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Abstract. In this paper, we relate an experiment whose aim is to study
how to combine two existing approaches for ensuring software correct-
ness: Domain Specific Languages (DSLs) and formal methods. As ex-
amples, we consider the Bossa DSL and the B formal method. Bossa is
dedicated to the development of process schedulers and has been used in
the context of Linux and Chorus. B is a refinement based formal method
which has especially been used in the domain of railway systems. In this
paper, we use B to express the correctness of a Bossa specification. Fur-
thermore, we show how B can be used as an alternative to the existing
Bossa tools for the production of certified schedulers.

Keywords: DSL, scheduling, formal methods, refinements, decision pro-
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1 Introduction

During the last decade, the correctness of software has been a major issue. Sev-
eral approaches have been proposed and tools supporting them have been im-
plemented, some of which have been used in industry. One approach is the use 
of Domain Specific Languages (DSLs). A DSL contains domain-specific abstrac-
tions as well as domain-specific restrictions that enable verification of domain-
specific properties. Another approach is the use of formal methods. Such meth-
ods associate mathematically rigorous proofs with each step in software design 
and development. In this paper, we consider how to combine these approaches, 
by showing how a general purpose proof environment based on the B formal 
method [1] can be used to express and verify some of the properties relevant to 
the DSL Bossa [9].

The Bossa DSL is dedicated to the development of kernel-level process sched-
ulers and has been used in the context of Linux and the Chorus real-time op-
erating system. Process scheduling is at the heart of all operating system (OS)



behavior, making verification critical in this domain. Bossa has thus been de-
signed with both programmability and verification in mind. It has a formal se-
mantics and provides high-level scheduling-specific abstractions that simplify the
programming of scheduling policies and make explicit information that is useful
in scheduler verification. These features have, for example, enabled undergrad-
uate students with no previous kernel programming experience to implement
scheduling policies in the Linux kernel without crashing the machine.

B is a refinement-based formal method that has been used for the develop-
ment of safety critical software, especially in the domain of railway systems [2, 4].
The main feature of a B development process is that it proves that the final code
implements its formal specification. In this paper, we use B to express the cor-
rectness of a Bossa specification. Furthermore, we show how B can be used as an
alternative to the existing Bossa tools for the production of certified schedulers.

The rest of this paper is organized as follows. Section 2 provides a review of
Bossa with respect to its language and the verifications performed by its com-
piler. Section 3 gives a brief overview of the B method. Section 4 elaborates the B
development of a Bossa specification. Section 5 describes how some of the proof
obligations generated by the B development can be discharged automatically.
Section 6 presents some related work. Section 7 draws some conclusions.

2 Bossa

This section introduces the Bossa DSL and the verifications performed by the
Bossa compiler.

2.1 Bossa in a Nutshell

We introduce the Bossa DSL using excerpts of an implementation of a Rate
Monotonic (RM) scheduling policy [5], shown in Figure 1. This policy manages
a set of periodic processes, each of which is associated with a period attribute.
Process election chooses the process that is ready to run and that has the short-
est period. RM scheduling is useful in the context of general-purpose operating
systems such as Linux for controlling multimedia applications and in the con-
text of real-time operating systems such as Chorus [7] for managing periodic
processes. The complete RM policy is implemented as 110 lines of Bossa code
and is available at the Bossa web site, http://www.emn.fr/x-info/bossa. A
grammar of the Bossa DSL is also available at this web site. Here, we focus on
the main features of the language: declarations and event handlers.

Declarations. The declarations of a scheduling policy define the process at-
tributes, process states, and processes ordering used by the policy.

The process declaration (line 2) lists the policy-specific attributes associated
with each process. For the RM policy, each process is associated with its period.

The states declaration (lines 4-11) lists the set of process states that are
distinguished by the policy. Each state is associated with a state class (RUNNING,



1 scheduler RM = {
process = { time period; ... }

states = {
5 RUNNING running : process;

READY ready : select queue;
READY yield : process;
BLOCKED blocked : queue;
BLOCKED computation_ended : queue;

10 TERMINATED terminated;
}

ordering_criteria = { lowest period }

15 handler(event e) {
On process.end { e.target => terminated; }

On unblock.preemptive {
if (e.target in blocked) {

20 if ((!empty(running)) && (e.target > running)) {
running => ready;

}
e.target => ready;

}
25 }

...
}

}

Fig. 1. Excerpts of the Bossa Rate Monotonic policy

READY, BLOCKED, or TERMINATED) describing the schedulability of processes in the
state and an implementation as either a process variable (process) or a queue
(queue). The names of the states of the RM policy are mostly intuitive. The
ready state is designated as select, indicating that processes are elected from
this state. The computation ended state stores processes that have completed
their computation within the current period.

The ordering criteria (line 14) describes how to compare two processes
in terms of a sequence of criteria based on the values of their attributes. The
RM policy favors the process with the lowest period.

Event Handlers. Event handlers describe how a policy reacts to scheduling-
related events that occur in the kernel. Examples of such events include process
blocking and unblocking and the need to elect a new process. We show only the
definitions of the handlers process.end and unblock.preemptive, which are
used as examples in the B development.



Event handlers are parameterized by an event structure, e, that includes
the target process, e.target, affected by the event. The event-handler syntax is
based on that of a subset of C and provides specific constructs and primitives
for manipulating processes and their attributes. These include constructs for
testing the state of a process (exp in state), testing whether there is any process
in a given state (empty(state)), testing the relative priority of two processes
(exp1 > exp2), and changing the state of a process (exp => state).

A process.end event occurs when a process ends its execution. The corre-
sponding handler (line 16) simply sets the state of the process to terminated.
Because the terminated state is not associated with any data structure, this
state change has the effect of removing the process from further consideration
by the scheduler. An unblock.preemptive event occurs when a process un-
blocks. The corresponding handler (lines 18-25) checks whether the process is
actually blocked, and if so sets the state of the target process to ready making it
eligible for election. The handler also checks whether there is a running process
(!empty(running)) and if so whether the target process has a higher priority
than this running process (e.target > running). If both tests are satisfied,
the state of the running process is set to ready, thus causing the process to be
preempted.

2.2 Bossa Verification

The Bossa compiler verifies that a Bossa scheduling policy satisfies both stan-
dard safety properties, such as the absence of null-pointer dereferences, and
safety properties derived from the scheduling requirements of the target OS.
The latter properties are OS-specific and are described by a collection of event
types. Event types are defined in terms of the state classes and specify the pos-
sible preconditions and corresponding required postconditions on process states
at the time of invoking the various event handlers.

We present the event type notation using the types of the process.end and
unblock.preemptive events when used with Linux 2.4. That of process.end is
as follows:

[tgt in BLOCKED] -> [tgt in TERMINATED]

This type rule indicates that the target process of the event is initially in a state
of the BLOCKED state class and that the handler must change the state of this
process to a state of the TERMINATED state class. Because no other state classes
are mentioned in the type, a process.end handler cannot perform any other
state changes. The type for unblock.preemptive is as follows:

[tgt in BLOCKED] -> [tgt in READY]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[tgt in BLOCKED] -> [tgt in BLOCKED]
[tgt in RUNNING] -> []
[tgt in READY] -> []



The first three type rules treat the case where the target process is in a state of
the BLOCKED state class. Of these, the first two allow the handler to move the
target process to a state of the READY state class, making the process eligible for
election. The second rule additionally moves the running process to the READY
state class, which causes it to be preempted. In the third rule, the target process
remains in the BLOCKED state class, but is allowed to change state, e.g. to one
representing a different kind of blocking. The remaining rules consider the cases
where the target process is not actually blocked. In these cases, the event handler
may not perform any state changes.

It is straightforward to show that the process.end and unblock.preemptive
handlers presented above satisfy these types. The Bossa compiler includes a ver-
ifier that checks that a scheduling policy satisfies the event types. This verifier
is based on abstract interpretation and uses the various high-level abstractions
found in the Bossa language to infer the source and destination of state change
operations [9].

3 A Brief Overview of the B Method

B is a state-oriented formalism that covers the complete life cycle of software
development. It provides a uniform language, the Abstract Machine Notation,
to specify, design, and implement systems. A typical development in B consists
of an abstract specification, followed by some refinement steps. The final refine-
ment corresponds to an implementation. The correctness of the construction is
enforced by the verification of proof obligations associated with each step of the
development.

A specification in B is composed of a set of modules called (abstract) ma-
chines. Each machine has an internal state, and provides services allowing an
external user to access or modify its state. Syntactically, a machine consists of
several clauses which determine the static and dynamic properties of the state.

Consider the following abstract machine, which specifies a simple system that
stores a set with at most one element and provides various set operations:

MACHINE Singleton(ELEM)
VARIABLES elem, elems
INVARIANT

elem ∈ ELEM
∧ elems ⊆ {elem}
INITIALISATION

elem :∈ ELEM || elems := ∅
OPERATIONS
suppress �

PRE elems �= ∅ THEN /* the precondition ensures that suppress
will be called with a nonempty set */

elems := ∅
END;

el ←− extract � /* extract returns el */
PRE elems �= ∅ THEN



el := elem || elems := ∅
END;

add(el) � /* the precondition specifies the type of el
and ensures that no elements will be overridden */

PRE el ∈ ELEM ∧ elems = ∅ THEN
elem := el || elems := {el} /* B multi assignment */

END;
bb ←− empty �

IF elems = ∅ THEN bb := TRUE ELSE bb := FALSE END;
bb ←− nonempty �

IF elems �= ∅ THEN bb := TRUE ELSE bb := FALSE END;
bb ←− contains(el) �

PRE el ∈ ELEM THEN
IF el ∈ elems THEN bb := TRUE ELSE bb := FALSE END

END
END

This machine specifies a family of systems all having the same abstract properties
with respect to the parameter ELEM. By convention, a parameter starting with an
uppercase letter is an abstract set. Otherwise, it must be given a type within the
CONSTRAINTS clause. The clause VARIABLES defines the representation of
the state of the machine. In this case, we only use the variables elem and elems.
The clause INVARIANT constrains the domain of these variables. It states that
elem is a member of ELEM and that elems is a subset of the singleton {elem}.
Note that at this stage of the development the domain ELEM is abstract. We just
assume that it is nonempty.1 The initial state of the machine, which must satisfy
the invariant, is specified in the INITIALISATION clause. In this example, the
variable elem is initialized with any element of ELEM and elems is initialized to
the empty set.

The services provided by a machine are specified in the clause OPERA-
TIONS. In this case, we specify some standard set operations. To specify oper-
ations, B uses a mechanism of generalized substitutions. B defines six basic gen-
eralized substitutions: skip, multi-assignment (also called parallel-assignment),
selection, bounded choice, unbounded choice, and preconditioned substitution.
A generalized substitution acts as a predicate transformer. For example, the
generalized substitution

PRE elems �= ∅ THEN elems := ∅ END

corresponds to the predicate transformer

[elems �= ∅ |elems := ∅ ]

which is defined for any predicate P as follows:

[elems �= ∅ |elems := ∅ ]P ⇔ elems �= ∅ ∧ [elems := ∅]P

The soundness of a machine in B is given by proof obligations which verify
that
1 In B, abstract sets are nonempty and finite.



– The initial state satisfies the invariant.
– The invariant is preserved by the operations.
– The call of an operation must satisfy its precondition.

Some other clauses allow the introduction of constants (CONSTANTS) con-
strained by PROPERTIES.

An abstract specification can be materialized as an implementation by a
mechanism of refinement. The abstract machine acts as the interface of the im-
plementation: although the machine will be implemented by low level concrete
variables, the user of a machine is always concerned by the variables and the
operations defined at the abstract level. For example, in a real implementa-
tion of our system, we can implement the preceding singleton using a boolean
variable, full, indicating whether the set is empty and a variable storing the
singleton element managed by an instance of the BASIC ARRAY VAR machine.
We refine the previous Singleton machine by the following IMPLEMENTATION
machine:

IMPLEMENTATION Singleton_r(ELEM)
REFINES Singleton
CONCRETE VARIABLES full

IMPORTS BASIC_ARRAY VAR(0..0,ELEM) /* generic array memory */
INVARIANT

full ∈ BOOL
∧ (full = TRUE ⇒ (elems �= ∅ ∧ elem = arr_vrb(0)))
∧ (elems �= ∅ ⇒ full = TRUE)
INITIALISATION
full := FALSE

OPERATIONS
add(el) �

BEGIN
STR ARRAY(0,el); /* store el at index 0 */
full := TRUE

END;
suppress � BEGIN full := FALSE END;
el ←− extract � BEGIN el ←− VAL ARRAY(0); full := FALSE END;
bb ←− empty � IF full = TRUE THEN bb := FALSE ELSE bb := TRUE END;
bb ←− nonempty � BEGIN bb := full END;
bb ←− contains(el) �

VAR vv IN
vv ←− VAL ARRAY(0);
IF full = TRUE ∧ el = vv THEN bb := TRUE ELSE bb := FALSE END

END
END

The invariant of a refinement relates the abstract variables to the concrete
ones and is called the “coupling invariant”. From a user’s point of view, opera-
tions provided by Singleton are also provided by Singleton r; we cannot distin-
guish a call to a refined operation from a call to the abstract one.



The validity of a refinement is guaranteed by proof obligations: each con-
crete operation must be simulated by its abstract operation such that coupling
invariant is preserved. Each abstract operation must be refined.

4 Expressing Bossa Specifications in B

This section describes how event types and scheduling policies specified in Bossa
can be translated into B machines. The event types are translated into a B ma-
chine that models the abstract behavior of a scheduler. A Bossa specification
is then translated into a refinement of this abstract scheduler. Thus, verify-
ing the correctness of a Bossa specification amounts to verifying a refinement,
which requires discharging a set of automatically generated proof obligations.
We use the Rate Monotonic policy [5] presented in Section 2.1 to illustrate this
approach.

In our approach, the information given by a Bossa scheduling policy is grad-
ually taken into account at several levels of refinement. Figure 2 represents the
architecture of the B project used in the conformance verification of the RM
scheduling policy.

– The scheduler machine describes an abstract scheduler specified by Bossa
event types.

– The Classes machine included by the scheduler machine defines classes of
states and their transitions.

– The rm machine describes the rate monotonic policy as a refinement of the
machine scheduler.

– The RmTrans machine and its refinements RmTrans r1 and RmTrans r2 de-
scribe transitions between rate monotonic policy states.

– The machines Singleton, Queue, SelectQueue and VoidSet describe the
various collections of processes that can be used by a Bossa policy.

Singleton

Queue

SelectQueue

VoidSet

RmTrans

Classesscheduler

rm

includes

refines

RmTrans_r1

RmTrans_r2

Fig. 2. Architecture of the B project



Remarks

– The preceding architecture does not depend on the scheduling policy. The
machine Classes specifies state classes that are generic to the Bossa lan-
guage. This machine can be used unchanged for all scheduling policies.
The machines Singleton, Queue, SelectQueue and VoidSet specify vari-
ous kinds of collections of processes that are similarly generic. The machine
scheduler is specific to the event types for a given OS, but can be used
with any policy designed for that OS. The remaining machines have generic
roles, but policy-specific definitions. Of these, the machine rm specifies the
considered policy (rate monotonic here), while the machine RmTrans and its
refinements RmTrans r1 and RmTrans r2 specify the various states defined
by the policy and the elementary transitions between them.

– The B source code of these machines could be generated automatically from
the Bossa event types and from the Bossa specification of a policy.

4.1 Encoding the Event Types

The event types are defined in terms of a collection of abstract state classes.
The B machine Classes associates each state class with the collection of pro-
cesses that it contains. These collections are defined in terms of an abstract set
of processes (Process), so that conformance proofs will not depend on the actual
set of processes. Each state class is associated with a disjoint subset of Process.
Because Bossa assumes that the target architecture has only one processor, the
RUNNING state class can contain at most one process. This constraint is rep-
resented by creating a variable running to record the process in this state class
and specifying that Running is either the empty set or a singleton set containing
the value of this variable. The Classes machine also defines state transition op-
erations. These operations either move a process from one class to another, e.g.
the CBlockedToTerminated operation or allow an unbounded number of state
changes between two given state classes, e.g. the CReadyBlocked operation.

MACHINE Classes
SETS

Process
VARIABLES

Running, Ready, Blocked, Terminated, running
INVARIANT

Running ⊆ Process
& Ready ⊆ Process
& Blocked ⊆ Process
& Terminated ⊆ Process
& running ∈ Process
& Running ∩ Ready = ∅
& Running ∩ Terminated = ∅
& Running ∩ Blocked = ∅



& Ready ∩ Terminated = ∅
& Ready ∩ Blocked = ∅
& Terminated ∩ Blocked = ∅
& (Running �= ∅ ⇒ Running = {running})

INITIALISATION
Running, Ready, Blocked, Terminated := ∅,∅,∅,∅

|| running :∈ Process /* running becomes an element of Process
OPERATIONS
CBlockedToTerminated(tgt) �
PRE tgt ∈ Blocked THEN
Blocked := Blocked - {tgt} || Terminated := Terminated ∪ {tgt}

END;
CReadyBlocked �
ANY rr WHERE rr ⊆ Ready THEN

Ready := Ready - rr || Blocked := Blocked ∪ rr
END

...
END

The event types describe the state changes allowed between the state classes.
They are expressed by the scheduler abstract machine, which includes the
Classes machine defined above and an operation for each event. The system to
be built is supposed open and preconditions of the events specify call conditions.

We illustrate the translation of a set of event types to a B machine using the
rules for process.end and unblock.preemptive presented in Section 2.1. The
event type for process.end is below. This rule indicates that when the event
occurs, the targeted process (tgt) is blocked and the event handler must cause
the process to become terminated.

MACHINE scheduler
INCLUDES Classes
OPERATIONS
...
/*
[tgt in BLOCKED] -> [tgt in TERMINATED]
*/
Process_end(tgt) �

PRE tgt : Process & tgt ∈ Blocked THEN
CBlockedToTerminated(tgt)

END
...
END

Event types can also be non-deterministic. For example, the type for unblock.-
preemptive, reproduced below, allows three different behaviors if the target
process is blocked, and specifies additional behaviors if the target process is



running or ready. In the B translation, SELECT is used to identify the current
state classes of relevant processes and CHOICE expresses the non-determinism.

/*
[tgt in BLOCKED] -> [tgt in READY]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[tgt in BLOCKED] -> [tgt in BLOCKED]
[tgt in RUNNING] -> []
[tgt in READY] -> []
*/
Unblock_preemptive(tgt) �
PRE tgt : Process ∧ tgt ∈ (Running ∪ Ready ∪ Blocked) THEN

SELECT tgt ∈ Blocked ∧ Running �= ∅ THEN
CHOICE CRunningBlockedToReadyReady(tgt)

OR CBlockedToReady(tgt)
END

WHEN tgt ∈ Blocked ∧ Running = ∅ THEN CBlockedToReady(tgt)
WHEN PTRUE THEN skip
END

END

Remark. In the scheduler machine, we have only specified the transitions that
can be performed between state classes. The Bossa event types also specify when
transitions are allowed within a state class as is represented by the rule [tgt
in BLOCKED] -> [tgt in BLOCKED] of the unblock.preemptive event type.
While this transition could be expressed in B by refining the specification of the
state classes, we have not done so to maintain readability. It follows that in our
B model, state changes within a class are always allowed.

4.2 Encoding a Scheduling Policy

A scheduling policy is introduced as a refinement of the abstract scheduler. It
redefines the scheduling events using its own states, which refine the previously
introduced state classes. The management of policy-specific states is introduced
gradually in order to factorize some of the proof obligations.

– The first refinement level introduces the representation of states in terms of
collections of processes. In order to establish the link between policy states
and state classes, the machine Classes is included. Elementary state tran-
sitions are defined and apply both to policy states and state classes.

– The next refinement level drops the state classes, which are not used in the
implementation. However, this machine inherits the link between states and
state classes established by the first level.

– The last refinement level introduces the implementation of state membership.



Data Representation. The data structures used at the abstract level ensure
the correctness of state changes while preserving some properties, e.g. a pro-
cess cannot be lost, cardinality constraints are enforced. The preservation of
these properties is established by verifying proof obligations. At the abstract
level, states are represented by sets and checking the state of a process amounts
to testing set membership. In order to simplify the proof of the conformity of
scheduling policies, abstract machines defining sets of processes are provided.
Generally, they provide insertion and extraction operations. We have developed
a library of such machines with their efficient implementations.

– The Singleton machine (see Section 3) is used when there is at most one
process in a given state. Its insertion operation is preconditioned so that
processes cannot be overridden and its invariant ensures the cardinality con-
straint. This machine supports Bossa states declared as process (running
and yield for RM).

– The Queue machine can contain any number of processes. This machine
supports Bossa states declared as queue (blocked and computation ended
for RM).

– The SelectQueue machine is used when a state can contain any number of
processes and processes in this state can be accessed in sorted order using
the Bossa operator select. This machine support Bossa states declared as
select queue (ready for RM).

– The VoidSet is used when a state does not record any processes. This ma-
chine supports Bossa states for which no implementation is specified (ter-
minated for RM). The machine does not provide observation operations so
that its implementation does not store any process.

State Transitions. The machine RmTrans establishes the link between policy
states and states classes. Once established, this invariant is reused by machines
including or refining RmTrans. To establish the link, RmTrans includes both the
Classes machine and machines for each kind of state.2 The invariant of RmTrans
specifies how states classes are split into disjoint concrete states. In order to
preserve this invariant, operations are defined as acting both on concrete states
and on state classes. For example, RMRunning2Yield applies if running is non
empty and yield is empty. The running process is deleted from the running state
and added to the yield state. This operation is in parallel performed on state
classes: CRunning2Ready is also called, as Ready is the state class of yield.

MACHINE RmTrans
INCLUDES
Classes,
ru.Singleton(Process), /* running state */
rd.SelectQueue(Process,period), /* ready state */

2 The notation INCLUDES pr.m includes the machine m and adds the prefix pr to the
identifiers of m in order to avoid any conflict.



yl.Singleton(Process), /* yield state */
bl.Queue(Process), /* blocked state */
ce.Queue(Process), /* computation_ended state */
tm.VoidSet(Process) /* terminated state */

INVARIANT
bl.elems ∩ ce.elems = ∅

∧ rd.elems ∩ yl.elems = ∅
∧ Running = ru.elems
∧ Ready = rd.elems ∪ yl.elems
∧ Blocked = bl.elems ∪ ce.elems
∧ Terminated = tm.elems
OPERATIONS
RMRunning2Yield �

PRE ru.elems �= ∅ ∧ yl.elems = ∅ THEN
yl.add(ru.elem) || ru.suppress || CRunning2Ready

END;
...

END

Elimination of Abstract Data. The refinement step RmTrans r1 is used to
redefine operations without managing state classes. The Classes machine is no
longer included and operations only act on policy states.

REFINEMENT RmTrans_r1 REFINES RmTrans
INCLUDES
ru.Singleton(Process), rd.SelectQueue(Process,period),
yl.Singleton(Process), bl.Queue(Process),
ce.Queue(Process), tm.VoidSet(Process)

OPERATIONS
RMRunning2Yield �

BEGIN yl.add(ru.elem) || ru.suppress END;
...

END

State Membership. The data-representation machines provide an abstract
variable (elems) containing the set of processes in the corresponding state. In
Bossa, the implementation of state membership relies on an attribute attached to
each process. It is represented in B by the variable state: Process → State
which is introduced in a new refinement. Its declaration is split into INVARIANT
and ASSERTIONS. The ASSERTIONS clause is proved once as being implied
by the invariant. Then, the preservation of the assertion predicates is ensured
provided the invariant is preserved.

REFINEMENT RmTrans_r2 REFINES RmTrans_r1
SETS



State = {RmNowhere, RmRunning, RmReady, RmBlocked, RmCompEnded,
RmYield, RmTerminated}

INCLUDES
bl.Queue,
...

VARIABLES
state

INVARIANT
/* state is a relation between Process and State */
state : Process ↔ State

∧ state = Process × {RmNowhere} <+ /* definition of the state */
(rd.elems × {RmReady} ∪ /* relation */
bl.elems × {RmBlocked} ∪
ce.elems × {RmCompEnded} ∪
yl.elems × {RmYield} ∪
ru.elems × {RmRunning} ∪
tm.elems × {RmTerminated})

ASSERTIONS
state : Process → State /* the relation is functional */

The introduction of the state variable avoids referencing abstract sets of
states for testing state membership. The refinement RmTrans r2 thus uses the
operations of the data-collection abstract machines instead of their abstract vari-
ables.

The Algorithm. The scheduling policy is defined as a refinement of the ab-
stract scheduler. Its B code is translated from the Bossa specification. As com-
pared to the abstract scheduler, some tests are added in order to get the current
concrete state of a process and to call the correct state transition operation.

For example, the handler for the unblock.preemptive event is specified in
Bossa as follows:

On unblock.preemptive {
if (e.target in blocked) {
if ((!empty(running)) && (e.target > running)) {

running => ready;
}
e.target => ready;

}
}

The translation of this handler to B is immediate. Note that the process
comparison p1 > p2 is translated into period(p1) < period(p2), thus inlining
the ordering criteria defined in Section 2.1. Furthermore, policy specific variables
are introduced. The Rate Monotonic policy described in Bossa defines a counter
(missed deadlines) and a timer variable.



REFINEMENT rm REFINES scheduler
INCLUDES RmTrans /* state transition machine */
VARIABLES

missed_deadlines, timer /* policy specific variables */
INVARIANT

missed_deadlines : Process --> NATURAL
& timer : Process --> INTEGER
INITIALISATION

missed_deadlines := Process * {0} || timer := Process * {0}
OPERATIONS
Unblock_preemptive(tgt) �

VAR isbk IN
isbk <-- RMisBlocked(tgt);
IF isbk = TRUE THEN

VAR hru IN
hru <-- RMhasRunning;
IF hru = TRUE ∧ period(tgt) < period(running) THEN
RMRunning2Ready

END;
RMBlocked2Ready(tgt)

END
END

END
END

Proof obligations generated for this machine express that it is a refinement
of the abstract scheduler. They are the main properties that must be checked
in order to ensure that the scheduling policy complies with the event types
associated with the underlying kernel.

5 Proof Automation

The proof obligations generated for the preceding Bossa/B development are
not automatically proved by the provers available with Atelier B. Although, it
should be possible to add some tactics for discharging some of the remaining
proofs, this section instead introduces a decidable logic fragment that supports
the expression of proof obligations. It follows that their verification is automatic.
We believe that identifying logic fragments for automating the proof process is
essential for the scalability of a proof based approach.

5.1 An Overview of Monadic Second Order Logic and Mona

Definition 1 (S1S and WS1S logics). Let {x1, . . . , xn} be a set of first order
variables and {X1, . . . , Xn} a set of monadic second order variables. A minimal
grammar for these logics is defined as follows:



– A term t is inductively defined by:

t ::= 0 | xi | s(t)s is the successor symbol

– A formula f is inductively defined by:

f ::= t ∈ Xi set membership
| ¬f | f ∧ f
| ∃1xi. f first order quantification
| ∃2Xi. f second order (set) quantification

This syntax is extended as usual by first order operators and quantifiers (∨, ⇒
, ∀ . . .) and some arithmetic relations. For example, a ≤ b is defined by ∀2X. X(a)
∧(∀1x. X(x) ⇒ X(s(x))) ⇒ X(b).

Validity of a formula. A closed formula is valid in S1S or WS1S if it is valid in the
interpretation on the set N of natural numbers, where s is the successor function,
first order variables relate to the natural numbers and second order variables to
the subsets (finite in the case of WS1S) of N. These two logics are decidable [11].
WS1S is concerned with finite sets only while S1S is also concerned with infinite
sets. The Mona tool [6] implements a decision procedure for WS1S.

With respect to our study, we can use Mona to decide some of our proof
obligations, specifically those that concern individual processes and sets of pro-
cesses (regardless of the effective number of processes).

5.2 A Translation Example

As an example of the use of Mona in discharging proof obligations, we consider
the proof obligations associated with the refinement of the ReadyToRunning
operation. According to the B method, the proof obligation for a refinement of
an abstract preconditioned operation opa by a concrete operation opr is:

Inva(sta)
∧ Invr(sta, str) ∧ Pre op(sta) ∧ opr(str, st′r)
⇒ ∃st′a : opa(sta, st′a)

∧ Invr(st′a, st′r)

where:

– Inva(sta)(resp. Invr) is the invariant of the abstract (resp. of the concrete)
machine,3

– Pre op is the precondition of the abstract operation,
– opa(sta, st′a)(resp. opr(str, st′r)) is the before-after predicate of the abstract

(resp. concrete) operation.
3 The invariant of the refinement is expressed over the product of the abstract and

concrete states in order to express the so called “coupling” invariant between the
abstraction and the concretization.



Informally, the preceding formula says that each concrete step opr can be simu-
lated by an abstract step opa so that the coupling invariant Invr is preserved.

Given the abstract and refined states introduced in Section 4.2, we can ex-
press the preceding proof obligation within Mona as follows (the complete Mona
text is given in the appendix A):

all2 Ready, Running, Terminated, Blocked:
all1 running,running’:
all2 rdelems, ruelems, ylelems,

rdelems’, ruelems’, ylelems’:
all1 rdelem, ruelem, ylelem,

rdelem’, ruelem’, ylelem’:
Inv_a(Ready, Running, Terminated, Blocked, running)

& Inv_r(Ready, Running, Terminated, Blocked, running,
rdelems,rdelem,ruelems,ruelem,ylelems,ylelem)

& pre_RunningToReady_a(Ready, Running, Terminated, Blocked, running)
& RunningToReady_r(rdelems,rdelem,ruelems,ruelem,ylelems,ylelem,

rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’)
=> ex2 Ready’,Running’,Terminated’,Blocked’: ex1 running’:

RunningToReady_a(Ready, Running, Terminated, Blocked, running,
Ready’,Running’,Terminated’,Blocked’,running’)

& Inv_r(Ready’, Running’, Terminated’, Blocked’,running’,
rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’);

Thanks to its decision procedure, the Mona tool establishes that the preced-
ing predicate is valid. It outputs the following result:

AUTOMATON CONSTRUCTION
100% completed
Time: 00:00:00.01

Automaton has 1 state and 1 BDD-node

ANALYSIS
Formula is valid

6 Related Work

A large number of DSLs have been developed for a wide range of domains [12].
Many of these DSLs provide no verification, and those that do typically either
rely on verification provided by a general-purpose host language [10] or use
ad hoc analyzers, as was originally done for Bossa. The former approach is,
however, limited to the facilities of the host language, which are rarely adequate
for expressing and checking domain-specific properties, while the latter puts a
huge burden on the DSL developer.

The DSLs Promela++ [3] and ESP [8] both provide both standard code gen-
erators and translators to code suitable for use with the SPIN model checker.



While these approaches are in the spirit of the work presented here, the state ex-
plosion problem implies that these languages use model checking for bug finding,
but not complete verification. Furthermore, these approaches require specifying
properties in the general-purpose specification language of SPIN, while the Bossa
event types are domain-specific. Indeed, the high-level of the event type specifi-
cation is crucial to enable our refinement-based approach.

7 Conclusion

DSLs provide a high-level means of implementing solutions to complex prob-
lems within a given domain. When the domain has critical safety or security
requirements, verification of these implementations is essential. In this paper,
we have shown a systematic means of using the B formal method to verify a
process scheduling policy implemented using the Bossa DSL. This verification
covers within a single framework both verification of the scheduler structure, as
also provided by existing Bossa verification tools, and verification of part of the
implementation strategy (i.e., the use of the state function to optimize state
membership tests), which is not covered by the Bossa verifier. In the develop-
ment presented here, most of the work can be reused directly for verification
of other scheduling policies, except for the proofs related to the event handler
definitions themselves (i.e., the second part of Section 4.2). However, using a
dedicated decision procedure such as Mona should help in automating the ver-
ification of most of the proof obligations. In future work, we plan to generalize
this part of the development as well, to produce an executable code and hence a
certified Bossa compiler. We will also consider how this approach can be applied
to other DSLs.
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A Mona Expression of a Proof Obligation

1 pred ajouter(var2 elems, var1 el, var2 elems’) =
elems’ = elems union {el}

;
pred atmostSingleton(var2 S, var1 e) =
/* S1S expression that a set containts at most 1 element */

S sub {e}
;
pred Inv_a(var2 Ready, Running, Terminated, Blocked, var1 running) =

Running inter Ready = {} & Running inter Terminated = {}
10 & Running inter Blocked = {} & Terminated inter Blocked = {}

& Ready inter Terminated = {} & Ready inter Blocked = {}
& atmostSingleton(Running,running)
;
pred pre_RunningToReady_a(var2 Ready, Running, Terminated, Blocked,

var1 running) =
Running ~= {}
;
/* Running2Ready =

PRE HasRunning THEN Ready := Ready \/ Running || Running := {} END;
20 */



pred RunningToReady_a(
var2 Ready, Running, Terminated, Blocked, var1 running,
var2 Ready’, Running’, Terminated’, Blocked’, var1 running’) =
Ready’ = Ready union Running & Running’ = {}

& Terminated’ = Terminated & Blocked’ = Blocked & running’ = running
;
/* Running2Ready = BEGIN rd.ajouter(ru.elem) || ru.supprimer END; */

pred RunningToReady_r(
30 var2 rdelems, var1 rdelem, var2 ruelems,

var1 ruelem, var2 ylelems, var1 ylelem,
var2 rdelems’, var1 rdelem’, var2 ruelems’,
var1 ruelem’, var2 ylelems’, var1 ylelem’) =

ajouter(rdelems,ruelem,rdelems’)
& ruelems’ = {} & ylelems’ = ylelems & ylelem’ = ylelem
;
pred Inv_r(

var2 Ready, Running, Terminated, Blocked, var1 running,
var2 rdelems, var1 rdelem, var2 ruelems,

40 var1 ruelem, var2 ylelems, var1 ylelem) =
rdelems = Ready \ ylelems

& Running = ruelems & ylelems sub Ready
& atmostSingleton(ylelems,ylelem) & atmostSingleton(ruelems,ruelem)
;
/* refinement proof obligation */

all2 Ready, Running, Terminated, Blocked: all1 running,running’:
all2 rdelems, ruelems, ylelems, rdelems’, ruelems’, ylelems’:
all1 rdelem, ruelem, ylelem, rdelem’, ruelem’, ylelem’:

50 Inv_a(Ready, Running, Terminated, Blocked, running)
& Inv_r(Ready, Running, Terminated, Blocked,running,

rdelems,rdelem,ruelems,ruelem,ylelems,ylelem)
& pre_RunningToReady_a(Ready, Running, Terminated, Blocked, running)
& RunningToReady_r(rdelems,rdelem,ruelems,ruelem,ylelems,ylelem,

rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’)
=> ex2 Ready’,Running’,Terminated’,Blocked’: ex1 running’:
RunningToReady_a(Ready, Running, Terminated, Blocked, running,

Ready’,Running’,Terminated’,Blocked’,running’)
& Inv_r(Ready’, Running’, Terminated’, Blocked’,running’,

60 rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’);


