∗).

Since E∗ > 0, β2(E
∗) > 0 and A + B ≤ 0 if and only if

4β1(Q
∗) + 3β′

1(Q
∗)Q∗ =

4 + (4 − 3n)(Q∗)n

(1 + (Q∗)n)2
≤ 0,

that is

n >
4

3
and Q∗ ≥

(
4

3n − 4

)1/n

.

Let δ and G be such that

δ + G < β̃(1) =
1

2
β2

(
1

k
f

(
G

µ

))
,

14
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where β̃ is defined by (10), and let n > 4/3 be the unique solution of

3n

3n − 4
+ ln

(
4

3n − 4

)
= 0.

Then, for n > n ≈ 6.12,

β̃

((
4

3n − 4

)1/n
)

> β̃(1) > δ + G,

so Q∗ ≥ (4/(3n − 4))1/n and it follows that A + B ≤ 0.
Consequently, b3(0) < 0 and, using the continuity of b3 with respect to τ , we deduce that

there exists τ > 0 such that (32) is verified for τ ∈ [0, τ).
When the reintroduction rate β only depends on the growth factor concentration E,

condition (32) is also satisfied for τ close to zero. This is numerically obtained in Section 4.
We set I := [0, τ ) an interval in which (32) is satisfied, with 0 < τ ≤ τmax. From the

above remarks, we can find functions β, g and f , and parameters values such that τ exists.
For τ ∈ I there exists at least ω = ω(τ) > 0 such that F (ω(τ), τ) = 0.

Then, let θ(τ) ∈ [0, 2π] be defined for τ ∈ I by

cos(θ(τ)) =
(a5 − a1a4)ω4 + (a1a6 + a3a4 − a2a5)ω2 − a3a6

a2
4ω

4 + (a2
5 − 2a4a6)ω2 + a2

6

,

sin(θ(τ)) =
a4ω

5 + (a1a5 − a2a4 − a6)ω3 + (a2a6 − a3a5)ω

a2
4ω

4 + (a2
5 − 2a4a6)ω2 + a2

6

,

where ω = ω(τ). Since F (ω(τ), τ) = 0 for τ ∈ I, it follows that θ is well and uniquely defined
for all τ ∈ I.

One can check that iω∗, with ω∗ = ω(τ∗) > 0 is a purely imaginary characteristic root of
(18) if and only if τ∗ is a root of the function Sn, defined by

Sn(τ) = τ −
θ(τ) + 2nπ

ω(τ)
, τ ∈ I, with n ∈ N.

The following theorem is due to Beretta and Kuang [4].

Theorem 3.1. Assume that the function Sn(τ) has a positive root τ∗ ∈ I for some n ∈ N.
Then a pair of simple purely imaginary roots ±iω(τ∗) of (18) exists at τ = τ∗ and

sign

{
dRe(λ)

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign

{
∂F

∂ω
(ω(τ∗), τ∗)

}
sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
. (33)

Since
∂F

∂ω
(ω, τ) = 2ω

∂h

∂z
(ω2, τ),

condition (33) is equivalent to

sign

{
dRe(λ)

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign

{
∂h

∂z
(ω2(τ∗), τ∗)

}
sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.

We can easily observe that Sn(0) < 0. Moreover, for all τ ∈ I, Sn(τ) > Sn+1(τ), with
n ∈ N. Therefore, if S0 has no root in I, then the Sn functions have no root in I and, if

15



M. Adimy, F. Crauste and S. Ruan Hematopoiesis mediated by growth factors

the function Sn(τ) has positive roots τ ∈ I for some n ∈ N, there exists at least one root
satisfying

dSn

dτ
(τ) > 0.

Using Proposition 3.2, we can conclude the existence of a Hopf bifurcation as stated in the
next theorem.

Theorem 3.2. Assume that µ, k > 0, condition (11) is satisfied and (22) holds true.

(i) If the function S0(τ) has no positive root in I, then the steady-state (Q∗, M∗, E∗) is
locally asymptotically stable for all τ ≥ 0.

(ii) If the function S0(τ) has at least one positive root in I, then there exists τ∗ ∈ I such
that the steady-state (Q∗, M∗, E∗) is locally asymptotically stable for 0 ≤ τ < τ∗ and
becomes unstable for τ ≥ τ∗, with a Hopf bifurcation occurring when τ = τ∗, if and
only if

∂h

∂z
(ω2(τ∗), τ∗) > 0.

In the next section, we illustrate the results established in Theorem 3.2. We show, in
particularly, that our model can exhibit long periods oscillations, compared to the delay,
that can be related to experimental observations in patients with periodic hematological
diseases.

4 Numerical Illustrations: Long Periods Oscillations

Let us assume that the introduction of resting cells in the proliferating phase is only triggered
by the growth factor concentration E(t), that is β = β(E(t)). This assumption is based on
hypothesis made by Belair et al. [3] for an erythropoiesis model. It describes, for example,
the fact that the cell population may only react to external stimuli and cannot be directly
sensitive to its own size. We assume that β is given by

β(E) = β0
E

1 + E
, β0 > 0.

The functions g and f are defined by

g(Q) = GQ with G > 0,

and
f(M) =

a

1 + KM r
, a, K > 0, r > 1.

This latter function often occurs in enzyme kinetics. It has been used by Mackey [9, 10] to
describe the rate of introduction in the proliferating phase and by Belair et al. [3] to define
the feedback from the blood to the growth factor production.

With these choices for the functions β, g and f , our model involves 10 parameters,
including the delay τ . Most of the values of these parameters can be found in the literature.
This is the case for the stem cells mortality rates in the bone marrow, δ and γ, which are given
by Mackey [9] or Pujo-Menjouet and Mackey [18], and for the coefficients of the function f
and the disappearance rate k, given by Belair et al. [3] and Mahaffy et al. [16]. However, it
is not so easy to determine values for the other parameters.
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Experimental data indicate similar values for µ and G, since blood cells are almost pro-
duced at the same rate than they are lost. Then, we will choose

µ = 0.02 d−1 and G = 0.04 d−1. (34)

The coefficient β0 represents the maximum rate of introduction in the proliferating phase
and also the value of β′(0). It strongly depends on the nature of the growth factor. Using
data about erythropoiesis, we choose

β0 = 0.5, (35)

which is less than the maximal rate of introduction proposed by Mackey [9], but seems
sufficiently large for erythropoiesis modelling.

Other parameters are given by (see [3, 9])

δ = 0.01 d−1, γ = 0.2 d−1, k = 2.8 d−1,
a = 6570, K = 0.0382 and r = 7.

(36)

With the above choices for the functions β, g and f , we can explicitly compute the steady-
states of system (4), Q∗, M∗ and E∗. In particularly, one can check that condition (6) holds
true. Condition (13) becomes

(δ + G)(a + k) < β0a and 0 ≤ τ <
1

γ
ln

(
2β0a

(δ + G)(a + k) + β0a

)
:= τmax.

We set
α(τ) = 2e−γτ − 1 for τ ∈ [0, τmax).

The function α is positive and decreasing on [0, τmax) and satisfies

(δ + G)(a + k)

aβ0
< α(τ) ≤ 1 for τ ∈ [0, τmax).

The steady-states of (4) are then defined by

Q∗ =
µ

G

1

K1/r

(
aβ0α(τ) − (δ + G)(a + k)

k(δ + G)

)1/r

,

M∗ =
G

µ
Q∗,

E∗ =
δ + G

β0α(τ) − (δ + G)
.

For τ ∈ [0, τmax), Q∗ and M∗ are decreasing with

0 < Q∗ ≤
µ

G

1

K1/r

(
aβ0 − (δ + G)(a + k)

k(δ + G)

)1/r

and

0 < M∗ ≤
1

K1/r

(
aβ0 − (δ + G)(a + k)

k(δ + G)

)1/r

,

and E∗ is increasing with
δ + G

β0 − (δ + G)
≤ E∗ <

a

k
.
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Figure 1: The steady-states Q∗ (solid line), M∗ (dashed line), and E∗ (dotted line) of system
(4) are drawn on the interval [0, τmax), with τmax = 2.99, for the parameters values given
in (34), (35) and (36). When τ = τmax, E∗ ≈ 2346 but we have stopped the scale on the
vertical axis at 30 to improve the illustration clarity.

For the parameters given in (34), (35) and (36), the steady-states are drawn on the interval
[0, τmax) on Figure 1. In this case, τmax ≈ 2.99.

The coefficients A, B, C and D, defined in (15), become

A = δ + G + β(E∗) > 0, C = β′(E∗)Q∗ > 0,

B = 2e−γτβ(E∗) > 0, D = 2e−γτβ′(E∗)Q∗ > 0,

and are all strictly positive. The coefficient G is constant and H is still given by H =
−f ′(M∗) > 0. One can also check that E∗ is the unique solution of

(
2e−γτ − 1

)
β (E∗) = δ + G.

Thus,

A = B = (δ + G)
α(τ) + 1

α(τ)
.

In particularly, we deduce that

b1(τ) = µ2 + k2 > 0,

b2(τ) = µ2k2 + 2GH [C(µ + k + A) − AD] ,

b3(τ) = GH(D − C) (2µkA − GH(C + D)) .

One can notice that b1 is now independent of the delay τ . Moreover, since b1 > 0, the
polynomial function h, defined in (27), has strictly positive roots if and only if (see Lemma
3.1 and Lemma 3.2) b3(τ) < 0 or b3(τ) ≥ 0, b2(τ) < 0 and

2∆(τ)z0(τ) + b1(τ)b2(τ) − 9b3(τ) > 0.
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Figure 2: Coefficients b2(τ) (left) and b3(τ) (right) are represented for τ ∈ [0, τmax) with
τmax = 2.99.

Using Maple 9, we compute the coefficients b2 and b3 for the values in (34), (35) and (36).
Results are presented in Figure 2. Since b3 < 0 on [0, 2.92) and b2 is always positive, h has
positive roots if and only if τ ∈ I := [0, 2.92). In this case, h has exactly one positive root
for τ∗ ∈ [0, 2.92), denoted by z∗, and, since h(0, τ) < 0, z∗ satisfies

∂h

∂z
(z∗, τ∗) > 0.

The function S0 is drawn for τ ∈ I = [0, 2.92) in Figure 3. One can see that there are
two critical values of the delay τ for which stability switches occur. In particularly, from
Theorem 3.2, a Hopf bifurcation occurs when τ is approximately equal to 1.4. Thus, periodic
solutions appear.
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1,510,50

Figure 3: Graph of the function S0(τ) for τ ∈ [0, τmax) with parameters given by (34), (35)
and (36), and τmax ≈ 2.99. Two critical values of τ , for which stability switches can occur,
appear.

In Figure 4, one can check that S1 has no positive root on I. Therefore, there exist only
two critical values of the delay for which stability switches occur, τ = 1.4 and τ = 2.82.
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Figure 4: Graph of the function S1(τ) for the same values as in Figure 3. The function has
no positive root.

Using dde23 [23], a Matlab solver for delay differential equation, we can compute the
solutions of (4) for the above mentioned values of the parameters. Illustrations are showed
in Figures 5 to 8.

Before the Hopf bifurcation occurs, solutions are stable and converge to the equilibrium,
although they oscillate transiently (see Figure 5). When the bifurcation occurs, periodic
solutions appear with periods about 100 days (see Figure 6). These are very long periods
compared to the delay τ , which is equal to 1.4 day.
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Figure 5: Solutions Q(t) (solid line), M(t) (dashed line) and E(t) (dotted line) of (4) are
asymptotically stable and converge to the steady-state values. Damped oscillations can be
observed. Parameters values are the same as in Figure 3 with τ = 0.5.

When τ increases, periods of the oscillations increase and just before a stability switch,
for τ = 2.82, periods of the oscillations are close to 220 days (see Figure 7). Then, the
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Figure 6: When τ = 1.4, a Hopf bifurcation occurs and periodic solutions appear, with the
same period for the three solutions Q(t) (solid line), M(t) (dashed line) and E(t) (dotted
line) of (4). Periods are about 100 days. Parameters values are the same as in Figure 3.

steady-state becomes asymptotically stable again and solutions converge to the equilibrium
(see Figure 8).
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Figure 7: For τ = 2.8, long period oscillations are observed, with periods close to 220 days.
Solutions Q(t) (solid line), M(t) (dashed line) and E(t) (dotted line) of (4) are unstable.
Parameters values are the same as in Figure 3.

5 Periodic Hematological Diseases

Periodic hematological diseases [7] represent one kind of diseases affecting blood cells. They
are characterized by significant oscillations in the number of circulating cells, with periods
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Figure 8: When τ = 2.9, the steady-state is asymptotically stable and solutions Q(t) (solid
line), M(t) (dashed line) and E(t) (dotted line) of (4) converge to the equilibrium. Parameters
values are the same as in Figure 3.

ranging from weeks (19–21 days for cyclical neutropenia [7]) to months (30 to 100 days
for chronic myelogenous leukemia [7]) and amplitudes varying from normal to low levels or
normal to high levels, depending on cell types. Because of their dynamic character, periodic
hematological diseases offer an opportunity to understand some of the regulating processes
involved in the production of hematopoietic cells.

Some periodic hematological diseases involve only one type of blood cells, for example,
red blood cells in periodic autoimmune hemolytic anemia [3] or platelets in cyclical throm-
bocytopenia [22]. In these cases, periods of the oscillations are usually between two and four
times the cell cycle duration. However, other periodic hematological diseases, such as cyclical
neutropenia [7] or chronic myelogenous leukemia [6], show oscillations in all of the circulat-
ing blood cells, i.e., white blood cells, red blood cells and platelets. These diseases involve
oscillations with quite long periods (on the order of weeks to months). A destabilization of
the pluripotential stem cell population induced by growth factors seems to be at the origin
of these diseases.

Recently, Pujo-Menjouet et al. [18, 19] and Adimy et al. [1, 2] considered models for the
regulation of stem cell dynamics and noticed that long periods oscillations could be observed
in hematopoiesis models. In this work, we have been able to obtain long period oscillations
(about 100 days) for a blood production model mediated by growth factors, as a result of
the feedback from blood to growth factors. This result stresses the role of growth factors in
the appearance of periodic solutions in hematopoiesis models.

One can notice that by assuming that the cell cycle duration is constant, values of τ for
which a nontrivial steady-state exists are limited and cannot be too large. This does not
appear in a model with distributed delay, as studied by Adimy et al. [1, 2].

Numerical simulations demonstrated that long period oscillations in the circulating cells
are possible in our model even with short cell cycle durations. Thus, we are able to char-
acterize some hematological diseases, especially those exhibit a periodic behavior of all the
circulating blood cells.
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