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In this paper, we propose auto-associative (AA) models to generalize Princi-
pal component analysis (PCA). AA models have been introduced in data analysis
from a geometrical point of view. They are based on the approximation of the
observations scatter-plot by a differentiable manifold. In this paper, they are
interpreted as Projection pursuit models adapted to the auto-associative case.
Their theoretical properties are established and are shown to extend the PCA
ones. An iterative algorithm of construction is proposed and its principle is illus-
trated both on simulated and real data from image analysis.

Key Words: Auto-Associative models, Principal Component Analysis,
Projection Pursuit, Regression.

1. INTRODUCTION.

Principal component analysis (PCA) [23] is a widely used method for di-
mension reduction in multivariate data analysis. It benefits from a simple
geometrical interpretation. Given a set of points from RP and an inte-
ger 0 < d < p, PCA builds the d-dimensional affine subspace minimizing
the Euclidean distance to the scatter-plot [30]. Starting from this point
of view, many nonlinear extensions have been proposed. Principal curves
or principal surfaces [19, 7] belong to this family of approaches. PCA
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can also be interpreted as a Projection pursuit [22, 24] method. It builds
the d-dimensional affine subspace maximizing the projected variance [21].
Indeed, other criteria than the variance yields various data exploration
methods [13, 29]. In PCAIV-Spline (Principal component analysis of in-
strumental variables [10]) and curvilinear PCA [1] approaches, nonlinear
transformations of the coordinates are combined with a criteria of pro-
jected variance on the transformed data. More recently, new algorithms
have been proposed to compute low dimensional neighborhood-preserving
embeddings of high dimensional data. For instance, Isomap [33], local
Isomap [9], LLE (Locally linear embedding) [31] and CDA (Curvilinear
distance analysis) [8] do not use a criterion based on variance preservation
but attempt to reproduce in the projection space the structure of the local
neighborhood in the data space. Such methods are dedicated to visual-
ization purposes. Their drawback is that they cannot produce an analytic
form of the transformation function, making difficult to map new points
into the dimensionality-reduced space. We refer to [27] for a comparison
between Isomap and CDA and to [35] for a comparison of LLE and Isomap
classification and visualization power. Finally, it is also possible to as-
sociate a Gaussian probabilistic model to PCA [32], the affine subspace
is then obtained through a maximization-likelihood estimation. This ap-
proach yields new dimension-reduction methods by considering some non
Gaussian models such as mixture models.

The extension of PCA to the nonlinear case without losing these inter-
pretations is a difficult problem. Moreover, the definition of a satisfying
probabilistic model is often impossible without specifying the observations
distribution. As a consequence, such a method would be very specific and
thus of little practical interest. Besides, introducing nonlinearities can lead
to lose the geometrical interpretation of the model and the related concepts
of principal variables, principal directions or residual inertia. Furthermore,
existence, unicity or implementation problems often occur.

In this paper, the auto-associative (AA) models are proposed as candidates
to the generalization of PCA. AA models have been introduced in [14]
from a geometrical point of view. They are based on the approximation
of the observations scatter-plot by a manifold. We show here that these
models can also be interpreted as Projection pursuit regression models
(PPR) [12, 25] adapted to the auto-associative case. Consequently, a simple
algorithm, similar to an iterative PCA, is available to implement them. A
probabilistic framework permitting to prove many theoretical properties is
introduced as well.

Let us first consider PCA from the Projection pursuit point of view. If X is
a RP random vector with finite second order moment, it can be expanded
as a sum of d orthogonal random variables and a residual by applying
iteratively the following steps: [A] computation of the Axes, [P] Projection,
[R] Regression and [U] Update (see Section 3.1 for a proof):



Algorithm 1.
e For j =0, define R = X — E[X].
e Forj=1,...,d:

. P j—1 2
[A] Determine o/ = arg grcré%}gE [<:v,R ) }
wc [z =1and (z,a¥) =0, 1 <k < j.
[P] Compute Y7 = (a’, R771).
. P . i1 ; 2 N
[R] Determine &’ = arg;renRréE {HRJ — ijH } u.c. <x,a3> =1,
(we find &/ = a’) and define s/(t) = tb’, t € R.
[U] Compute R = RI=1 — s9(Y7).

The vectors a’ are called principal directions, the random variables Y/
principal variables, the functions s’ regression functions and the random
vectors R7 residuals. Step [A] consists in computing an axis perpendicular
to the previous ones and maximizing a given criteria: Here the projected
variance. In our opinion, this is an arbitrary choice when X is not Gaus-
sian. Step [P] consists in projecting the residuals on this axis to determine
the principal variables, and step [R] is devoted to the search of the linear
function of the principal variables best approximating the residuals. More-
over, the limitation to a set of linear functions can be restrictive as soon as
X is not Gaussian. Step [U] simply consists in updating the residuals.

A A models extend the previous algorithm by considering more general steps
[A] and [R]. Step [A] is considered as a Projection pursuit step, where many
different criteria can be implemented. Step [R] is seen as a regression
problem that can be addressed by general tools such as spline or kernel
estimates. We show that this extension benefits from PCA main theoretical
properties (construction of an exact model, decrease of the residuals, ...)
or extends them (approximation of the scatter-plot by a manifold instead
of an affine subspace).

This article is organized as follows. In Section 2, auto-associative models
are defined and their main properties are given. Two particular AA models
are presented in Section 3 and their characteristics are studied. In Section 4,
we present a Projection pursuit algorithm adapted to the framework of
AA models. Finally, some illustrations are provided in Section 5 both on
simulated data and on an image analysis application.



2. AUTO-ASSOCIATIVE MODELS.

In the first part of this section, auto-associative models and some related
objects are defined. In the second part, an algorithm is introduced to
compute them and its theoretical properties are established.

2.1. Definitions

DEFINITION 1. A function F': RP — RP is a d-dimensional auto-associative

function if there exist d unit orthogonal vectors a/ and d functions s7: R —
RP such that

1
F= (IdRp —sto Pad) o...0 (IdRp —slo Pal) = H (IdRp — SkPak) ,
k=d

P,s? = Idge and Pus? = 0, 1 < k < j < d, with P,;(x) = <aj,x>.
The vectors a’ are called principal directions, the functions s? are called
regression functions and we note F' € Ais.

In the sequel, in order to keep the text concise, the product represents the
composition. The proof of the following lemma can be found in [14].

LEMMA 1. Consider F € ,Ag’s, and suppose that the s7, j = 1,...,d
are CY(R,RP). Then, the equation F(x) = O defines a differentiable d-

dimensional manifold.

Let X € RP be a square integrable random vector defined on a probability
space (2, F,P). We denote by Px the distribution of X on RP, and by
L% (R, RP) the set of functions s from R to RP such that so P, is Py square
integrable for all a € RP.

DEFINITION 2. X satisfies a d-dimensional auto-associative model with

principal directions (a',...,a?), regression functions (s?,.. ., s?) and resid-

ual ¢, if there exist F € Ag,s, u € RP and a centered random vector e such
that F(X — p) =e.

Besides, X is said to satisfy a linear AA model when the regression func-
tions are linear. Let us give two simple examples of auto-associative models:

e Every X satisfies a 0-dimensional AA model (choose F = Id, u =
E[X] and ¢ = X — E[X]). We then have Var [||5||2] = Var [||X||2]

e Similarly, X always satisfies a p-dimensional AA model. In this case
F =0, 11=0and z =0 yield Var []*] =o0.

In practice, it is important to find a balance between these two extreme

cases by constructing a d-dimensional model with d < p and Var [||€||2] <



Var [||X Hﬂ . For instance, in the case where X is centered with a covariance
matrix X of rank d, it satisfies a d-dimensional linear AA model with a null
residual. Let us denote by a’, j = 1,...,d the eigenvectors of 3 associated
to the positive eigenvalues. We show in Corollary 2 that

1

d
F(z) = H (Idge — Pyra®) (z) =z — Z (a*,z)a"

k=d k=1

and € = 0 P-.a.s. define a linear auto-associative model for X. This is the
expansion of X obtained by PCA.

We now propose an algorithm to build some auto-associative models which
are not necessarily linear, with small dimension and small residual variance.
In this aim, we introduce a definition:

DEFINITION 3. A closed subset S(R,RP) of L% (R, RP) is admissible if
(R) Vb eRP seSR,RP) = s+be S(R,RP)
’ Idgd € S(R,RP).

(R) can be interpreted as an invariance condition with respect to transla-
tion. A possible choice of S(R,R?) is the set of affine functions from R to
RP. This example is examined in Section 3.1.

Let us recall that, given an unit vector a € RP, an index I: R — R is a
functional measuring the interest of the projection of the random vector X
on a (i.e. {(a, X)) with a non negative real number. For instance, a possible
choice of I is the projected variance I({a, X)) = Var[{a, X)]. Some other
examples are presented in Section 4.2.

2.2. Construction of auto-associative models

Let S(R,RP) be a set of admissible functions, d € {0,...,p}, and consider
the following algorithm:

Algorithm 2.
e For j =0, define p =E[X] and R’ = X — p.
e Forj=1,...,d:
[A] Determine a’ = arg max I((z, R771Y)
wc. ||z =1, (z,a¥) =0, 1 <k <.
[P] Compute Y7 = (af, RI71).

[R] Choose s/ € arg min E MRj_l - s(Yj)HQ} u.c. Ps! =1d.
se€S(R,RP)

[U] Compute R/ = RI=1 — sI(Y7).



Theorem 1 below states that this algorithm builds a d-dimensional auto-
associative model and an exact representation of X in p iterations.

It is clear that step [R] strongly depends on the choice of S(R,RP). The
existence of a solution to the minimization problem is established thanks
to the conditions imposed on S(R,R?). In particular, condition (R) en-
sures that there exist some functions in S(R,RP) meeting the constraint
of the minimization problem. The unicity of the solution is not estab-
lished without an additional convexity condition. In this paper we focus
on two extreme cases. The choice S(R,RP) = A(R,RRP), the set of the
affine functions from R to R? is examined in Section 3.1, and the choice
S(R,RP) = L% (R, RP) is considered in Section 3.2. The choice of the index
I is discussed in Section 4.2. The constraint P,;s? = Id which is imposed
in step [R] plays an important role in the algorithm. It ensures that the
residuals R’ are orthogonal to the axis a’ since

(/R =(a’,R"7") = (), (Y7)) =Y/ - Y7 =0.

Thus, it is natural to iterate the model construction in the subspace or-
thogonal to a’. The next theorem is mainly a consequence of this property.

THEOREM 1. Algorithm 2 builds a d-dimensional AA model with prin-
cipal directions (a',...,a?), regression functions (s',...,s%) and residuals
e = R*. Moreover, when d = p then ¢ = RP = 0 and the exact expansion

holds:

P
X=E[X]+)_ s*(V"), P-as.
k=1
Note that these properties are quite general, since they do not depend
neither on the index I, nor on the subset of admissible functions S(R, RP).
Some additional properties are provided in Section 3 for particular choices
of I and S(R,RP). We first prove the following proposition:

PROPOSITION 1. The residuals and the regression functions obtained
with Algorithm 2 share the following properties :

(i) Forall1<j<d,E[RI|=E[Y/] =E[s/(Y7)] = 0.
(i) For all1 <k <j<d, <ak,Rj> =0, P-a.s.
(iti) For all1 <k <j<d, (a* s(Y?)) =0, P-as.
(iv) The sequence of the residual norms is P-a.s. non increasing.
Proof.

(i) The proof is by induction on j. Let us note H; the hypothesis
E [Rj] = 0. Hp is clearly true. Supposing H;_; is true, we thus
have,

E[R]=E[R '] -E[s(Y7)] =-E[s(Y7)].



(ii) and (iii)

(iv)

Now, s/ is a solution of step [R] and then E [s/(Y7)] = 0. This last
equality can be proved by contradiction. If E [s/(Y7)] # 0, then
introduce p/ = [s7(Y7)] and 5”7 = s/ — 7. Since (a’,s7) = Id and
E[Y7] =E [(a?, R77')] = 0 by H;_1, we have (a’, ) = 0 and thus
<aj, s’j> = Id. Moreover, from condition (R), we have s’ € S(R,RP),
and therefore

B[||R = )] < B[R -2 0]
since R7~! is centered. This contradicts the minimality property of
s7. As a conclusion, E [R/] = —E [s/(Y7)] = 0.

The proof is also by induction on j. Note H; the hypothesis Vk < j,
(aF,R7) = 0. Hy is true since

(a',R") = (a",R") — (a",s'(Y")) =Y'-Y' =0.
Supposing H;_; is true, we now prove H;. For k = j, we have
(o/,R7) = (/,R"7") — (d,s7(Y7)) = Y7 — Y7 =0.
For k < j, Hj_; yields:
(a" R7) = (a", R77") — (a¥,s7(Y7)) = (a¥, s7(Y7)).
Now, s’ is a solution of step [R] and thus minimizes

|RY = s (Y9)|* = (0", R = (V) 43 (a, RIY = s (v9)).
ik

From H;_; and (R), the minimum is reached for a function s/ such
that (a®,s’) = 0 (the proof is done by contradiction as in (i)). To
conclude, <a’“,Rj> = 0 and <a’“, sj> = 0, which both prove H; and
(ii).

Consider j > 1 and s¥ € S(R,RP) given by s7 = (s/,a7)a’. We
have

IR|* = R = s ()
< R -
j—1
= > (" RN = S(Y9)) 4 (ad R - (V)
k=1
p
+ Z (" RI~1 —s’j(Yj)>2.
k=j+1



The first term is null in view of (ii). Condition (a7, sj ) = Id entails
that the second term is null too. Finally, in view of s definition:

p p
1B7)* < D (b R =) = T (e ) < R
k=j+1 k=j+1

The proof of Theorem 1 is now straightforward. It only remains to show
that RP = 0 P-a.s. In view of (ii) and Proposition 1, R? is orthogonal to a
RP? basis, and therefore it is P-a.s null. The following corollary will reveal
useful to select the model dimension similarly to the PCA case.

COROLLARY 1. Let Qg be the information ratio represented by the d-
dimensional AA model:

Qi=1-E [HRdHZ} /Var {||X||2} .
Then, Qo =0, Qp =1 and the sequence (Qq) is non decreasing.

3. TWO PARTICULAR AUTO-ASSOCIATIVE MODELS.

We consider two important cases in practice where step [R] has an explicit
solution: the linear auto-associative models (LAA) and the auto-associative
regression models (AAR). Clearly, these models inherit from the properties
established in the previous section. In both cases, we precise these general
properties by giving some further characteristics.

3.1. Linear auto-associative models

We focus on the case where S(R, RP) = A(R, RP). From Proposition 1(i), it
is straightforward that we can restrict ourselves to linear regression func-
tions s i.e. such that s(t) = tb, t € R, b € RP. Thus, step [R] can be
rewritten as:

nd b — : J—1 _ yi|2 PN —
[R] Find b arg;reanpE IR Y7z|], we. {af,z) =1,

and a result similar to Theorem 1 holds:

THEOREM 2. Algorithm 2 builds a d-dimensional LAA model with re-

gression functions s? (t) = tb?. Moreover, for d = p, the following expansion
holds:

p
X =E[X]+> Y**" P-a.s.
k=1

and the principal variables Y, k =1,... p are orthogonal.



We first prove the following properties.

PROPOSITION 2. Let Y be the covariance matriz of R7. The regression
functions and the principal variables obtained with Algorithm 2 share the
following properties :

i) Forall1<j<d, b =¥"1al/('a?SI " al).
) Forall1<j<d, b =%"1ad/(ta?¥T 1ol
(i) For all1 <i<j<p, E[Y'YI]=0.

Proof.

(i) Let £L(x, \) be the Lagrangian associated to the minimization problem
of step [R]:

L(z,\) [HR] ! ijHQ} +A({(a,z) = 1).
Requiring the gradient to vanish at point x, we obtain the equation
2B [R11Y7] - 2B [y7%] + aa/ =0,
and projecting on the axis a7, it yields A = 0 leading to
v =E[R YR Y] = Sl f(fal 20 ).
(ii) The result is proved by induction by noting Hy : E[Y'Y7] = 0,

1 <i< j <k. H; is straightforwardly true. Let us suppose that Hy
is true and prove Hy4 1. The random vector X can be expanded as :

X:E[X]+Zk:yibi+3’“. (1)
i=1
Hence, by projection,
(X —E[X],d""") Z V(b a" ) + v R
and for 1 < j < k + 1 we thus obtain:
E[YIYH!] = E[Y/ (X -E[X],d")] = Y E[Y'VI] (¥, a**1)
= E[Y/(X -E[X],d")] - E [y7*] (¢, a"*),

by Hy,. Taking into account of (i), we have b/ = E [R/~1YJ] /E {Yﬂ} ,
and consequently,

E YY" =E[Y7 ("', X —E[X] - R/™")].



An expansion similar to (1) yields
X -E[X]- R ZYzbl
and then
E[y/YkH] = ZIE (VY] (a", b)) = 0.

by Hy, since j — 1 < k.
1

Theorem 2 is then a consequence of Theorem 1 and Proposition 2. Let us
note that, from part (i) of the proof, the constraint of step [R] is always
satisfied and thus inactive.

It appears from Theorem 2 that the limitation to a family of linear functions
allows to recover an important property of PCA models: the orthogonality
of the principal variables. It is now shown that Algorithm 2 can also
compute a PCA model for a well suited choice of index.

COROLLARY 2. If, moreover, the index I of step [A] is the projected
variance, i.e. I(<x,Rj_1>) = Var [<m,Rj_1>], then Algorithm 2 computes
the PCA model of X.

Proof. Tt is well-known that the solution a? of step [A] is the eigenvector
associated to the maximum eigenvalue \; of ¥7~!. From Proposition 2(i),
we then obtain &/ = 7. Introducing A7 = a’ *a?, we consider the induction
hypothesis

k k
Hy: $F=x0-Y N4, RF =R - AR
Jj=1 j=1

Hy is straightforwardly true. Supposing Hy, holds, we now prove that Hy 4
is also true. We have on one hand :

Rk‘+1 — Rk _ <ak+1 Rk‘>ak+1 — Rk _ <ak+1 X> akJrl
and on the other hand :
Zk+1 — Ek +t ak+12kak+1Ak+1 _ AkJrlEk _ EkAk+1 — Ek _ )\k+1Ak+17
and thus Hyy; is true. It yields

)\k+1ak+1 _ Zkak-‘rl ZO k+1 Z )\ a] k+1> ZO k-‘rl
j=1

10



which proves that a**1 is also an eigenvector of X0 associated to the eigen-
value Agy1. Introducing Jordan’s expansion

d

20 =" AAk,

k=1

we deduce from Hy that ¢ = 0 and thus that R? is almost surely constant.
Since the residuals are centered, it follows that R? = 0, P-a.s. and

d
X=E[X]+) (a*, X ~E[X])d*, P-a.s. (2)

which is the expansion produced by a PCA. 1

Let us note that the auto-associative function F associated to a PCA by (2)
is linear. It is possible to show that, conversely, PCA is the only AA model
associated to a linear function F' [15].

3.2. Auto-associative regression models

Herein, we consider the case where S(R,RP) = L% (R,RP) leading to an
explicit solution for step [R]:

[R] s7(Y7) =E [RI-1|Y7],

since the conditional expectation is an orthogonal projector in L% meeting
the constraint. We thus have the following result:

THEOREM 3. Algorithm 2 builds a d-dimensional auto-associative model.
Moreover, when d = p, the following expansion holds:

X=E[X]+> s(Y7), P-a.s.
j=1
where the principal variables Y7 et YI+! are orthogonal, 7 =1,...,p — 1.
We first prove the following proposition:

PROPOSITION 3. The residuals and the principal variables obtained with
Algorithm 2 share the following properties :

(i) Forall1<j<d,E[R|Y’] =0, P-a.s.
(i) For all1 < j <d, E[YIYIt!] =0.
Proof.
(i) Since RI = R~ — s3(Y7), we have E[RI |YI] = B[R |Y7] —
E [s7(Y7) ‘Yj] and consequently E [R7|Y7] =0, P-a.s.

11



(i) Wehave B [Y/Y/+1] = E [V (a/*!, RI)] = E [Y7 (+ B [RI|Y7])] =
0 from (i).

Theorem 3 is a direct consequence of Theorem 1 and Proposition 3(ii). The
choice S(R, R?) = L% (R, RP) provides then a convenient framework to pro-
pose a nonlinear PCA with interesting theoretical properties (Theorem 3)
and a simple computation scheme (Algorithm 2). The implementation as-
pects are discussed in the next section.

4. IMPLEMENTATION.

Consider a sample (Xi,...,X,) iid from the unknown distribution Px.
The parameter j is estimated by the empirical mean X = 1/n " X;. The
two crucial steps in Algorithm 2 are [A] and [R]: the determination of the
principal directions and the estimation of the regression functions. The
index I and the set of functions S(R, RP) both determine the nature of the
obtained model and the complexity of the computation associated to the
optimization problems [A] and [R].

4.1. Estimation of the regression function

Remark that, when S(R, R?) is the set of affine functions from R to R? then,
from Proposition 2, ¥ = Y¥7~1a/ /(*a?¥1a’) where 3! is the covariance
matrix of the residual R7~'. Then, b’ is estimated by replacing in the above
formula ¥7~! by its empirical estimate and a’ by the estimation obtained
at step [A].

In the case of AAR models, the problem reduces to estimating the condi-
tional expectation of R7~! given Y7. This standard problem [18] can be
tackled by kernel [2] or spline [16] regression estimates.

Here, a kernel estimate has been chosen to deal with the simulated and real
data. For an example of the use of spline regression in a similar context,
we refer to [5]. Compared to a classical regression problem, an additional
constraint on the function to estimate at the j-th iteration: P,;s’ = Id has
to be taken into account. Fortunately, in the orthogonal basis B7 of R?
obtained by completing {a®,...,a’}, step [R] reduces to (p—j) independent
regressions. Hence, each coordinate k € {j + 1,...,p} of the estimate can
be written in the basis B’ as:

§(u) =Y RIKy(u—Y7) / > Knu-Y), (3)
=1 i=1

where Ii’f;l represents the k-th coordinate of the residual of the observation
i at the (j — 1)-th iteration in the basis B7, Y7 is the value of the j-th

K3
principal variable for the observation ¢ and the kernel K} is for example

12



a centered Gaussian density with standard deviation h, called window in
this context. More generally, any Parzen-Rosenblatt kernel is convenient.
For an automatic choice of h, we refer to [20], Chapter 6.

4.2. Computation of principal directions

The choice of the index I is the key point of any Projection pursuit problem
where it is needed to find ”interesting” directions. We refer to [22] and [24]
for a review on this topic. The meaning of the word ”interesting” depends
on the considered data analysis problem. For instance, Friedman et al [11,
13], and more recently Hall [17], proposed an index to find clusters or use
deviation from the normality measures to reveal more complex structures
of the scatter-plot. An alternative approach can be found in [4] where a
particular metric is introduced in PCA so as to detect clusters. We can
also mention indices dedicated to outliers detection [29].

In the framework of AAR models, we are interested in finding parameteri-
zation directions for the manifold to be estimated. In this aim, Demartines
and Herault [8] introduce an index to detect the directions in which the
projection approximatively preserves distances. From a similar principle,
Girard [5] proposes an index revealing the directions in which the neighbor-
hood structure is invariant with respect to projection. Both criteria require
complex optimization algorithms. For instance, in [5], the optimization step
[A] is performed with a simulated annealing technique, leading to a data
analysis procedure heavy to use in practice.

Our approach is similar to Lebart one’s [26]. It consists in defining a conti-
guity coefficient whose minimization allows to unfold nonlinear structures.
At each iteration j, the following ratio of quadratic functions is maximized
with respect to x:

n

I(<x,RJ‘71>):Z<x,R§*1>2 iimu@,mjhmﬁlf. (4)

i=1 k=14¢=1

The matrix M = (myy) is a first order contiguity matrix, whose value is
1 when R;A is the nearest neighbor of Rf;l, 0 otherwise. The upper
part of (4) is the usual projected variance. The lower part is the distance
between the projection of points which are nearest neighbor in RP. Then,
the maximization of (4) should reveal directions in which the projection
best preserves the first order neighborhood structure. In this sense, the
index (4) can be seen as a first order approximation of the index proposed
in [5]. Thanks to this approximation, the maximization step benefits from
an explicit solution: The resulting principal direction a? is the eigenvector
associated to the maximum eigenvalue of Vj**IVj where

V=303 (BT = RO - R
k=1{=1

13



is proportional to the local covariance matrix. The matrix

VSRR
k=1

is proportional to the empirical covariance matrix of R7~1. Vj*f1 should
be read as the generalized inverse of the singular matrix V7, R’ being
orthogonal to {a!,...,a’} from Proposition 1(ii). Note that this approach
is equivalent to Lebart’s one when the contiguity matrix M is symmetric.

5. EXAMPLES.

We first present two illustrations of the AAR models construction principle
on low dimensional data (Section 5.1 and 5.2). Second, AAR models are
applied to an image analysis problem in Section 5.3. In all cases, the
principal directions are computed thanks to the contiguity index (4). A
Gaussian kernel method (3) is applied in the regression step [R].

5.1. First example on simulated data

The data are simulated from a distribution whose support is a one-dimensional
manifold in R3. The equation of the manifold is given by

x — (z,sinx, cosx). (5)

The first coordinate of the random vector is uniformly distributed on
[—3m, 37| and n = 100 points are simulated. One iteration of Algorithm 2
is used. The squared cosine between the natural axis of parameterization
(the z-axis) and the axis estimated at step [A] is as high as 0.998. The
window of the kernel estimate is chosen equal to h = 0.3. At the end of the
first iteration, the information ratio is @1 = 99.97%. The theoretical man-
ifold, the simulated scatter-plot and the estimated manifold are presented
on Figure 1 for comparison.

5.2. Second example on simulated data

The data are simulated from a distribution whose support is a two-dimensional
manifold in R3. The equation of the manifold is given by

(z,y) — (x,y, cos(my/x2 + y2)(1 — exp{—64(z* + y2)})) ) (6)

The first two coordinates of the random vector are uniformly distributed
on [—1/2,1/2] x [-1,1] and n = 1000 points are simulated.

We limit ourselves to two iterations. The squared cosine between the first
natural axis of parameterization (the y-axis) and the first estimated axis a'
is as high as 0.998 and the squared cosine between the second natural axis
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FIG. 1 Manifold (a), simulated scatter-plot and estimated manifold (b).

of parameterization (the z-axis) and the second estimated axis a? is 0.999.
The window of the kernel estimate is chosen equal to h = 0.12. After the
first and second iterations, the information ratio is respectively equal to
Ql = 84.1% and QQ = 976%

The manifold (6) and the simulated scatter-plot are depicted in Figure 2(a)—
(b). The first regression function s! is plotted on Figure 2(c) with a solid
line. It approximatively represents the shape of the scatter-plot in the y-
direction. It can be noted that it does not take into account of the hole
induced by the exponential function. The corresponding residuals (at the
end of the first iteration) are represented on Figure 2(e). Remark that,
accordingly to Proposition 1(ii), they are orthogonal to the first principal
direction a'. The second regression function is drawn with a dashed line
on Figure 2(c). Figure 2(d) shows the estimated manifold after two iter-
ations. The associated residuals are represented on Figure 2(f). They are
orthogonal to the two principal directions a' and a?. In fact, they are a
consequence of the poor reconstruction of the hole due to the non additive
structure of the manifold equation (6).

5.3. Example in image analysis

Image analysis is a natural application field for multivariate analysis [6],
since an image with M x M pixels can be represented by a vector of RP with
p = M?2. Even images of moderate size yield data in spaces of extremely
large dimension. PCA usually is an accurate tool to reduce the dimension
of such data [28, 34]. However, even some very simple deformation in the
image space can lead to important nonlinearities in RP. In such situations,
PCA efficiency is significantly decreased. This remark is the starting point
of Capelli et al [3] work who propose a ”piecewise” PCA. The idea is to split
the nonlinear structure of RP into approximatively linear sub-structures.
We study here a database of 45 images of size 256 x 256 taken from the
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FIG. 2 Manifold (a), simulated scatter-plot (b), regression functions (c),
estimated two-dimensional manifold (d), residuals after the first iteration
(e) and the second one (f).
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archive of Centre For Intelligent Systems, Faculty of Human Sciences and
Faculty of Technology, University of Plymouth. It is made up with images
of a synthesis object viewed under different elevation and azimuth angles.
A sample from the database is presented on Figure 3.

T

-

!
(i)
FIG. 3 A sample from the image database. (a) reference image, (b-e)
rotation using the elevation angle, (f-1) rotation using the azimuth angle.

Each image is represented by a vector of dimension M? = 2562 leading
to a scatter-plot of n = 45 points in dimension 65536. However, a simple
rotation of axes allows to represent this set of points in dimension p =
44. In the following, our aim is to compare the modeling results obtained
by a classical PCA and by AAR models. The smoothing parameter is
fixed to h = 200. Figure 4 shows the compared information percentage
100Q4 represented by AAR and by PCA models of increasing dimension
d=0,...,10 (see Corollary 1).

The one-dimensional AAR model allows to represent more than 96% of the
information. As a comparison, a linear model built by PCA should be of
dimension 4 to reach this percentage. Moreover, the elbow in the curve
associated to AAR models seems to indicate that d = 1 is a convenient
choice. The projection of the corresponding manifold in the linear subspace
spanned by the first three PCA axes is represented on Figure 5(a) where
it is superimposed to the scatter-plot projection. Modeling this scatter-
plot by a two-dimensional manifold could also be justified since the image
database is generated by rotating the object in two orthogonal directions.
The projection of the two-dimensional manifold estimated and sampled is
presented on Figure 5(b).

It is worth remarking that the principal variable Y'! associated to the one-
dimensional AAR model has a simple interpretation. It corresponds to the
rotation with respect to the elevation angle. As an illustration, we simulate
uniform realizations of this variable and represent the corresponding images
obtained with the one-dimensional AAR model (Figure 6). The variable
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FIG. 4 Percentage of represented information as a function of the model
dimension (dashed line: PCA model, solid line: AAR model).

Y2 is not so easily interpretable. For this reason, the one-dimensional AAR

model should be preferred.
6. CONCLUSION AND FURTHER WORK.

As a conclusion, AA models offer a nice theoretical framework to the gen-
eralization of PCA. They extend the main PCA properties while offering
more flexibility: projection indices and regression functions available in the
literature allow to build numerous data analysis methods. Moreover, all
these methods would benefit from a simple implementation thanks to the
proposed iterative algorithm. In this paper, this principle is illustrated by
building AAR models combined with a contiguity index on simulated and
real data from image analysis. The resulting method is computationally
efficient since it does not require any optimization procedure, neither for
the Projection pursuit step, nor for the regression step. Possible exten-
sions of this work involve practical aspects and theoretical research. On
the practical point of view, it would be interesting to compare, at least
visually, the mapping produced by LLE [31] and Isomap [33] methods to
the scatter-plot of principal variables associated to AA models. From a
theoretical point of view, we plan to establish the asymptotic properties of
the estimates (3) and (4) in order to build tests on the model dimension.
The generalization properties of AA models should be investigated. In this
aim, it would be necessary to introduce a criterion measuring the distance
between simulations from the AA model (see for instance Figure 6) and
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(a) (b)

FIG. 5 Projections in the subspace spanned by the first three PCA
axes: (a) the one—dimensional manifold estimated and superimposed to
the scatter-plot, (b) the two-dimensional manifold estimated and sampled.

FIG. 6 Simulation of 4 images with the one-dimensional AAR model. The
variable Y'! is simulated uniformly on the interval [min Y;', max Y;'].
7 (3

the original sample (Figure 3). This distance would provide a good tool
for the adaptive choice of the smoothing parameters.
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