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Abstract. In grid-based scientific applications, building a workflow es-
sentially involves composing parameterized services describing families

of services and then configuring the resulting workflow product line. In
domains (e.g., medical imaging) in which many different kinds of highly
parameterized services exist, there is a strong need to manage variabili-
ties so that scientists can more easily configure and compose services with
consistency guarantees. In this paper, we propose an approach in which
variable points in services are described with several separate feature
models, so that families of workflow can be defined as compositions of
feature models. A compositional technique then allows reasoning about
the compatibility between connected services to ensure consistency of an
entire workflow, while supporting automatic propagation of variability
choices when configuring services.

1 Introduction

In grid-based scientific collaboration communities, scientists build workflows by
assembling services that, in many cases, perform complex tasks [1]. For example,
in the grid-based medical imaging community, scientists compose diverse image
processing services to create chains that meet their specific needs. To support
reuse, services can be parameterized, thus allowing a scientist to tailor a service
to a particular context. Current approaches to assembling grid-based services
are labour-intensive [2] and require scientists to manually manage knowledge
about i) the variable points supported by services, and ii) the restrictions on
how services must be tailored and composed to meet end-to-end Quality of Ser-
vice (QoS) or other requirements. When a wide variety of parameterized services
exists, the tasks of identifying, tailoring and composing services become tedious
and error-prone [3], especially in grid-based medical imaging. As identified in
previous work [4, 5], the difficulty of provisioning and composing such services
stems from the lack of mechanisms for managing variabilities within and across
services. The above problems give rise to the following challenges. The first
challenge is to provide mechanisms that enable service providers (e.g., research
scientists, workflow or grid experts) to capture the commonalities and variabili-
ties in parameterized services that are offered on the grid. The second challenge
is concerned with providing support for tailoring and composing services such
that service consumers can ensure the consistency of resulting workflows with
well-defined properties.



In order to meet these challenges, we describe in this paper a rigorous ap-
proach to composing parameterized services into workflows. The approach uti-
lizes Software Product Line (SPL) and Aspect-Oriented Modeling (AOM) tech-
niques. The goal of SPL engineering is to produce reusable artifacts that can be
used to efficiently build members of a software product family [6]. The reusable
artifacts encapsulate common and variable aspects of a family of software sys-
tems in a manner that facilitates planned and systematic reuse. A parameterized
grid-based service can be viewed as an SPL. We observe that the variabilities
in a parameterized service can be described along a variety of dimensions. For
example, in a medical imaging service, three commonly used dimensions concern
QoS features, image formats and communication protocols for data transmission.
We rely on prior results [7] to separate aspect models which exhibit variability
and compose them to produce a comprehensive variability model. This modular
technique allows applying separation of concerns principles and thus limits the
considered variabilities only to relevant concerns.

In the present approach, a workflow is created by first composing families
of services and then configuring the resulting workflow product line. Feature
models [8,9,10] (FMs) are used to describe the common and variable features in
a tailorable service. The variable points in a parameterized service are described
by multiple separate FMs, where each FM describes a set of variable points in a
particular dimension. A set of composition operators is used to i) insert a concern
with variability into the description of services and ii) merge variability models
of connected services. The FM composition operators are used to reason, at the
FM level, on services’ dependencies specified by the user and identified as active
in the workflow. Using these operators, it is possible i) to analyze the entire
workflow by checking the consistency of families of dependent services and ii) to
infer variability information and propagate user choices according to variability
information described in each family of services. We also consider the impact
that workflow constructs (sequence, concurrency, if-then-else condition) have
on service composition. The approach assists users with their decision-making
process and can largely reduce the sets of configurations to be considered when
tailoring and composing services.

2 Motivation and Overview of the Approach

Scientific workflows are increasingly used for the integration of existing, legacy
tools and algorithms to form larger and more complex applications, e.g., for sci-
entific data analysis or computational science experiments. In the medical imag-
ing area (e.g., see [11]), scientific workflows are deployed on grids for addressing
the computing and storage needs arising from manipulation of large fragmented
medical data sets on wide area networks. Service-oriented architectures (SOA)
are especially suited to such a domain: There is a need for reusable self-contained
services that provide standardized interfaces for calling application code as well
as information exchange protocols [12]. In SOA, services are atomic entities that
are composed to produce complex (business) processes implementing workflows.

Managing Many Concerns. Many scientific services have a large number of
input ports and parameters, but not exclusively. Individual data items processed
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by scientific workflows are very much related to each other and there is a need
to maintain data cohesion: Dependencies between different services within a
workflow system must be managed from several perspectives. More generally,
deployed services contain a lot of information related to the environment in
which they are deployed and composed. In the case of medical imaging services
on the grid, service providers supply basic imaging services, implemented in a
variety of languages, packaged with information needed to compose the services
with other services. In addition, providers have to manage the numerous non-
functional properties that are exploited during deployment or runtime, in order
to meet quality of service (QoS) goals. The overall issue for users of the workflow
is to deal with services’ dependencies in the workflow while addressing a large
amount of concerns.

An SPL Approach. Rather than providing services in hopes that opportunities
for reuse will arise during the design of a workflow, a proactive strategy is to
apply SPL principles and plan which characteristics of a service are likely to
be systematically reused. The ability to efficiently create many variations of a
service and capitalize on its commonalities can improve its composability and
increase the extent to which service logic is sufficiently generic so that it can be
effectively reused. Our previous work indicates that there is significant variability
in medical imaging services on the grid [4, 5]. For example, a service is able
to read and process several medical image formats; some services use network
protocols that do not support the transmission of a “receive acknowledge” to
indicate that the packet has been received whereas some other services do have
this capability. A medical imaging service that exhibits variability can thus be
treated as an SPL or family of services. For each concern of a service, there are
several alternatives that the user has to consider and choose from to derive an
actual service. Adopting an SPL approach, a family of services is described from
a variety of variable concerns, i.e., a concern with variation points, and thus can
be represented as a set of variants.

We believe that separation of functional and non-functional concerns with
variability can improve the reusability of services. In Figure 1, three concerns
are woven into elements of the Intensity Correction service to augment its de-
scription. Medical Image describes the medical images input formats that the
service is able to process. Grid Deployment provides information about service
deployment on the grid, e.g., the operating system needed to run the service on



the grid. Network Protocol represents the network protocol used by the service.
When the service Intensity Correction is connected to the services Segmentation
and Unbias, several concerns of Intensity Correction may be related to several
concerns of Segmentation and Unbias. For instance, users may require that the
medical image output of Intensity Correction be compatible with the medical
image input of Segmentation and Unbias; or that the network protocol used by
Intensity Correction be consistent with the network protocol used by Unbias.

Key Issues. The goal of the SPL approach promoted in the paper is to man-
age not only the variability of the family of services but also the variability of
the resulting composed services. The following key challenges are targeted by
our approach. A first challenge is to cope with multiple dimensions of a family
of services by providing mechanisms to augment the service description with
variants from the concerns dimension. These variants can be woven in at several
points (e.g., port, interface) in the service description. A second challenge is to
ensure that families of services are consistently composed in the workflow. At the
workflow level, the links between services and their semantics exist in various
forms (complex dependencies, input/output dataflow, provided/required inter-
faces compatibility, etc.). A developer must identify and specify how concerns
with variability are treated when services are composed. The actual selection of
variants in a large and complex SPL can be a tedious and error-prone task [13].
A third challenge is to assist the user in selecting the right variant for each fam-
ily of services and for each dimension. These choices should be consistent for the
entire workflow and should not violate the specified restrictions on concerns.

3 Modeling Concerns with Variability in Workflow

A medical imaging service should have high variability, that is, a user should be
able to efficiently extend, change, customize or configure the service in a partic-
ular context [13]. The medical image format provides an example: some formats
can anonymize the medical image by removing all patients metadata; some can
compress and/or reduce the image size while the format header may differ. Ser-
vices often must address several concerns. In this paper, the term concern is
used in a broad sense and may range from high-level requirements to low-level
implementation issues, refer to measurable properties or to the behaviour of the
system.

Separation of Concerns (SoC). The number of variants and choices for each
concern of a service can be extremely large and can be a threat to scalability:
variability descriptions quickly become too complex to manage, evolve or analyze
by users. When modeling variants of a service, applying SoC principles and
providing support to the modularisation of variability description can make them
scale better. In our approach, the SoC is twofold. Firstly, concerns are associated
with and described according to precisely defined elements of a service (e.g.,
Dataport). Secondly, we support the separation of variability models instead of
the use of a large and monolithic variability model: The variability description
of a service can be modularized, where each modular model focuses on a well-
identified concern.



Modeling Workflow and Service. We first need to model what is a service,
what its elements are and how services are assembled in workflows. Figure 2
shows a metamodel3 that describes the form of services supported by our ap-
proach.
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Fig. 2. Metamodel of Service and Workflow

A service describes data items in Dataports. Input dataports hold references
to the data to be processed and output data ports contain references to the
data produced by a service. FunctionalInterface represents the interfaces (legal
operations with their parameters) exposed by a service. DeploymentInformation

provides information about the deployment of the service, and a specialized
GridDeploymentInformation references the ComputingNodes on which services are
deployed. In addition, the metamodel describes how services can be connected
in a workflow represented as a set of Processes. Two special processor nodes
are also defined: Sources produce data to feed the workflow and Sinks collect the
data produced. For the purpose of the paper, we consider that a Process is bound
to one and only one Service in the sense that a service realizes a process. The
connection between processes is specified as a partial ordering: The right part of
Relation is a process that must wait for the end of the left part to start its own
execution. If-then-else conditions can be expressed with a Guard which evaluates
a predicate on objects of Variable.

Modeling Variability. A concern (e.g., medical image format) of a service
can exhibit a set of variable points (e.g., alternatives, optionality). We choose
to describe its variability with a Feature Model (FM). FMs are widely used to
model a family (e.g., an SPL) in terms of common and variable features. Several
definitions of feature appear in the literature, ranging from “anything users or
client programs might want to control about a concept” [8] to “an increment in

3 While there exists more comprehensive metamodels for service descriptions, we chose
to use a simple metamodel that shows only the service concepts needed to understand
our approach.



product functionality” [9]. These definitions indicate that FMs, like concerns,
are not only relevant to requirement engineering but they can also be applied to
design or implementation [14].
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Fig. 3. Medical Image FM

In Figure 3, a family of medical im-
ages is represented by a FM and has
two mandatory features, ModalityAcquisi-

tion and Format, which imply that each
valid configuration of a medical image
should include these two features. An op-
tional feature is Anonymized, which states
whether all patients metadata of the med-
ical image are included or not. There are
also three alternatives of medical image
format: Nifti, DICOM or Analyze features
form a Xor-group. It means that at least
and at most one feature must be selected. Finally, an MRI medical image has ei-
ther the parameter T1 or T2 or both of them: T1 and T2 form an Or-group. A FM
thus describes the set of valid feature combinations. Every member of a family
is represented by a unique combination of features. For instance, each valid fea-
ture combination of a FM representing a family of requirements corresponds to
an actual requirement. In the remainder of the paper, a combination of selected
features is called a configuration of a FM and is represented as a set of features.
In Figure 3, a valid configuration of the FM is as follows: {MedicalImage, Modality-

Acquisition, Format, CT, DICOM}. A configuration is valid if all features contained
in the configuration and the deselection of all other features are allowed by the
semantics of FM [9,10].

Weaving Concern. Figure 4 describes how concerns which exhibit variability
(called VariableConcerns) can be composed in a service description. We consider
that a FM (resp. configuration) is an abstract view of a variable concern (resp.
variant): A VariableConcern is described with a FeatureModel where each Config-
uration of a FeatureModel corresponds to a concrete Variant
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Fig. 4. Join Point Modeling

There is need to specify where the concern is inserted in the description of a
service. A mechanism is required to weave a concern into a service model that



conforms to the service metamodel of Figure 2. We propose that each model
element of the service metamodel (e.g., Dataport, FunctionalInterface, etc.) can
inherit from JoinPoint. Join points represent well-defined places in the structure
of a service where additional behaviour can be attached. In our case, a Vari-
ableConcern can be attached to any JoinPoint. For example, a concern dealing
with the description of medical images supported by a service can be attached
to the Dataport. Another concern can be attached to Dataport, e.g., to describe
the security of data. It is also possible to describe how medical images will be
stored on the grid. As a result, several concerns along several Dimensions can be
associated to a JoinPoint. The actual weaving of a VariableConcern in a specific
JoinPoint can be achieved using AOM composition approaches. In the rest of
the paper, a dotted arrow which links a FM to a dashed border box means that
we weave the FM into an instance of a JoinPoint. For example, in Figure 5 of
Section 4, FMo1, is woven to an actual output Dataport of FService1. (Output

Dataport is the name mentioned in the box and is a shortcut to name an instance
of an output Dataport of a service.)

4 Reasoning on Workflow Concerns

Services are composed in the workflow while several concerns can be weaved into
various elements of services. For some reasons, mainly due to the interconnection
of services in the workflow, elements of services may be dependent. As a result,
concerns attached to these elements may, in turn, be dependent on each other.
This typically occurs when concerns belong to the same dimension.

Dependency Modeling. For instance, the medical image output format of a
service S1 is considered to be compatible with the medical image input format of
another connected service S2 in the workflow (see Figure 5). We need to express,
at the model level, that an output Dataport of S1 has to be compatible with
an input Dataport of S2 if they are to be connected. We define some Dependen-
cyRule(s), which are associated to JoinPoint elements of the service metamodel
and that restrict in some way4 the VariableConcerns.

The compatibility relation between two concerns vc1 and vc2 only considers
concerns that belong to the same dimension. It is defined as follows: For at
least one Variant of vc1, there is an equal Variant in vc2 (and vice-versa). The
same relation applies to all dependency rules. In our implementation [15] of
the approach, we formalize these rules using the Kermeta language [16] and the
compatibility relation corresponds to the function checkV ariableConcerns. Rule

1 defines the compatibility between S1 and S2 Dataports as described above. It
is expressed in Kermeta as follows:

s1 . output . each{op |
i f op . connectInput . s i z e > 0 then

// some input por t s ( o f s e r v i c e s2 ) are connected to op
op . connectInput . each{ ip |

// merge concerns o f output port op and input port ip o f s2
checkVariableConcerns ( op . concerns , ip . concerns )

}
end

}

4 The use of constraints between FMs is not considered in the paper (see Section 6)



Another rule, Rule 2, states that when two services are connected, the con-
cerns associated to their FunctionalInterfaces are to be compatible. If a service
S1 does not support HTTP whereas the service S2 only supports HTTP, users
can be prevented from an inconsistency of service S1 and service S2. It is also
possible to define dependency rules between concerns without considering the
connection between services in the workflow. For instance, Rule 3 states that if
services are deployed on an equal computing node (a resource on the grid), all
concerns must be compatible with each other. The concern can refer to the set
of operating systems in which the services can be deployed and executed. In this
case, if a service S1 can only run on the Linux operating system whereas another
service S2 can only run on the BSD operating system, the two services cannot
be deployed on the same computing node.
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Fig. 5. Consistency checking concerns while shrinking variability choices

As a summary, DependencyRules express restrictions on the variants that can
be derived from concerns attached to families of service elements. This boils
down to ensuring the consistency of each set of Variant(s) associated with a
Join Point of a Service. To implement the reasoning, we rely on our previous
work, defining a set of composition operators for FMs. In [7], the semantics of
each operator has been given in terms of the expressed configurations. Here, we
focus on the merge operator which is dedicated to the composition of FMs that
represent variable concerns along the same dimension.

Merge Operator. When two FMs share several features and are different view-
points of a concern, the goal of the merge operator is to merge the overlapping
parts of the two FMs to obtain an integrated model of the system. For example,
users want to merge two medical image descriptions represented by two FMs,



FMI2
and FM01

, depicted in Figure 5. The merge operator uses a name-based
matching: two features match if and only if they have the same name. The merge
process starts from the root features of FMI2

and FM01
. Medical Image of FMI2

and FM01
match. Then, when two features have been merged, the whole pro-

cess proceeds with their children features. Two modes are defined for the merge
operator. The intersection mode is the most restrictive option: The merged FM,
FMr, expresses the common valid configurations of FMI2

and FM01
. The union

mode is the most conservative option: the merged FM, FMr, can express either
valid configuration of FMI2 or valid configuration of FM01 . The variability in-
formation associated to features in the merged FM is set according to the defined
rules. These rules (see [7] for more details) are different according to the merge
mode and the properties that one may want to preserve.

We now formalize some properties of the merged FM with respect to the
sets of configurations of input FMs. Let f be a FM and JfK denotes its set of
configurations. The relationship between a merged FM Result in intersection
mode and two input FMs FM1 and FM2 is denoted FM1 ⊕∩ FM2 = Result.
It can be expressed in terms of sets of configurations:

JFM1K
⋂

JFM2K = JResultK (M1)

According to the example of Figure 5, a valid configuration of the merged FM,
FMr, is valid in FMI2

and in FM01
at the same time. The DICOM feature

is always part of any valid configuration of FMI2
and FM01

whereas the Nifti

feature cannot be part of any valid configuration of FM01
. As a result, DICOM

is a mandatory feature of the merged FM while the Nifti feature is not part
of the merged FM. The following relation can be shown to hold: JFMrK =
JFMI2K

⋂
JFM01K

In the union mode, we want to obtain a merged FM that represents the set of
configurations of FMI2 and FM01 . The merge operator in the union mode is
denoted FM1 ⊕∪ FM2 = Result. In the same way, we define the relationship
between a merged FM Result and two input FMs FM1 and FM2 in terms of
sets of configurations:

JFM1K
⋃

JFM2K = JResultK (M2)

Using FMs, the user can configure a family and thus derive an individual product
(see Section 3). Observing that a FM in which there is no variability represents
exactly one configuration, we decide to consider that a configuration of a FM is
a FM. The rationale behind considering configuration as an FM is that it allows
one to use the merge operator at each step of the configuration process.

Reasoning on Dependencies. In Figure 5, we focus on the medical image
format concern. To illustrate our approach, we consider a very simple work-
flow where two processes are executed in sequence. FService1 is connected to
FService2. FMO1 (resp. FMI2) represents the medical image format informa-
tion of FService1 (resp. FService2) and is associated to the output (resp. input)
dataport. In this context Rule 1 applies: The connection between FService1 and
FService2 implies that FMO1

and FMI2
must be compatible. It is thus neces-



sary to check if the set of configurations of FMO1
is equal or included in the

set of configurations of FMI2 (and vice versa). Our technique is to compute the
merge in intersection mode between FM01

and FMI2
. If the merged FM does

not represent an empty set of configurations, then there must be at least one
configuration that is valid in FMO1

and FMI2
. The consistency checking can

thus be achieved. In the example, such an FM exists (see FMr).
The benefits of computing the merged model are threefold. (1) The restric-

tion on the concerns shrinks the variability choices in FMO1
and FMI2

. This
restriction is represented by the merged FM. In this case, there is no longer need
to consider the Nifti feature in FMI2 or Anonymized feature in FMO1 . (2) The user
can use the merged FM to configure FMs of FService1 and FService2 at a time.
One configuration of the merged FM corresponds to the same configuration in
FService1 and FService2. For example, if the user selects T1 in the merged FM,
then it implies that the feature T1 associated to FService1 and FService2 are
also selected. (3) The merged FM can be the basis for reasoning on the compat-
ibility with another FM. Let us now consider that FService1 is also connected
to another service FService3 (see Figure 7(a), Section 5). The output dataport
of FService1 is thus dependent on the input dataport of FService3. As a result,
the new restriction on FMO1

, represented by the merged FM, should be used to
reason on the compatibility between FService1 and FService3.

5 Consistent Workflow Configuration

5.1 Impact of Workflow Constructs

We have seen in Section 4 how we can reason on two services that are connected.
Workflows usually have more than two services executed in sequence, and others
with parallel computations and branching through if-then-else constructs. It is
necessary to ensure the consistency of concerns configurations considering the
various workflow constructs (e.g., sequence, concurrency, condition).

Sequence. Figure 6 shows three services FService1, FService2 and FService3

connected in sequence. In this example, checking each pair of connected services
independently may not be enough. Let us address two situations illustrated in
Figure 6.

When the join point is the Dataport, the dependency between services is driven
by Rule 1. The output dataport of FServicei, which is connected to the input
dataport of FServicei+1, has to be compatible for i ∈ 1...n. In this case, the
reasoning applies on a pair of services independently from the others. When
the join point is the Functional Interface, Rule 2 defined in Section 4 requires
that the exchange protocol associated to FServicei must be compatible with
the ones of FServicei+1 for i ∈ 1...n. This requires the following checks to be
made: i) FMep1 and FMep2 are consistent and also that ii) FMep2 and FMep3

are consistent. Let us now explain why it is necessary to reason globally on the
entire sequence for this case. If we apply the same strategy as in Figure 5, we
obtain:
FMep′2 = FMep1 ⊕∩ FMep2 (a)
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FMep′3 = FMep2 ⊕∩ FMep3 (b)
However, the composition (a) has a side effect: some features of FMep1 or FMep2

may no longer be available. It is then possible that some features FMep2 may not
be involved in composition (b). Both compositions are therefore dependent on
each other and should be addressed as a whole. Not following the above technique
leads to an error, as shown in the bottom part of Figure 6: FMep1 and FMep2 are
consistent as well as FMep2 and FMep3, but the results of the two compositions
are not compatible. We can generalize and state that: A sequence of FService1,
FService2, . . . , FServicen is consistent according to a concern if and only if
SCR = ((FMep1 ⊕∩ FMep2) ⊕∩ (FMep2 ⊕∩ FMep3) ⊕∩ . . . ⊕∩ (FMep(n−1) ⊕∩ FMepn)) 6= nil,
nil being the empty FM.

The merge operator properties M1 and M2 defined in Section 4 rely on the
intersection or union of sets of configurations. In set theory, for the operations of
intersection and union, associative, commutative and idempotent laws notably
hold. The expression SCR can thus be simplified as follows:

SCR = (FMep1 ⊕∩ FMep2 ⊕∩ FMep3 . . . ⊕∩ FMepn) 6= nil
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Fig. 7. Other Workflow Constructs

Concurrency. When two services are concurrently executed, the same situation
occurs and it may not be sufficient to reason on pairs of services independently.



In Figure 7(a), FService1 is connected to FService2 and FService3 which are
concurrently executed. The medical image output supported by FService1 is
described with FMo1 which is attached to Output Dataport. The medical image
input supported by FService2 (resp. FService3) is described with FMi2 (resp.
FMi3) which is attached to Input Dataport. We are considering that the medical
image of FService1 is transmitted to FService2 and FService3 (an output
Dataport of FService1 is connected to an input Dataport of FService2 and
an input Dataport of FService3). In this case, the Rule 1 applies but, as in the
previous example, it is not sufficient to independently check each pair of services.
Ensuring the satisfiability of the following formula is not sufficient:

FMo1 ⊕∩ FMi2 6= nil ∧ FMo1 ⊕∩ FMi3 6= nil

since the restrictions on the set of configurations of FMo1, due to the merge
of FMo1 and FMi2, are not considered when composing FMo1 and FMi3. As a
result, the following relation must hold:

FMo1 ⊕∩ FMi2 ⊕∩ FMi3 6= nil

It can be extended to n concurrent services as follows:
FMo1 ⊕∩ FMi2 ⊕∩ FMi3 . . . ⊕∩ FMin 6= nil

Condition. When a condition is present in a workflow, different execution paths
can be followed. This impacts the way (variable concerns of) services are depen-
dent and thus consistency checking must be adapted. In Figure 7(b), the connec-
tion between services in the workflow means that FService1 is executed, followed
by an if-then-else condition: If the condition is true (resp. false), then FService2

(resp. FService3) is executed. In addition, FService2 and FService3 are con-
nected to FService4. The Rule 2 applies between FService1 and FService2,
FService1 and FService3, FService2 and FService4, as well as FService3 and
FService4. There are two alternative paths (mutually exclusive) considering the
execution flow: i) the execution of FService1, then FService2 and FService4

or ii) the execution of FService1, then FService3 and FService4. As a result,
the following relation must hold:
P1 = (FMep1⊕∩FMep2⊕∩FMep4) 6= nil∧P2 = (FMep1⊕∩FMep3⊕∩FMep4) 6= nil

We propose to compute these restrictions as new FMs associated to each
service. The new FM, FMep′1, associated to FService1 is the union of the two
paths in terms of sets of configuration: FMep′1 = P1 ⊕∪ P2. Then, the new FM,
FMep′4, associated to FService4 is also the union of the two paths in terms
of sets of configuration: FMep′4 = P1 ⊕∪ P2. Finally, new FMs associated to
FService2 (resp. FService3) are FMep′2 = P1 and FMep′3 = P2.

6 Assessment

Benefits and Strengths. If the variability manipulated by the user leads to
some inconsistency but is considered to be more important than the workflow
structure, the user has to correct the workflow itself. Using our approach, such
inconsistencies can be systematically detected and several correction strategies
can be applied. The separation of concerns provides the ability to precisely lo-
cate the source of errors and to give information to assist users in correcting
the workflow. Hence, users can identify which specific services assembled in the
workflow are causing inconsistency. In this case, a straightforward strategy is to



choose another service. Another solution is to identify and correct inadequate
concerns, either by relaxing some variability description of services or by config-
uring differently some services (e.g., choosing a feature instead of another in a
Xor-group). Another option is to detect and solve the shimming problem [17] by
introducing intermediary workflow processes, called shims, that act as adapters
between otherwise incorrectly wired services. The implementation of shims can
solely focus on the inadequate concerns previously detected.

Collaborative and distributive development can also be implemented, e.g.,
several grid and medical imaging experts can independently and incrementally
configure services and associated concerns with respect to their know-how. The
merge operator deals with synchronizing choices and guarantees their coherence
at each step.

Properties of the merge operator can then be exploited. The various com-
positions of FMs may be performed in any order because of the associativity
property of the merge operator. Heuristics, such as merging larger FMs first,
can thus be planned to detect an earlier source of errors. The idempotent and
commutative properties can reduce the number of merge calls: In Figure 6, for n

services sequentially executed, there are n− 1 calls before simplification instead
of 2 ∗ n − 1. The merge between FMs contributes to decrease the number of
remaining variability choices.

An additional property of the merge in intersection mode is as follows: The
number of features of the resulting FM is lesser than or equal to the number of
features commonly shared by input FMs. This property can dramatically reduce
the set of configurations to be considered by the user during workflow configura-
tion. As a result, the amount of time and effort needed during the configuration
process can be reduced. For instance, let us consider that the average of the num-
ber of features of each FM FMo1, FMi2, FMi3 and FMin of Figure 7(a) is 30
and the number of features commonly shared by FMs is 20. After applying the
merge operator, the new computed FM has a number of features which is neces-
sary lesser than or equal to 20. As a result, a user only has to consider less than
20 features instead of 30 ∗ 4 = 120 features. Such benefits can also be observed
for other workflows.

Current Limits and Threats. Currently we do not handle constraints be-
tween FMs whether they are internal or between several FMs. This is useful
when concerns related to FMs are not independent, e.g., the QoS provided by
a medical imaging service can be dependent on the kind of input images ma-
nipulated. More generally, the feature interaction problem is still an open and
hard research challenge [14]. Constraints between FMs and feature interactions
are threats to incremental and modular development, as well as to independent
reasoning on FMs. They may cancel out some of the benefits presented above.

In the current proposal, we make the assumption that FMs to be merged have
the same granularity, e.g., they share the same hierarchical structure. Given the
open nature of the grid and the autonomy of the data and service providers,
users may want to align concepts (features) and/or to negotiate some parts of
FMs that are not present in another like in the viewpoints approach.



7 Related Work

Feature models. A few other approaches use multiple FMs during the SPL
development. In [18], separate FMs are used to model decisions taken by differ-
ent stakeholders or suppliers. The authors recognize the need to compose and
merge FMs during multi-stage and multi-step configuration process, but do not
achieve it. In [19], several FMs are used to separate feature descriptions related
to requirements, problem world context and software specifications. Constraints
then inter-relate features of FMs. Metzger et al. proposed a formal approach
for separating PL variability (e.g., economical-oriented variability) and software
variability, thereby enabling automatic analysis [20]. The two kinds of variabil-
ity can be considered as concerns of an SPL. Previous contributions do not
consider FMs or concerns that are sharing some features. This can happen when
concerns along the same dimension interact, when multiple perspectives on a
concern needs to be managed or when SPLs are composed with SPLs. A few
works [10, 21, 22, 23] suggested the use of a merge operator: Our proposal goes
further in this direction and clarifies the semantics of the merge and, most im-
portantly, shows how this operator can be used in practice. In [24], an algorithm
is designed to compute the kind of relations between two FMs. We have shown
that reasoning on more than two FMs can happen for some constructs of the
workflow and then, why the merge operator is required. In [25], the configuration
process is represented as a workflow and different stakeholders are configuring
the same FM. The first difference with our work is that the term workflow used
in the approach does not refer to a processing pipeline, but to the activities
completed during configuration. The second difference is that only a single FM
is considered during the whole configuration process.

Multiple SPLs. In our case study, a medical imaging service can be seen as an
SPL provided by different researchers or scientific teams. The entire workflow is
then a multiple SPL in which different SPLs are composed. In many domains,
organizations or architectures, the need to “shift from variation to composition”
and to support multiple SPLs (also called product populations) is more and
more patent [26]. Van der Storm considered not only variability at the level of
one software product, but also each variable component as an entry-point for a
certain software product (obtained through component composition) [27]. Hart-
mann and Trew dealt with multiple SPLs and identified several compositional
issues in the context of software supply chains. They notably recognized that
“merging FMs, especially when they are overlapping, requires a significant engi-
neering activity” [23]. They did not provide a set of operators, a semantics nor a
mechanism to automate this task. Reiser and Weber proposed to use multi-level
feature trees consisting of a tree of FMs in which the parent model serves as a
reference FM for its children [28]. Their purpose is mostly to cope with large
diagrams and large-scale organizations, rather than different concerns.

Service composition. A large amount of work exists in (automatic) service
composition (e.g. see [29]). To the best of our knowledge, there is no specific ap-
proach combining separation of concerns while managing variability in the same
kind of context. In [30], AO4BPEL promotes a well-modularized specification of
concerns and dynamic strategy for web service composition. Our work focuses
on how to ensure in a processing chain, at design time, consistency between
concerns with respect to variability. Work in [31] focused on how to map a FM



to a business process model described in BPEL; each feature of a FM corre-
sponds to a business process. The motivation of our work is rather to describe
the variability within a process; we also consider that the processing chain is
fixed.

8 Conclusion and Future Work

Creating workflows from many different kinds of highly parameterized services
is a cumbersome and error-prone task as important variabilities have to be man-
aged by the user. In this paper, we have presented an approach that organizes
services as a product line architecture and that uses feature models (FMs) to
structure necessary information in terms of service variabilities. In the proposed
approach, a family of services is defined as a set of concerns which exhibit vari-
ability, each being represented with one or several FMs. To reason on these arti-
facts, we rely on several related metamodels, reifying services, their dependencies
in workflows and the join point related concepts. To enable the multiple compo-
sition of the concerns while taking variability into account, we have proposed a
set of composition operators. Using these operators, we have defined consistency
rules that enable the reasoning about the compatibility between families of con-
nected services. Moreover, the consistency checking process makes it possible to
automatically propagate variability choices into the whole workflow and thus to
assist the user in selecting tailor-made services.

Future work aims at tackling current restrictions: i) handling inter- or intra-
constraints between FMs in the composition process; ii) providing mechanisms
to enable users to align FMs. The building of a large SPL dedicated to med-
ical imaging services on the grid has already started. The services are part of
a service-oriented architecture in which data-intensive workflows are built to
conduct numerous computations on very large sets of images [4, 5]. The con-
struction of such an SPL gives us an opportunity to obtain validation elements
and feedback on the approach.
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