N
N

N

HAL

open science

Authoring XML all the Time, Everywhere and by
Everyone

Stéphane Sire, Christine Vanoirbeek, Vincent Quint, Cécile Roisin

» To cite this version:

Stéphane Sire, Christine Vanoirbeek, Vincent Quint, Cécile Roisin. Authoring XML all the Time,
Everywhere and by Everyone. XML Prague 2010, Mar 2010, Prague, Czech Republic. pp. 125-149.

hal-00494255

HAL Id: hal-00494255
https://hal.science/hal-00494255

Submitted on 22 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00494255
https://hal.archives-ouvertes.fr

Authoring XML all the Time, Everywhere
and by Everyone

Stéphane Sire
EPFL
<stephane.sirelepfl.ch>

Christine Vanoirbeek
EPFL
<christine.vanoirbeek@epfl.ch>

Vincent Quint
INRIA

<vincent.quint@inria.fr>
Cécile Roisin
INRIA

<cecile.roisin@inria.fr>

Abstract

This article presents a framework for editing, publishing and sharing XML
content directly from within the browser. It comes in two parts: XTiger XML
and AXEL. XTiger XML is a document template specification language for
creating document models. AXEL is a client-side Javascript library that turns
the document template into a document editing application running in the
browser. This framework is targeted at non XML speaking end users, since it
preserves end users from XML syntax during editing. Its current implement-
ation proposes a pseudo-WYSIWYG user interface where the document tem-
plate provides a document-oriented editing metaphor, or a more form-oriented
metaphor, depending on the template.

Keywords: XML, authoring, document template, client-side Javascript
library

1. Introduction

Nowadays, most web-based applications take advantage of the XML format to expose
information on the web — by use of XSLT transformations and/or CSS style — or, still
better, to anchor automatic processes on XML data that follow a conceptual model.
Despite the fact that XML originates from research in the structured document do-

Authoring XML all the Time, Everywhere and by Everyone

main — XML is an application profile of SGML —, the common use of XML on the
web is mostly based on data extracted from relational databases. In this sense, web
users essentially contribute to populating such databases by introducing data
through forms displayed on their browser. On another hand, the semantic web
perspective reinforces the trend to produce more document-oriented information
as it encourages to provide information that embarks significant meaning by the
use of tags and attributes employed in documents. As a consequence XML authoring
should address both paradigms.

The use of forms constrains users to provide consistent data-oriented information.
It may be performed by using XHTML forms; in this case, a significant effort is re-
quired on the server side to check validity of entered data. It may be performed by
the use of XForms whose declarative approach clearly facilitates the control of data,
but unfortunately XForms is currently not supported by browsers, and thus requires
the use of often complex frameworks.

Producing document-oriented information on the web is feasible but is currently
addressed in so many different ways: web-based rich text editors, Wikis and blogs,
XHTML editors or Content Management Systems. Web-based rich text editors allow
web users to provide XHTML content in a way very close to usual desktop word
processors. Wikis or blog authoring systems allow users to produce tagged inform-
ation but, often necessitate the knowledge of a basic syntax which is not appropriate
to end-users. Most XHTML editors offer the possibility to introduce micro-formats
in the documents, leveraging the level of reusability of common components. Content
management systems offer functionality to produce either XHTML or XML content
on the web. More recently, web-based WYSIWYG XML editors became available.

As aresult, millions of (X)HTML blog entries, wiki pages or database generated
content are currently available, but they are difficult to interpret and repurpose.
XML content is also available, but XML-based authoring solutions imply using
complex client/server architectures. They include the use of XML parsers to validate
information against a generic model (DTD, XML Schema, Relax-NG, etc.), usually
on the server side.

Imagine what would be possible if non XML-savvy users could use their famil-
iar browser as an XML authoring tool, allowing them to produce mixed data- and
document-oriented information, constrained by a specific template. As an extension,
with the agreement on common XML vocabularies or domain specific languages,
all data entered on the web would be available for automatic processing [12].
Moreover, the use of common XML vocabularies would allow to develop standard
editing components. This modularity would allow to quickly create light XML au-
thoring applications adapted for specific content models.

This article presents AXEL (Adaptable XML Editing Library), a client-side
Javascript library for authoring template-driven XML content on the Web. It relies
on the use of XTiger XML, a template definition language based on XHTML, which
is designed to express structural constraints on the edited content. Additionally,

Authoring XML all the Time, Everywhere and by Everyone

the associated use of CSS provides flexibility in terms of user interface. The template
language and the library bring the opportunity to provide users with traditional
forms-based interfaces or document-oriented interfaces, allowing them to author
XML content with a visual user experience close to WYSIWYG word processors.

The paper is organized as follows: we introduce first the concept of template
proposed by XTiger XML and explain its articulation with AXEL, the client-side
document template engine that transforms a template into an interactive XHTML
page. Then we provide details about the XTiger XML syntax and semantics and we
illustrate through concrete examples how templates constrain the document struc-
ture, to guide the presentation and to support the mapping to a target XML structure.
Then we describe the editing functionality provided by AXEL and justify the cus-
tomization of user interface in terms of usability. Finally, we explain some server
integration aspects and we outline the main features of the library. The article finishes
with a comparison of our approach with related work and some perspectives for
future work.

2. Templates at a Glance

2.1. Document Templates

In many document production systems such as word processors, templates are
typical documents whose organization and style indicate how documents of a certain
type should be structured and presented. With this approach, a template is just a
sample document that authors use as a starting point and that they develop by
providing content while following the structure and style of the initial document.
The tool lets authors free to change everything at any time, but the initial sample
document is supposed to give them hints about what is expected in the end. In some
systems, in XHTML editors for instance, templates contain also some fixed parts
that an author can not modify and that will be preserved in the final document, to
strongly constrain some parts of the document.

Different types of templates are also used in content management systems for
generating HTML pages from a data base. In that case, the template isa HTML page
with "holes" that contain queries for extracting content from the data base. Some
statements are also interspersed in the HTML code to generate additional parts
depending on the data found in the data base.

So, there are different sorts of document templates. The templates we are con-
sidering in this paper were initially designed [7] to make it easier for authors to
create and edit well structured and semantically rich XHTML documents that do
not require complex schemas and transformations, while still allowing documents
to provide useful, automatically processable information. The initial language we
have developed for this purpose was called XTiger [11].

Authoring XML all the Time, Everywhere and by Everyone

The idea behind XTiger was to use XHTML as the basic document format and
to constrain the way to use it, in order to produce a specific type of document. A
number of authors are comfortable with (X)HTML editors, and some of these editors
produce valid, well structured XHTML code. Because XHTML is an XML language,
the namespace mechanism can be used to allow XHTML documents to include
elements and attributes from another XML language, XTiger, that expresses con-
straints on the XHTML structure. As XHTML can benefit from CSS style sheets, it
is easy to specify the visual aspect of the document structure.

With this approach, a template is an XHTML document (with its style sheets)
that represents the skeleton of a document, and that contains statements expressed
in the XTiger language to indicate how this embryonic document can evolve and
grow. We have extended the Amaya web editor [1] to support the original XTiger
language. The editor interprets the XTiger statements contained in the template to
guide the user in building the intended document structure. The author interacts
with a familiar editor on a well formatted document and eventually produces a
structured XHTML document, that can then be used directly on the web with any
browser. Templates are easy to create: they are basically XHTML documents con-
taining XTiger elements where structural constraints have to be set.

This approach to templates has proven to be very useful for editing rich XHTML
documents on the web [7], but it is possible to go a step further and to produce any
XML structure, not only XHTML, while preserving the ease of use of XTiger tem-
plates. This is done by adding to the original XTiger language a mapping mechanism
for specifying what piece of XHTML structure is equivalent to what target XML
structure. Another significant step is to let authors free to choose their preferred
tool, by implementing the editor as a Javascript library that runs in a browser. When
loaded into the browser with the library, the document template is turned into an
interactive editor that follows the constraints expressed by the XTiger elements to
generate only data following a predefined XML content model.

This extended version of the template language is called XTiger XML [14]. In
the remainder of this paper, we often write XTiger when discussing features offered
by both versions of the language.

Thus, an XTiger XML template plays three complementary roles:

e [t includes constraints that define the data components the user can enter at
different places in the document.

¢ [t contains presentation hints (XHTML elements, style sheets) that define how
each editing component looks like while editing.

¢ [t provides information for mapping the editing components to a target XML
structure.

The figure below shows a typical XML editorial process built with document tem-
plates: a template author creates the templates which are turned into interactive
editing applications into the browser by the AXEL library. End users can then create

Authoring XML all the Time, Everywhere and by Everyone

or change documents; when they save them, their XML content is generated and
sent to server side applications for further processing or stored into databases or
documents.

/////" DB
XTiger XML >
template XML data \\\\\‘
[Documen
Web
browser
Template author End-user author Web applications
- b - - >

Figure 1. Overall architecture

2.2. Anatomy of an XTiger XML Template

The following code example shows a very simple document template for editing a
list of persons to great. As this section explains, the document template defines in
the same file: some structural editing constraints, a presentational view for editing
data, and an XML content model.

Example 1. The "Greetings" template

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:xt="http://ns.inria.org/xtiger">
<head>
<title>My first template</title>
<xt:head label="greetings">
<xt:component name="friend">
<xt:use types="text">name</xt:use><xt:menu-marker/></1i>
</xt:component>
</xt:head>
</head>
<body>
<p>List of persons to great:</p>

Authoring XML all the Time, Everywhere and by Everyone

<xt:repeat minOccurs="0" maxOccurs="*" label="persons">
<xt:use types="friend" label="name"/>
</xt:repeat>

</body>
</html>

A capable document template engine, such as AXEL, transforms the previous tem-
plate into an interactive XHTML page from which a user can create a list of persons.
At any time, the page content can be exported into XML, as in the following example.

Example 2. Example of edited XML content

<greetings>
<persons>
<name>Charlie</name>
<name>0scar<name>
</persons>
</greetings>

The "Greetings" example shows that the document template is an XHTML document.
This is because, as it will be run inside a browser, the presentation language is the
language for displaying pages in the browser. The document also contains some
elements and attributes in the http://ns.inria.org/xtiger namespace which is
prefixed with xt: for XTiger. These elements constrain user's input and define an
XML content model.

The document template is divided into two parts. The xt:head part, which is
declared in the head section of the XHTML document, declares some reusable editing
components and data types. Each component is declared as a xt : component element
with a name attribute that will be used to refer to it. The content of a component can
mix elements from the presentation language, XHTML, and from the XTiger
namespace.

The second part of the template is the body section of the XHTML document. It
contains a mix of XHTML elements and XTiger elements. The XHTML elements
are rendered as usual within the browser. They give the document its appearance
and can be styled using CSS to generate different looks and feels. The xt : use element
is a component inclusion element which makes it possible to insert an editing
component in place and specify its data type. The document template engine expands
each xt :use element by replacing it with the content of the component whose name
matches the value of its types attribute. Ultimately, some editing component names
such as the text component are reserved types which are associated with primitive
editor components. The primitive editor components are transformed by the engine
into special fields which can be edited by the end user to enter data in the document.

Authoring XML all the Time, Everywhere and by Everyone

Some other XTiger elements and attributes, such as the xt:repeat element and
itsminOccurs and maxOccurs attributes are editing constraints that guide the editing
process. The xt:repeat element indicates that its content can be repeated several
times, with a minimum and a maximum number of times.

Finally, the XTiger attribute 1abel drives the XML content serialization process.
In fact, the edited document is turned into XML content by traversing it from its
root. Each time the template engine encounters a label attribute, it creates a new
XML content fragment with a tag name set to the value of 1abel. The XML content
of this fragment is the result of serializing the corresponding document subtree.

2.3. Editing With a Document Template

A client-side document template engine, such as AXEL, loads a document template
in a browser window, and transforms it into an interactive editing application. As
can be seen on Figure 2, some parts of the document template are transformed into
user interface controls such as a minus and a plus button. Some other parts of the
document become editing fields, such as the fields to enter a person name. Finally,
some parts are just part of the background and are displayed as usual, non-editable
XHTML elements, such as the list header in the snapshot below.

(e NN &) My first template

:0 My first templa: U E
(e Jle J> >N)(m)(2)

List of persons to great:

+ Charlie & &4

+ [Oscar k OO
Figure 2. The "Greetings" generated editor

The user interface generated by the document template engine is quite different
from a Rich Text Editor user interface. The main reason is that there is no need for a
command panel to group all the available options in one place (usually at the top
of the window), because the template prevents users to insert document formating
commands. Instead, an editor inserts directly into the document some user interface
controls (such as the minus or plus buttons) directly within the document flow, at
the position where the choice is available to the user.

The areas where users can input text are defined by primitive editor components.
Each of these editors is responsible to manage the display and the editing of its
content. For instance, the text primitive editor component displays its content either
as an XHTML span element, or as an input or textarea that dynamically replaces

Authoring XML all the Time, Everywhere and by Everyone

the content when the user clicks on it for editing. This is illustrated with the Charlie
and Oscar inputs in the figure above.

In order to preserve a document look and feel, the document template editor
does not systematically emphasizes the editing component borders, for instance
with dashed boxes, as it is the case in other document template editors such as Mi-
crosoft PowerPoint. Instead, each document template author can use CSS properties
and class attributes to create the desired effects.

To some extent, the editing user interface can be seen as something between a
full WYSIWYG editing user interface and a more constrained form-based user inter-
face. In any case, it never shows XML tag or attributes to the user, which makes it
easily usable by everyone.

The editing user interface is self-contained in the document (no need for extra
menus or panels) and the document template engine implementation is client-side.
As a consequence, editable document templates can be embedded anywhere in any
application (see section on server integration for details). For instance, for the purpose
of writing this article, we have deployed the document template engine onto a
WebDAYV web server. The only addition to the document template of the article
(which uses a custom XML content model from which we can easily generate a
Docbook or an XHTML document), has been to program a Javascript menu bar to
load and save XML data from and to the document template. The resulting editing
application with its menu bar is displayed below:

‘WebDAV bar Dump Data file name : ../data/submission-article.» { Load) (Save) Reload Reset |

interface and a more constrained form-based user interface. In any case, it never shows XML tag or attributes
to the user, which makes it easily usable by everyone.

OO (Parag 14) The editing user interface is self-contained in the document (no need for extra menus or panels) and the
document template engine implementation is client-side. As a consequence, editable document templates can
be embedded anywhere in any application (see section on server integration for details). For instance, for the
purpose of writing this article, we have deployed the document template engine onto a WebDAV web server.
The only addition to the document template of the article (which uses a custom XML content model from
which we can easily generate a Docbook or an XHTML document), has been to program a Javascript menu
bar to load and save XML data from and to the document template. This menu bar is displayed below:

63 | Figure ?

AXEL WebDAV bar (pump) Data file name : arvicie.xml Load) (Save)/ (Publish Reset

Figure 3. Simple menu bar which can be used to present a document template
as an editing application

3. Templates in Action ©©

OO0 (rarag 13 This section gives, through some real template examples, a more detailed description of the syntactic elements
that constrain the editing process and that define an XML content model over an XHTML background
document. It also shows the corresponding user interface.

©© (swTive [5] 3, 1. The examples
OO0 (Parag %) The table in figure 4 is an extract of a description of a place such as a bar or a restaurant. It shows that for

each day of the week, the user has the choice between two different components. The first component, with a
closed label, is just empty. The second component, with an open label, is a repeated list of time slots.

©0 (Fgwre [‘ Opening Hours

Manday Tuesday Wednesday Thursday Friday Saturday Sunday ‘ ‘

Figure 3. A simple editing application with it's menu bar for authoring this article

Authoring XML all the Time, Everywhere and by Everyone

3. Templates in Action

This section gives, through some real template examples, a more detailed description
of the syntactic elements that constrain the editing process and that define an XML
content model over an XHTML background document. It also shows the correspond-
ing user interface.

3.1. The examples

The table in Figure 4 is an extract of a description of a place such as a bar or a res-
taurant. It shows that for each day of the week, the user has the choice between two
different components. The first component, with a closed label, is just empty. The
second component, with an open label, is a repeated list of time slots.

Opening Hours
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
closed ? open ? open ? open ? open ? open ﬂ closed ?
10:00 - 16:00 & | 10:00 - 16:00 & &9 | 18:00 - 24:00 & | 10:00 - 16:00 & & 10:00 - 24:00 &
18:00 - 23:00 & & 19:00 - 24:00 & &

Figure 4. Editing a timetable

The Figure 5 shows a restaurant menu. As it is displayed, the user has already
entered two courses (Entrées and Plats). In the first course, she has entered three
dishes (Salade de crudités, Salade de cabécou and Salade de coeurs de canard), and she
has entered various information about the price of dishes. This example shows that
repeated components can be nested to create hierarchical structures (e.g. dishes
within courses). As it will be explained later, the template author can control the
insertion point of the plus and minus buttons inside the document, and their size.
Also, some information, such as the specialty, some comments, or the prices are
optional.

The bibliographic entry in Figure 6 is an extract of a bibliographic reference list.
It shows that a bibliographic entry is made of two nested components. The first
component sets the general category of the bibliographic entry, such as a Paper,
while the second component sets a subcategory. In the figure, the choices for the
second component are between Article, ArticlelnJournal, ArticleInProceedings or InBook.
These are all different types of bibliographic references that can describe a Paper
publication. The presentation and the nature of the information displayed in the
user interface may be quite different for each type.

Authoring XML all the Time, Everywhere and by Everyone

LA CARTE...
Entrées © O

™ Salades

(toutes nos salades sont bio)

G0 Salade de cruditis © ©6€, ©G9CHF
O {commentaire)
P Salade de cabécou & ©7.50 €
O (commentairg)
(At Salade de coewrs de canard prix €

O (commentaire)

858

Plats OO0

Type de sipécfaﬁ'té (ex: entrées chaudes)

O (commentaire)

L= A+ Brochette de veau au romarin @ G 11 €
& (pour deux uniguement)

vv Cuisse de caﬂe:tefarcie aux raisins secs ¥ ©12€

O (commentairg)

ow Selle aﬁagneau 87l'ﬂé'? beurre maitre dhitel & © 13.5€
O (commentaira)

§§8

Figure 5. Editing a menu

U U Article

ArticlelnJournal
[Publication (21) : |_paper BT (2007) Efficient Static Analysis of XML Paths and Types. P. Genevés © ©
,N.Layaida © © , A. Schmide "®°%¢ >dings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation [PLDI] San Diego, Country , 10-13 June .

Figure 6. Editing a bibliography

The XML content below is generated from the document shown on Figure 6. This
illustrates the kind of XML content that can be edited with AXEL and XTiger XML.

Example 3. XML content of a bibliography

<Publication>
<PublicationId>21</PublicationId>
<Paper>
<ArticleInProceedings>
<PublishingYear>2007</PublishingYear>
<Title>Efficient Static Analysis of XML Paths and Types</Title>
<Authors>
<Author>
<FirstName>P.</FirstName>
<LastName>Genevè s</LastName>
</Author>

10

Authoring XML all the Time, Everywhere and by Everyone

</Authors>
<Proceedings ShortName="PLDI">
<PublishingYear>2007</PublishingYear>
<ProceedingsTitle>Proceedings of the ACM SIGPLAN...
</ProceedingsTitle>
<Location>
<City>San Diego</City>
<State>California</State>
</Location>
<Dates>10-13 June</Dates>
</Proceedings>
</ArticleInProceedings>
</Paper>
</Publication>

3.2. Constraining document structure

The examples above show the three types of structural constraints that define the
directions into which the user can develop a document. These are: repetition, op-
tionality, and choice.

Repetition is expressed as a xt:repeat element. It allows the user to insert its
children elements between minOccurs and maxOccurs times. The example below
shows how the open component of the opening hours table shown in Figure 4 defines
a repetition of time slots which are themselves declared in a slot component. The
generated XML content is visible on Example 4.

Example 4. Extract from the timetable template with repetition

<xt:component name="slot">

<p> <!-- 7:00 opening hour hint -->
<xt:use types="text" label="begin">7:00</xt:use>
 - <!-- 24:00 closing hour hint -->

<xt:use types="text" label="end">24:00</xt:use>
<xt:menu-marker size="16"/>
</p>
</xt:component>

<xt:component name="open">

<xt:repeat minOccurs="1" maxOccurs="*" label="slots" >
<xt:use types="slot" label="slot"/>
</xt:repeat>
</xt:component>

11

Authoring XML all the Time, Everywhere and by Everyone

Example 4 also shows the xt:menu-marker element that indicates where to insert
the repetition buttons. It can have a size attribute to set the size of these buttons.
In absence of the xt :menu-marker element, the buttons will be inserted after the last
children of the xt:repeat fragment. You can notice that it can be declared inside
the definition of a component type which is repeated, and not only directly inside
the xt:repeat element.

Optionality is expressed as an option attribute which can be declared on the
xt :use element inserting a component type in the document as shown on Example 5.
When the value of option is set, the component target XML content is by default
generated in the document but this can be changed by the user, by unchecking the
checkbox which is displayed in the editor. When the value of option is unset, the
component target XML content is not generated automatically, but this can be
changed by the user, by checking the checkbox. When the attribute option is not
defined, the XML content is always generated in the document. It is also possible
to make parts of a document template optional using an xt:repeat element with
minOccurs set to 0 and maxOccurs set to 1.

Example 5. Extract from the menu template with optionality

<p class="specialtyComment">
<xt:use types="text" label="comment" option="unset">commentaire</xt:use>
</p>

Finally choice is expressed as an xt : use element where the types attributes declares
several component types that can be inserted. The extract below shows that for a
day of the week in the timetable template, in that case Wednesday, the user can select
between two components, open or closed.

Example 6. Extract from the timetable template with choice (i.e. open vs. closed)

<xt:component name="open">
...see example above...
</xt:component>

<xt:component name="closed">
 <!-- this generates no XML content -->
</xt:component>

<td><xt:use label="wednesday" types="open closed"/></td>

12

Authoring XML all the Time, Everywhere and by Everyone

3.3. Defining the XML content model

The template language drives the generation of a target XML content model with
only two instructions: the 1abel attribute and the xt :attribute primitive component
type inclusion element.

The label attribute can be set on any xt:use component inclusion element, on
any xt:repeat component repetition element, or on the xt :head element. Each 1abel
attribute generates a new XML element in the target content model during the
serialization process. Similarly, when an xt : use element includes a choice of several
component types, the selected component type generates anew XML element name
after the component type name. The label attribute set on the xt:head element
defines the target content model root node.

For example, the <xt:use label="wednesday" types="open closed"/>instruction
in the opening hours table example generates a <wednesday> element that may
contain either an <open> or <closed> child. If the user selects the openn component
type, this component generates a <slots> element (see the label of the xt:repeat
in Example 4) that contains a repetition of <slot> elements with their own content
model. This is illustrated below:

Example 7. XML content extract generated from the document on Figure 4

<wednesday>
<open>
<slots>
<slot>
<begin>10:00</begin>
<end>16:00</end>
</slot>
<slot>
<begin>18:00</begin>
<end>23:00</end>
</slot>
</slots>
</open>
</wednesday>

The xt:attribute elementis a special component type inclusion element which can
be used as an alternative to an xt : use element. The difference is that the target XML
content model will be treated as an XML attribute instead of an element. This attrib-
ute, named after the name attribute of xt:attribute, will be attached to the current
target XML element. As a consequence, the xt:attribute element can only include
primitive component types that generate text data in the content model.

As an example, the xt:attribute element in the price component of the menu
template visible on Figure 4 and listed below generates a currency attribute with

13

Authoring XML all the Time, Everywhere and by Everyone

the possible values EUR, CHF or USD. In that particular case the choices in the
popup menu are labelled from the content of the 118n attribute, here some currency
symbols. It uses the primitive editor select which is described in Section 4.2.

Example 8. Price component type definition in the menu example

<xt:component name="price">
<xt:menu-marker size="12"/>
<xt:use types="text">prix</xt:use>
<xt:attribute types="select" name="currency" values="EUR CHF USD"
i18n="€ CHF $" default="EUR"/>
</xt:component>

The price component of Example 8 can be inserted with <xt:use types="price"
label="price"/> which generates XML elements such as <price cur-
rency="EUR">10</price>.

4. Editing User Experience

AXEL employs two types of user interface controls: structure editing controls and
primitive editor input fields that you can see in action in the examples of Section 3.1.
The next sections explain these controls. The global editing user interface also sup-
ports tab navigation to jump from one primitive editor to the next (resp. previous)
one. It is also possible to shift-click on a minus button to cut an item instead of delet-
ing it, and to shift-click on a plus button to paste it at another position in the same
repeat group.

4.1. Structure Editing Controls

Unselected document parts, either because they are repeated and their current count
is 0, or because they are optional, are grayed out. We have implemented this beha-
vior directly within the library with some CSS rules and some CSS generated class
attributes.

The xt : repeat element generates a minus button and a plus button to respectively
insert or delete a component. It can also replace the minus button with a checkbox
if its minOccurs attribute value is 0: the checkbox is unchecked and the plus button
is not visible if the user has not yet inserted a single item. The user can then insert
a first item by checking the box. Then, if maxOccurs is greater than one, a plus button
also appears to insert more items. The checkbox is replaced by a minus button as
soon as the user has inserted more than one item, if this is allowed by maxOccurs.

The checkbox is also displayed when an option attribute is present on an xt : use
element. In that case it is displayed as an isolated checkbox which is selected or not,
depending on the existence of the component.

14

Authoring XML all the Time, Everywhere and by Everyone

After some trials we finally decided to not give more feedback to help the user
identify the boundaries of the components which are repeated or optional. Some
subjective testing with automatically added borders were not satisfactory, mainly
because they broke the document appearance. Our feeling is that in most cases the
template content gives enough cues about the document internal structure. However,
template authors can still create additional feedback, such as borders, using CSS
and Javascript to achieve special effects on a per-template basis.

The xt :use element with multiple component types inclusion generates a pop-
up menu that presents the different type names. These names can be international-
ized by the individual component type definitions with an 118n attribute. Each time
the user selects a different component type for inclusion, the currently visible
component is replaced by the selected one. Actually the pop-up menu, an HTML
<select>element, is inserted in place of the xt : use element, just before the included
content.

4.2. Primitive Editor Input Fields

The library needs also to handle text user input so that users can create XML content,
and not just an XML structure. This is done through primitive component types
which are implemented by primitive editors. AXEL has a plug-in mechanism for
creating new primitive editors by adding Javascript classes. Currently we use two
of them: a text primitive editor, and a select primitive editor.

The text primitive editor manages a block of text which is displayed within a
 XHTML element when not editing, and within an <input> or a <textarea>
element when editing. It is possible to configure several parameters with the params
attribute of the xt : use element that inserts a primitive editor. This attribute contains
key-value definitions that influence the behavior of the editor. For instance the
layout parameter can be set to placed so that the input field (i.e. <input> or <tex-
tarea>) dynamically replaces the , or to float so that it is displayed over, with
an initial equivalent shape. In all cases, these input fields grow as the user is typing,
which gives a user experience similar to editing a WYSIWIG document such as in
Word or Google Docs, and very different from editing a form, such as with XForms.
Moreover, it is possible to configure them so that the input field inherits the typo-
graphy from the document template, or to use class attributes to apply CSS effects
to it.

We have extended the text primitive editor with the notion of filters that can be
set on the editor. These filters, as the primitive editor, are implemented with
Javascript classes following a specific API. Basically they can filter the target XML
content to support complex XML structures which cannot be defined just with
XTiger canonical constraints. They can also dynamically change the static
text display to any other XHTML presentation for the data. For instance, this article
has been edited mainly with a text primitive editor that uses a wiki filter for creating

15

Authoring XML all the Time, Everywhere and by Everyone

verbatim or emphasized text within paragraphs. This filter is shown in action on
Figure 7. We have also managed for some configurations to position the cursor just
after the character that was clicked to bring up the editing view. This creates a nice
click through illusion that contributes to give a WYSIWIG feeling.

1 Project Management and Administration

Project **Management** and **Administration**}

Figure 7. Text primitive editor with wiki filter while viewing (1) and editing (2)

The select primitive editor is rendered with a pop-up menu for directly selecting
a value for an xt:attribute element as presented previously. It appears when the
user clicks the current value of the field, which is displayed within a , as with
the text primitive editor. Figure 8 shows the popup menu after the user has clicked
on the top CHF currency to change it.

¥ & 19 CHF

€
CHE

&

Figure 8. Example of popup menu of the primitive editor "select"

Additional primitive editors will be created in the future to enhance the user exper-
ience, ranging from calendar selection controls — to pick up dates —, to file uploader
editors — to insert images. This is fully supported by the XTiger XML concept of
primitive component type.

4.3. Customization of Editing Behavior

The authors of template have the freedom to customize the editing user experience
through CSS and Javascript programming. For this purpose, AXEL offers predefined
CSS classes which are added to the generated user interface controls. For instance,
we have experimented a very useful feature that consists in hiding all the structure
editing controls by adding a preview class attribute to the <body> element of a tem-
plate and some CSS rules. This gives an overview of the document, as in Figure 9.

The document of Figure 9 is still editable as all the primitive editors are function-
al, however the user cannot change the structure (adding or removing components
in repetitions and changing the selected component of a xt:use choice). This can
be useful to make light corrections (spell-checking, typos) to a document or to

16

Authoring XML all the Time, Everywhere and by Everyone

translate it. This opens up future possibilities to generate different user interfaces
for different tasks.

‘Entrées

Salades

(toutes nos salades sont bio)
Salade de crudités 6 €, 9 CHF
Salade de cabécou 7.50 €
Salade de coeurs de canard

854

Plats &

Brochette de veau au romarin 11 €
{pour detx unigquement)

Cuisse de canette J*'m'cfe aux raisins secs 12 €

Selle :faé]neau Hn’(fés beurre maitre d’hitel 13.5 €

Figure 9. Menu document with all structure editing controls hidden but still
editable

5. Server Integration

AXEL is designed to serve as the XML authoring layer for REST applications. It is
fully implemented in Javascript; hence it can be executed in any browser providing
reasonable support for the DOM model. This section outlines the main features of
the library for that purpose.

5.1. Client-side Library

AXEL is a client-side Javascript library that takes as input an XHTML DOM tree
containing the template. It transforms it into an XHTML tree containing the editing
user interface and some Javascript objects for controlling editing. A programmer
creates an editor by first instantiating an xtiger.util.Form object. The constructor
parameter is a location path to a folder that contains the four images used by the
editing user interface. Then s/he can set the template to transform with a call to
setTemplateSource before calling the transform method to actually generated the
editing user interface.

17

Authoring XML all the Time, Everywhere and by Everyone

Example 9. Javascript code to transform a template loaded in the document object

var form = new xtiger.util.Form("{path-to-images}");
form.setTemplateSource (document) ;
form.transform();

By default the template is transformed in place. It is also possible to indicate a target
XHTML document and a node inside which the result should be placed. The docu-
ment that hosts the result of the transformation must include some specific AXEL
CSS rules.

This very thin APl is designed to embed XML authoring in any web application.
For instance a programmer can build a generic XTiger XML editor that loads an
XTiger XML template into an iframe element and transforms it to generate the
editing user interface. It is even possible to directly put the code to generate the
editor directly within a template file. This enables funny applications such as
sending a template document by email to somebody, who can open it in his or her
browser to make some editing, and then save the results to a server (this requires
a little Javascript programming as explained in Section 5.2).

5.2. XML Serialization

The editor object has a function that serializes the current content of the document
into the target XML content model. That function takes as input a logger object for
accumulating the result while iterating on the document. A specific
xtiger.util.DOMLogger is available for that purpose. It provides a method to dump
its content into a string which can then be sent to the server as an HTTP PUT or
POST request using the Ajax XHR object, now implemented in all major browsers.

Example 10. Javascript code to serialize the XML content of a document

var logger = new xtiger.util.DOMLogger ();
data = form.serializeData (logger); // form from above
var xmlString = logger.dump();

Reciprocally, the editor object provides a function that loads some XML data into
a document. That function takes as input a DOM data source for iterating on the
XML data while iterating on the template. A specific xtiger.util.DOMDataSource
is available for that purpose. This object accepts an XML document object as input,
such as the responseXML object constructed by an Ajax XHR object, or it can directly
parse a string into an XML document object using a DOMParser object (or a simulated
version if it is not available). This makes it quite easy to retrieve the XML data from
a server side application and to inject it into the document. For experimental pur-
poses we have also built a DOM data source based on the E4X Javascript API to
natively parse XML data.

18

Authoring XML all the Time, Everywhere and by Everyone

Example 11. Javascript code to load XML content from an Ajax XHR object into
a document

var xhr = new XMLHttpRequest();

var source = new xtiger.util.DOMDataSource();
source.initFromDocument (xhr.responseXML) ;
form.loadData (source, result); // form from above

We currently have successfully integrated the library with WebDAV servers, with
Orbeon Forms applications, and even with a Ruby on Rails application.

5.3. Experiments and Performances

The Javascript library has been developed and tested with Firefox (version 3 and
above). Thanks to this client-side approach combined with the use of standard web
technologies, we provide a platform-independent solution. It runs on recent versions
of all major browsers although we did not do extensive testing on all platforms yet.
The Javascript library compressed with the Yahoo Ul compressor is less than 96 kB,
including the basic editor plug-ins that were required to write this article.

We have experienced this Javascript library with several document templates
in order to evaluate this solution in terms of performance and usability. The tested
templates range from simple form-based structures, such as the menu example
given previously, to more complex templates, like the template used for writing
this paper. The table below lists some properties and some results obtained with
different use cases of templates. Time results of these tests have been obtained on
a MacBook Pro with 2.16 Ghz Intel Core Duo with 2GB memory running Firefox
3.5.3 (a 3 years+ computer).

Template # Tree Typical Download | Click response time
Name nodes | depth document size time ("-" means not
noticeable)
Menu 89 5 2kB
Curriculum 173 4 2kB
Article 317 7 10-100kB 02-2s
Specification | 243 6 50-500kB 1-36s

Figure 10. Loading XML documents into a template and editing with AXEL

We can notice that the download time is not noticeable for normal size XML docu-
ments. Download time depends on the complexity of the template characterized
by its total number of node (#nodes) and the number of nested components (tree
depth), but we haven't precisely characterized the relation yet. This is left as a future
work in order to give guidelines to template authors. XML download time is linear

19

Authoring XML all the Time, Everywhere and by Everyone

with the XML document size and, for instance, it took up to 36 seconds for a 500 kB
XML document on this 3 years+ hardware configuration, which can be considered
very long. However, the document was 190 printed pages in the browser and it was
by itself an excellent surprise to be able to edit so long documents within the browser.
This template also uses a specific plugin editor to edit logical expressions that take
time to convert when loading and saving. The times given in the table do not take
into account the preliminary download time of the template and the transformation
time to turn the template into an editor, which are not noticeable in all the cases.
The files were directly loaded from the local drive. We could also have presented
the results with Safari which are even better.

We do not show a similar table for the time taken to generate XML content from
the edited document because it is usually not noticeable, about 5 seconds in the
worst case from the examples in the table above.

In all cases we noticed pretty good response time in the browser, between a click
and the display of the input field. Usually not noticeable, it stays below half a second
even with 500kB+ XML documents. These results obviously come from our client-
side editing code, where only load and save operations pay for communication
time. Thanks to recent web technologies, modern web browsers can become valuable
XML document editors with the addition of a very tiny amount of code.

The various templates we have tested aim at evaluating both the expressive
power of the XTiger XML template language and the quality of the authoring inter-
face. The original XTiger language implemented in the Amaya stand-alone applic-
ation has demonstrated its ability to define templates for editing a wide range of
web documents [13], and due to its filiation with that language, XTiger XML inherits
this feature. But with XTiger XML we gain in usability for simple applications, while
keeping the expressive power for complex XML structures. Indeed, menu and cur-
riculum vitae documents, for instance, can be straightforwardly edited by XML
unaware people (for instance, a restaurant chet). For such "minimal" templates (few
element types and little structural depth), the interface can be considered as minimal
and allows users to focus on what they have to do (Hick's law [3]). Moreover, editing
controls (menus for choices, add/suppression buttons for repetitions, text editing
areas) are always contextually located and therefore mouse movements are kept
minimal (Fitts's law [2]). We can notice that this simplicity at the authoring step
does not prevent rich server-side services to be provided, such as databases feeding
or high quality publication.

6. Related Works

By design, XTiger XML is an extension of the original XTiger template language.
We tried to keep both languages as close as possible to each other, and indeed XTiger
XML adds only a few elements and attributes. The main difference lies in the editors
that are based on the languages. The original XTiger template language has been

20

Authoring XML all the Time, Everywhere and by Everyone

implemented in the Amaya web editor, and as far as we know, it is available only
in this editor. For XTiger XML, a very different approach was taken. It is implemen-
ted as a Javascript library, and then, it can run in any modern web browser.

As stated above, XTiger XML can be used as a form editing framework. It could
even be possible to create plug-in modules to handle all the usual form interactors
(drop lists, radio button, etc.), but the current syntax is not powerful enough to ex-
press non-structural constraints on the editable data model. However, this is not
our main objective. Our priority is to develop further the library for editing docu-
ment-oriented data and for managing collaborative editing constraints in the future.

The approach presented in this paper is different from wiki-based authoring
environments, which are common on the web, such as MediaWiki in use by Wiki-
pedia. First, it does not require the user to learn a specific syntax. Second, it is not
limited to creating HTML content models. To some extent, semantic extensions of
wikis such as Semantic MediaWiki make it possible to create annotated documents
that contain structured information, but the requirement to learn a domain specific
syntax still holds true. To cope with this issue, several template-based wikis have
been proposed with more or less freedom for the author: the wiki template can be
used simply as a seed document, without any control on the further authoring
process, or it can on the contrary act as a very strict editing framework, preventing
the author from deriving from the expected structure unless he modifies the template
[10].

Anin-between approach is proposed in [4] where a post-hoc validation mechan-
ism can be applied on instances. While this can be satistying for simple web pages,
it becomes boring for the author when structures are more complex. Again, users
have to choose between expressiveness and usability [5]. We claim that both can be
provided thanks to the use of a rich template language and new editing paradigms
such as those described in this paper. It can be noticed that a similar approach was
recently proposed in [6] for the authoring of semantic annotations in MediaWiki,
where editing controls are generated from ontologies.

XTiger XML with AXEL is very close in its objectives to generic XML authoring
applications, especially those that use style sheets or XSLT transformations to asso-
ciate a visual presentation with an XML content model defined by a schema. Such
applications generate a WYSIWYG editor based on this visual presentation and
driven by the schema. For a long time these tools were available only as desktop
applications, such as XMLSpy or Oxygen. But with the success of web applications,
browser-based WYSIWYG XML editors are appearing now, such as XOpus.

However, there are still two important differences:

o WYSIWYG XML editors, even when they run in the browser, require at least an
XML schema and some XSLT transformations. This implies that they are used
only for documents and data for which such resources exist, or that new
schemas and transformations must be created for new types of documents and

21

Authoring XML all the Time, Everywhere and by Everyone

data. We believe that the use of document templates instead of schemas and
transformations languages makes XTiger XML easier to learn and to manipulate.

o XTiger XML and AXEL work on the web. They use the browser not only as the
local platform for running the editor, but also as a web client that can download
and upload documents on remote web servers. This allows everyone on the web
to edit XML data and documents and to feed servers with well structured data.
This also provides a global infrastructure for sharing and collaborating on XML
contents.

7. Future Works

XTiger XML and AXEL are still under development, firstly to extend authoring
services with new primitive editors. We have also identified some issues that will
be addressed shortly.

7.1. Validation

In its current state, AXEL can be compared to XML tools based on XSLT, regarding
validation: there is no formal way to make sure that the XML data generated by the
tool are valid against a given schema, except by validating every instance. But there
are solutions to this issue. XTiger can be seen as a regular tree grammar, and then
an XTiger XML template can be compiled into a schema language (DTD, XML
Schema, Relax-NG). But instead of producing schema language syntax equivalent
to a template, our plan is to compile XTiger into the logical representation introduced
in [8]. We can then use the validation services offered by the XML Resolving Solver
[9], which is based on this logical representation. The Solver can statically check
properties of XTiger XML templates, in the same way it checks properties of
schemas.

A property that the Solver could statically check is whether a template always
generates XML instances that are valid against a given schema. This may ensure
for instance that the data entered with a template can be safely stored in an XML
data base defined by its XML Schema.

7.2. Data Delivery

A second issue concerns data delivery on the web. Producing pure static XHTML
read-only format remains of importance. This is required to enhance the probability
to be indexed by major search engines. Explicitly including micro-formatted elements
is another concern; for example, applications aiming at aggregating information
(such as the Kritx review aggregator) rely on the availability of such information
in XHTML documents. Those requirements are not met if documents are published
only through a client-side Javascript transformation process.

22

Authoring XML all the Time, Everywhere and by Everyone

We have manually transformed several document templates into an XSLT
transformation that takes an XML content conform to the implicit document model
asinput, and generates an XHTML document that looks like the document generated
from the document template for editing. We are confident that this process can itself
be programmed as an XSLT transformation taking as input a XTiger XML template
and generating the target XSLT transformation. Doing this will allow us to provide
a full XML editorial chain within the browser.

7.3. Template Editing

The templates we have used up to now were created by various means. The simplest
templates were written totally "by hand". In some cases we have used an XHTML
editor (especially Amaya), for creating a skeleton document, that was then edited
as a text file for adding the XTiger XML elements. Some other templates were almost
entirely created with Amaya, which includes a feature for editing the original XTiger
language. But, as stated earlier, there are differences between the XTiger language
implemented in Amaya and the XTiger XML language. This implies that templates
produced by Amaya have to be tweaked "by hand" when used by AXEL for editing
XML documents. An obvious work item for the future is to adapt Amaya and im-
plement all the extra XTiger features included in XTiger XML.

In addition to these means, we think that it would be interesting to also have a
template authoring application running in the browser, to make that feature more
widely available, without the need for installing a dedicated application. Such a
tool could start from an initial XHTML document and allow the user to insert XTiger
XML elements, in the same way as in Amaya. It would also be interesting to go a
step further, when an XML Schema (or Relax-NG) is available for the target XML
language. This schema could then be used to drive the interaction with the user in
order to create a template consistent with this schema.

8. Conclusion

The XTiger XML language and its implementation in the AXEL library make it easy
to create and update XML data and documents on the web. The language is very
simple: it contains only a handful of elements and a few attributes. This allows
anyone familiar with HTML to create templates. The editing engine provides a
simple and intuitive user interface, which allows any web user to create and edit
XML data.

Being implemented as a light Javascript library that runs in a web browser, the
editor can be deployed very efficiently and it lets users free to work with their pre-
ferred tool. Because templates are based on XHTML, they allow XML data to be
involved in any web application and to be collected by average web users. Building

23

Authoring XML all the Time, Everywhere and by Everyone

on the ubiquitous web infrastructure, this approach helps to put XML within reach
of everyone.

9. Acknowledgements

Early work on this project has been initiated in the framework of the PALETTE In-
tegrated Project supported by the IST programme of the European Commission
(DG Information Society and Media, no. 028038). We especially thank Thibaud Latour
from CRP Henri Tudor, our partner in Luxembourg, for his active support. Further
development of the XTiger XML language is currently supported by the Innovation
Promotion Agency of Switzerland under the grant No 10813.1 PFES-ES, 2 project
in collaboration with the MadeinLocal company (www.madeinlocal.com)

Bibliography
[1] Amaya: Home page. http://www.w3.org/Amaya/

[2] P. M. Fitts: The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Experimental Psychology, Vol 47 pp.
381-391, 1954

[3] W. E. Hick: On the rate of gain of information. Quarterly Journal of Experimental
Psychology, Vol 4 pp. 11-26, 1952

[4] A. Di Iorio — F. Vitali: Wiki content templating. WWW 2008, Beijing, China, pp.
615-624, ACM Press, 2008

[5] A. Di Iorio — S. Zacchiroli: Constrained wiki: an oxymoron?. WikiSym "06:
Proceedings of the 2006 international symposium on Wikis, pp. 89-98, ACM
Press, 2006

[6] A. Dilorio —S. Duca —S. Righini — D. Rossi - F. Vitali: Customized Edit Interfaces
tor Wikis via Semantic Annotations. Workshop on Adaptation and
Personalization for Web 2.0, UMAP'09, June 22-26, 2009

[7] F. Flores — V. Quint — I. Vatton: Templates, Microformats and Structured Editing.
Proceedings of the 2006 ACM Symposium on Document Engineering, DocEng
2006, pp. 188-197, ACM Press, October 2006

[8] P. Geneves — N. Layaida — A. Schmitt: Efficient static analysis of XML paths and
types. PLDI'07: Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 342-351, ACM Press,
2007

1 http://www.madeinlocal.com

24

http://www.madeinlocal.com
http://www.w3.org/Amaya/
http://www.madeinlocal.com

Authoring XML all the Time, Everywhere and by Everyone

[9] P. Geneves — N. Layaida: XML Reasoning Made Practical. Proceedings of the
26th IEEE International Conference on Data Engineering, ICDE 2010, IEEE,
March 2010. http://wam.inrialpes.fr/publications/2010/ICDE10demo.pdf

[10] A. Haake —S. Lukosch — T. Schummer: Wiki-templates, adding structure support
to wikis on demand. WikiSym’ 05, San Diego, USA, pp. 41 — 51, ACM Press,
2005

[11] E. Kia— V. Quint - I. Vatton: XTiger Language Specification. http://www.w3.org/
Amaya/Templates/XTiger-spec.html

[12] P. Nalevka: Advanced Automated Authoring with XML. XML Prague 2009

[13] V. Quint - I. Vatton: Structured Templates for Authoring Semantically Rich
Documents. Proceedings of the 2007 international workshop on Semantically

aware document processing and indexing, ACM International Conference
Proceeding Series; Vol. 259, pp. 41-48, ACM, 2007

[14] S. Sire: XTiger XML Language Specification. http://media.epfl.ch/Templates/
XTiger-XML-spec.html

25

http://www.w3.org/Amaya/Templates/XTiger-spec.html
http://www.w3.org/Amaya/Templates/XTiger-spec.html
http://media.epfl.ch/Templates/XTiger-XML-spec.html
http://media.epfl.ch/Templates/XTiger-XML-spec.html

26

	Authoring XML all the Time, Everywhere and by Everyone
	1. Introduction
	2. Templates at a Glance
	2.1. Document Templates
	2.2. Anatomy of an XTiger XML Template
	2.3. Editing With a Document Template

	3. Templates in Action
	3.1. The examples
	3.2. Constraining document structure
	3.3. Defining the XML content model

	4. Editing User Experience
	4.1. Structure Editing Controls
	4.2. Primitive Editor Input Fields
	4.3. Customization of Editing Behavior

	5. Server Integration
	5.1. Client-side Library
	5.2. XML Serialization
	5.3. Experiments and Performances

	6. Related Works
	7. Future Works
	7.1. Validation
	7.2. Data Delivery
	7.3. Template Editing

	8. Conclusion
	9. Acknowledgements
	Bibliography

