N

N
N

HAL

open science

An Object-Oriented Framework for Supercomputing

Frédéric Guidec, Jean-Marc Jézéquel, Jean-Lin Pacherie

» To cite this version:

Frédéric Guidec, Jean-Marc Jézéquel, Jean-Lin Pacherie. An Object-Oriented Framework for Super-

computing. Journal of Systems and Software, 1996, 33 (3), pp.239-251. hal-00494941

HAL Id: hal-00494941
https://hal.science/hal-00494941

Submitted on 24 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00494941
https://hal.archives-ouvertes.fr

An Object Oriented Framework for
Supercomputing

F. Guidec, J.-M. Jézéquel and J.-L. Pacherie

I.R.I.S.A. Campus de Beaulieu
F-35042 RENNES CEDEX, FRANCE
Tel: +33-99.84.71.92 — Fax: +33-99.84.71.71
E-mail: jezequel@irisa.fr

Abstract

Scientific programmers are eager to take advantage of the computational
power offered by Distributed Computing Systems (DCSs), but are generally
reluctant to undertake the porting of their application programs onto such
machines. The DCS commercially available today are indeed widely believed
to be difficult to use, which should not be a surprise since they are tradi-
tionally programmed with software tools dating back to the days of punch
cards and paper tape. We claim that provided modern object oriented tech-
nologies are used, these computers can be programmed easily and efficiently.
We propose a framework where the tricky parallel codes can be encapsulated
in object oriented software components that can be reused, combined and
customized in confidence by application programmers. We propose to use a
kind of parallelism known as data-parallelism, encapsulated within classes of
a purely sequential object-oriented language (Eiffel), using the SPMD (Single
Program Multiple Data) programming model. We define a set of methodolog-
ical rules to help a programmer design and exploit parallel software compo-
nents within this framework. We illustrate our approach with the example of
PALADIN, an object-oriented library devoted to linear algebra computation on
DCSs. PALADIN relies on widely advertised object-oriented features to help
a numerical programmer develop or parallelize application programs, follow-
ing the guidelines of modern software engineering. Most notably, modularity
and encapsulation are used to hide data distribution and code paralleliza-
tion within classes presenting sequential interfaces, while inheritance allows a
transparent reuse of basic parallel patterns in new applications. We discuss
the implementation of a demonstrator of such a library as well as performance
related aspects.

Keywords: Programming FEnvironments for Distributed Computing Systems,
Data-Parallelism and SPMD Model, Linear Algebra, Reusable Object-Oriented Li-
braries

1 Introduction

Although the physical world they model is inherently parallel, scientific program-
mers usually rely on sequential techniques and algorithms to solve their problems,
because these algorithms often present a better computational complexity than pos-
sible direct solutions. Actually, their interest in concurrency mainly results from
their desire to improve the performance of sequential algorithms when performing
large-scale numerical computations [Pancake et al.90]. This interest is rising a lot
now that powerful Distributed Computing Systems (DCSs) consisting of hundreds
of processors are commercially available. However, these DCSs presently suffer from
programming environments dating back to the days of punch cards and paper tape,
and offering very little in terms of software engineering. Considering the tedious
tasks of parallelization, distribution, process handling and communication manage-
ment, which are not among the most attractive features of DCSs, scientific program-
mers are generally reluctant to cope with the manual porting of their applications
on such machines.

In order to alleviate the porting of scientific applications on parallel comput-
ers, one of the main directions investigated so far consists in the design of semi-
automatic parallelizing compilers. This approach has already produced research pro-
totypes like SUPERB [Zima et al.88], PANDORE [Andre et al.90], or FORTRAN-
D [Callahan et al.88], and industrial strength compilers for High Performance For-
tran (HPF) [Hpf forum93] are expected in the near future. However, building com-
pilers that generate efficient code for a language like HPF turns out to be more
difficult than was originally expected and, so far, speedups achieved by automatic
transformation alone are still disappointing. Although many optimization tech-
niques are known (message vectorization, loop restriction, etc.), their automatic
application requires a comprehensive analysis of the program being compiled. It is
also unlikely that the first generation of semi-automatic parallelizing compilers could
deal efficiently with application programs involving data redistribution or irregular
computation patterns. Moreover, the semi-automatic parallelization approach of-
fers no easy way to exploit the many hand-coded parallel algorithms that have been
developed since parallelism became a mainstream research activity.

Propositions based on Al techniques have been made to deal with these prob-
lems [Fahringer et al.92]. Based on the observation that only a limited number of
basic operations are needed in the time consuming inner loops of numeric programs,
it is proposed in PARAMAT [Kessler94| to automatically identify these basic oper-
ations and substitute sequential expressions by equivalent optimized parallel coun-
terparts. Although this approach is interesting for parallelizing pre-existing code, it
is not the most straightforward way to develop new programs.

Actually, once the basic operations have been identified and stored in a library,
it should be possible to reuse them directly as building blocks for new applica-
tion programs. However, classical libraries built for FORTRAN programs are not
versatile enough to deal with the complex problems bound to the management of

distributed data structures that can be dynamically redistributed. We claim that
object-oriented techniques are helpful to bring in such versatility and, in a larger
extent, to ease the programming of DCSs.

In object-oriented programming, basic entities are objects and classes. Major
design mechanisms are encapsulation (for information hiding) and inheritance (for
code sharing and reuse). A class can be roughly defined as the description of set
of objects that share a common structure and/or a common behavior. An object is
simply an instance of a class.

We show in this paper that beyond fostering the construction of reusable and ex-
tensible libraries of parallel software components, existing sequential object-oriented
languages enable an efficient and transparent use of DCSs. In section 2 we present a
programming model allowing the encapsulation of data distribution and parallelism
in classes presenting a sequential interface, thus fostering a transparent use of the
underlying DCS. We show in section 3 how this can be achieved in an efficient and
scalable way, while preserving the user friendliness of the library.

All along this paper, we illustrate our approach with the example of PALADIN,
an object-oriented library devoted to linear algebra computation on DCSs. PAL-
ADIN is based on EPEE, an FKiffel Parallel Execution Environment designed in our
lab [Jezequel93]. EPEE can actually be seen as a kind of a toolbox: it mainly consists
of a set of cross-compilation tools that allow the generation of executable code for
—potentially— any DCS (to date, network of Unix workstations, Intel iPSC/2 and
Paragon XP/S). It also includes a set of Eiffel classes that provide facilities for dis-
tributing data over a DCS and for handling data exchanges between the processors
of a DCS in a portable way. Common data distribution patterns and computation
schemes are factorized out and encapsulated in abstract parallel classes, which can
be reused by means of multiple inheritance. These classes include parameterized
general purpose algorithms for traversing and performing customizable actions on
generic data structures.

Note that EPEE is based on Eiffel [Meyer88] because this language features
all the concepts we need (i.e. strong encapsulation, static type checking, multiple
inheritance, dynamic binding and genericity), and has clearly defined syntax and
semantics. However any other statically typed OO language could have been used
instead (e.g. Modula-3, Ada 95, or C++).

2 Encapsulating Parallelism and Distribution

2.1 A Simple Parallel Programming Model

The kind of parallelism we consider is inspired from Valiant’s Block Synchronous
Parallel (BSP) model [Valiant90]. A computation that fits the BSP model can be
seen as a succession of parallel phases separated by synchronizations and sequential
phases.

In EPEE, the implementation of Valiant’s model is based on the Single Program

3

Multiple Data (SPMD) programming model. Each process executes the same pro-
gram, which corresponds to the initial user-defined sequential program. The SPMD
model preserves the conceptual simplicity of the sequential instruction flow: a user
can write an application program as a purely sequential one. At runtime, though,
the distribution of data leads to a parallel execution.

When data parallelism is involved, only a subset of the data is considered on each
processor: its own data partition. On the other hand, when control parallelism is
involved, each processor runs a subset of the original execution flow (typically some
parts of the iteration domain). In both cases, the user still views his program as a
sequential one and the parallelism is derived from the data representation. Although
EPEE allows the encapsulation of both kinds of parallelism in Eiffel classes, we
mainly focused on the encapsulation of data parallelism so far. Yet, some work is now
in progress to incorporate control parallelism in EPEE as well [Hamelin et al.94].

Our method for encapsulating parallelism within a class can be compared with
the encapsulation of tricky pointer manipulations within a linked list class that pro-
vides the user with the abstraction of a list without any visible pointer handling.
Opposite to concurrent OO languages along the line of POOL-T [America87] or
ABCL/1 [Yonezawa et al.86], which were designed to tackle problems with explicit
parallelism, our goal is to completely hide the parallelism to the application pro-
grammer.

A major consequence of this approach is that there exists two levels of program-
ming with EPEE: the class user (or client) level and the class designer level. The aim
is that, at client level, nothing but performance improvements appear when running
an application program on a parallel computer. For a user of a library designed
with EPEE, it must be possible to handle distributed objects just like local —i.e.
non-distributed— ones.

The problem is thus for the designer of the library to implement distributed
objects using the general data distribution and/or parallelization rules presented
in this paper. While implementing these objects, the designer must notably ensure
their portability and efficiency, and preserve a “sequential-like” interface for the sake
of the user to whom distribution and parallelization issues must be masked.

2.2 Polymorphic Aggregates: One Abstraction, Several
Implementations

The SPMD model is mostly appropriate for solving problems that are data-oriented
and involve large amounts of data. This model thus fits well application domains
that deal with large, homogeneous data structures. Such data structures are referred
to as aggregates in the remaining of this paper. Typical aggregates are lists, sets,
trees, graphs, arrays, matrices, vectors, etc.

Most aggregates admit several alternative representation layouts and must thus
be considered as polymorphic entities, that is, objects that assume different forms
and whose form can change dynamically. Consider the example of matrix aggre-

gates. Although all matrices can share a common abstract specification, they do
not necessarily require the same implementation layout. Obviously dense and sparse
matrices deserve different internal representations. A dense matrix may be imple-
mented quite simply as a bi-dimensional array, whereas a sparse matrix requires
a smarter internal representation, based for example on lists or trees. Moreover,
the choice of the most appropriate internal representation for a sparse matrix may
depend on whether the sparsity of this matrix is likely to change during its lifetime.
This choice may also be guided by considerations on the way the matrix is to be
accessed (e.g regular vs irregular, non-predictable access), or by considerations on
whether memory space or access time should be primarily saved.

The problem of choosing the most appropriate representation format of a ma-
trix is even more crucial in the context of distributed computation, since matrix
aggregates can be partitioned and distributed on multi-processor machines. Each
distribution pattern for a matrix (distribution by rows, by columns, by blocks, etc.)
can then be perceived as a particular implementation of this matrix.

When designing an application program that deals with matrices, the choice of
the best representation layout for a given matrix is a crucial issue. PALADIN for ex-
ample encapsulates several alternative representations for matrices (and for vectors
as well, though this part of PALADIN is not discussed in this paper), and makes it
possible for the application programmer to change the representation format of a
matrix at any time during a computation. For example, after a few computation
steps an application program may need to convert a sparse matrix into a dense
one, because the sparsity of the matrix has decreased during the first part of the
computation. Likewise, it may sometimes be necessary to change the distribution
pattern of a distributed matrix at run-time in order to adapt its distribution to the
requirements of the computation. PALADIN thus provides a facility to redistribute
matrices dynamically, as well as a facility to transform dynamically the internal
representation format of a matrix.

To implement polymorphic aggregates —be they distributed or not— using the
facilities of EPEE, we propose a method based on the dissociation of the abstract
and operational specifications of an aggregate. The fundamental idea is to build a
hierarchy of abstraction levels. Application programs are written in such a way that
they operate on abstract data structures, whose concrete implementation is defined
independently from the programs that use them.

Object-oriented languages provide all the mechanisms we need to dissociate the
abstract specification of an aggregate from the details relative to its implementation.
The abstract specification can be easily encapsulated in a class whose interface
determines precisely the way an application programmer will view this aggregate.

The distribution of an aggregate is usually achieved in two steps. The first
step aims at providing transparency to the user. It consists in performing the
actual distribution of the aggregate on the processors of a DCS, while ensuring
that the resulting distributed aggregate can be handled in a SPMD program just
like its local counterpart in a sequential program. The second step mostly addresses

performance issues. It consists in parallelizing some of the methods that operate on
the distributed aggregate.

One or several distribution patterns must be chosen to spread the aggregate over
a DCS. Since we opted for a data parallel approach, each processor will only own
a part of the distributed aggregate. The first thing to do is thus to implement a
mechanism ensuring a transparent remote access to non local data, while preserving
the semantics of local accesses.

When implementing distributed aggregates with EPEE, a fundamental principle
is a location rule known as the Quwner Write Rule, which states that only the proces-
sor that owns a part of an aggregate is allowed to update this part. This mechanism
is commonly referred to as the Ezec mechanism in the community of data paral-
lel computing. Similarly, the Refresh mechanism ensures that remote accesses are
properly dealt with. Both mechanisms have been introduced in [Callahan et al.88],
and described formally in [Andre et al.90].

The accessors of a distributed aggregate must be defined according to the Refresh
and Frec mechanisms. The EPEE toolbox provides various facilities for doing so, as
illustrated in the following sections with the implementation of distributed matrices.

2.3 Example: the Matrix Aggregate in Paladin

In PALADIN, the abstract specification of a matrix entity is encapsulated in a class
MATRIX, that simply enumerates the attributes and the methods that are needed to
handle a matrix object, together with their formal properties expressed as assertions
(preconditions, postconditions, invariants, etc., see example 1).

For the sake of conciseness and clarity, the class MATRIX we consider in this
paper is a simplified version of the real class implemented in PALADIN. The real
class MATRIX is generic and thus allows the instantiation of real and double precision
matrices, of complex matrices, etc. It also encapsulates the abstract or operational
specification of many more operators, most of which are defined directly in MATRIX.
The class notably includes some of the most classical linear algebra operations (sum,
difference, multiply, transpose, etc.) as well as more complex operations (e.g., LU,
LDLT and QR factorization, triangular system solvers, etc.). It also encapsulates
the definition of infix operators that make it possible to write in an application
programs an expression such as R := A+ B, where A, B and R refer to matrices.

The resulting class can be thought of as a close approximation of the abstract
data type of a matrix entity [Abelson et al.85, Cardelli et al.85]. A matrix is mainly
characterized by its size, stored in attributes nrow and ncolumn. Methods can be
classified in two categories, accessors and operators. Accessors such as put and item
are methods that permit to access a matrix in read or write mode.

The implementation of accessors depends on the format chosen to represent a
matrix object in memory. Consequently, in class MATRIX, both accessors put and
item are left deferred, that is, they are declared but not defined (a deferred method
in Eiffel is equivalent to a pure virtual function in C++4). Their signature is specified

Example 1

deferred class MATRIX

feature —— Attributes
nrow: INTEGER —— Number of rows
ncolumn: INTEGER —— Number of columns
feature —— Accessors

item (i, j: INTEGER): DOUBLE is
—— Return current value of item(i, j)
require
validi: (i > 0) and (i <= nrow)
validj: (j > 0) and (j <= ncolumn)
deferred
end —— item
put (v: DOUBLE; i, j: INTEGER) is
—— Put value v into item(i, j)
require
validi: (i > 0) and (i <= nrow)
valid j: (j > 0) and (j <= ncolumn)
deferred
ensure
item (i, j) = v
end —— put

feature —— Operators
trace: DOUBLE is do ... end
random (min, max: DOUBLE) is do ... end
add (B: MATRIX) is do ... end
mult (A, B: MATRIX) is do ... end
LU is do ... end
LDLt is do ... end
Cholesky is do ... end

end —— class MATRIX

10

15

20

25

30

(number of arguments and types of these arguments), as well as their main properties
(preconditions and postconditions).

Although the class MATRIX encapsulates the abstract specification of a matrix
object, this does not imply that all features must be kept deferred in this class.
Unlike accessors put and item, operators such as trace, random, add, etc. are
methods that can generally be given an operational specification based on calls
to accessors and other operators. Consequently, the implementation of an operator
(e.g., the trace of a matrix, which is the sum of its diagonal elements, see example 2)
does not directly depend on the internal representation format of the aggregate
considered, because this representation format is masked by the accessors.

Example 2
trace: DOUBLE is
require
is_square: (nrow = ncolumn)
local
i: INTEGER 5
do
from i := 1 until i > nrow loop
Result := Result + item (i, i)
i=1i+1
end —— loop 10
end —— trace

Besides the basic accessors put and item, the real class MATRIX additionally
provides higher level accessors that allow the application programmer to handle a
row, a column or a diagonal of a matrix object as a vector entity, and a rectangular
section of this matrix as a plain matrix. These high level accessors actually provide a
“view” on a section of a matrix. Modifying a view is equivalent to directly modifying
the corresponding section. For example, the expression M.row(4) .random(-5.0,
+5.0) initializes the 4" row of matrix M with values taken in the range [—5.0, +5.0].

2.4 Sequential Implementation of a Matrix

Once the abstract specification of an aggregate has been encapsulated in a class, it
is possible to design one or several descendant classes (i.e. classes that inherit from
the abstract class), each descendant encapsulating an alternative implementation
of the aggregate. This implementation can either consist in the description of a
representation format to store the aggregate in the memory of a mono-processor
machine, or it can be the description of a pattern to distribute the aggregate on a
DCS.

In the following, we show how the mechanism of multiple inheritance helps de-
signing classes that encapsulate fully operational specifications of matrix objects.

8

— Inheritance relationship

—p Client-provider relationship

DISTRIBUTION_2D
ARRAY2
[LOCAL_MATRIX]

DBLOCK_MATRIX

DCOL_MATRIX

[DOUBLE]

LOCAL_MATRIX

ARRAY
[LOCAL_VECTOR]
DROW_MATRIX

Figure 1: Inheritance structure for matrix aggregates (partial view)

We first illustrate the approach by describing the design of class LOCAL_MATRIX,
which encapsulates a possible implementation for local —i.e. non-distributed— ma-
trix objects. In this class we specify that an object of type LOCAL_MATRIX must
be stored in memory as a traditional bi-dimensional array.

The class LOCAL_MATRIX simply combines the abstract specification inherited
from MATRIX together with the storage facilities provided by the standard class
ARRAY2, one of the many classes of the Eiffel library (see also figure 1). The text of
LocAL_MATRIX is readily written, thanks to the mechanism of multiple inheritance:
the effort of design only comes down to combining the abstract specification of class
MATRIX with the implementation facilities offered by ARRAY2, and ensuring that
the names of the methods inherited from both ancestor classes are matched correctly
(in example 3, the attributes height and width of class ARRAY2 are matched with
the attributes nrow and ncolumn of class MATRIX).

Example 3

class LOCAL MATRIX
inherit
MATRIX
ARRAY2 [DOUBLE]
rename height as nrow, width as ncolumn end 5
creation
make

end —— class LOCAL MATRIX

A library designed along these lines may easily be augmented with new classes

9

describing other kinds of entities such as sparse matrices and vectors, or symmetric,
lower triangular and upper triangular matrices, etc. Adding new representation
variants for matrices and vectors simply comes down to adding new classes in the
library. Moreover, each new class is not built from scratch, but inherits from already
existing classes. For the designer of the library, providing a new representation
variant for a matrix or a vector usually consists in assembling existing classes to
produce a new one. Very often this process does not imply any development of new
code.

2.5 Distribution of Matrices in Paladin

Distributed matrices are decomposed into blocks, which are then mapped over the
processors of the target DCS. Managing the distribution of a matrix implies a great
amount of fairly simple but repetitive calculations, such as those that aim at deter-
mining the identity of the processor that owns the item (7, j) of a given matrix, and
the local address of this item on this processor. Methods for doing such calculations
have been encapsulated in a class DISTRIBUTION 2D, which allows the partition
and distribution of 2-D data structures!.

The parameterization of the creation method of class DISTRIBUTION_2D is in-
spired from the syntax used in the HPF directive DISTRIBUTE, and it has roughly
the same expressiveness (as far as distributed matrices or 2-D arrays are concerned).
The application programmer describes a distribution pattern by specifying the size
of the index domain considered, the size of the basic building blocks in this domain,

and how these blocks must be mapped on a set of processors.

local
my_dist: DISTRIBUTION_2D;
my_mapping: COLUMN_WISE_MAPPING;
do
!my_dist.make (10, 10, 5, 2, my_mapping); Processor #
2

<>

{ olefolzfo
Partitioning

Mapping
—_— —_—

I R ke

Figure 2: Example of a distribution allowed by class DISTRIBUTION_2D.

1 10

Figure 2 shows the creation of an instance of DISTRIBUTION_2D. The creation
method takes as parameters the size of the index domain considered, the size of

! The class DISTRIBUTION_2D was actually designed by inheriting two times from a more simple
class DISTRIBUTION_1D. Hence, a class devoted to the distribution of 3-D data structures could
be built just as easily.

10

the building blocks for partitioning this domain, and a reference to an object whose
type determines the kind of mapping required. The instance of DISTRIBUTION_2D
created in figure 2 thus permits to manage the distribution of a 10 x 10 index domain
partitioned into 5 x 2 blocks mapped column-wise on a set of processors. Figure 2
shows the resulting mapping on a parallel architecture providing 4 processors.

Each distributed matrix must be associated at creation time with an instance of
DisTRIBUTION_2D, which plays the role of a distribution template for this matrix.
The distribution pattern of a matrix can either be specified explicitly —in that case
a new instance of DISTRIBUTION_2D is created for the matrix—, or implicitly by
passing either a reference to an already existing distributed matrix or a reference
to an existing distribution template as a parameter. Several distributed matrices
can thus share a common distribution pattern by referencing the same distribution
template.

2.6 Implementation of Distributed Matrices

The accessors put and item declared in class MATRIX must be implemented in
accordance with the Ezec and Refresh mechanisms introduced in section 2.2. This is
achieved in a new class DIST_MATRIX that inherits from the abstract specification
encapsulated in class MATRIX.

The accessor put is defined so as to conform to the Qwner Write Rule: when
an SPMD application program contains an expression of the form M.put(v, i, j)
—with M referring to a distributed matrix— the processor that owns item (7, j) is
solely capable of performing the assignment. In the implementation of method put,
the assignment is thus conditioned by a locality test using the distribution template
of the matrix (see example 4).

Example 4

put (v: DOUBLE; i, j; INTEGER) is
do
if dist.item_is_local(i, j) then
local_put (v, i, j)
end —— if 5
end —— put

The accessor item must be defined so that remote accesses are properly dealt
with: when an SPMD application program contains an expression such as v :=
M.item(i, j), the function item must return the same value on all the proces-
sors. Consequently, in the implementation of method item, the processor that owns
item (7,7) broadcasts its value so that all the other processors can receive it (see
example 5). The invocation M.item(i, j) thus returns the same value on all the
processors implied in the computation.

11

Example 5

item (i, j: INTEGER): DOUBLE is
do

if dist.item_is_local(i, j) then

Result := local item (i, j)

POM.broadcast (Result) 5
else
Result := POM.receive from (dist.owner of item (i, j))
end —— if
end —— item

The communication primitives are provided by the class PoM, which is part of
the EPEE toolbox and constitutes an interface between the Fiffel world and the
POM communication and observation library [Guidec et al.95]. This library was
designed so as to provide a homogeneous interface upon the many communication
kernels available on current parallel architectures. Moreover, it can be easily and
efficiently implemented on most of these architectures.

The implementation of methods put and item shown in examples 4 and 5 deals
with the distribution of data, but it does not deal with the actual access to local data.
This problem must be tackled in the local accessors local put and local_ item,
whose implementation is closely dependent on the format chosen to represent a
part of the distributed matrix on each processor. Since there may be numerous
ways to store a distributed matrix in memory (e.g., the distributed matrix may be
dense or sparse), both methods local_put and local_item are left deferred in class
DisT_MATRIX. They must be defined in classes that descend from DIST_MATRIX
and that encapsulate all the details relative to the internal representation of dis-
tributed matrices.

Local Local

matrix matrix
/(@42

Local
0o matrix
item (4, 6) || Owner =0 | >
Block = (0, 2)
gjoja O
Distributed matrix Table of blocks

on processor 0 [0 means "not owner

Figure 3: Internal representation of a matrix distributed by blocks

The class DBLOCK_MATRIX (see figure 1) is one of the many possible de-
scendants of DIST_MATRIX. It inherits from DIST_MATRIX as well as from AR-

12

RAY2[LOCAL_MATRIX|, and therefore implements a dense matrix distributed by
blocks as a 2-D table of local matrices. Each entry in this table references a building
block of the distributed matrix, stored in memory as an instance of LOCAL_MATRIX
(see figure 3). A void entry in the table means that the local processor does not own
the corresponding block matrix. In DBLOCK_MATRIX, the local accessors local_put
and local_item are defined so as to take into account the indirection due to the
table.

The class hierarchy that results from our approach is clearly organized as a lay-
ering of abstraction levels. At the highest level, the class MATRIX encapsulates the
abstract specification of a matrix entity. The class DIST_MATRIX corresponds to an
intermediate level, where the problem of the distribution of a matrix is solved, while
the problem of the actual storage of the matrix in memory is deferred. At the lowest
level, classes such as DBLOCK_MATRIX provide fully operational specifications for
distributed matrices.

Besides DBLOCK_MATRIX, the class hierarchy of PALADIN includes two classes
DcoL_MATRIX and DROW_MATRIX that encapsulate alternative implementations
for row-wise and column-wise distributed matrices. In these classes, distributed
matrices are implemented as tables of local vectors. This kind of implementation
fits well application programs that perform many vector-vector operations. Other
kinds of distribution patterns or other kinds of representation formats could be
proposed. One could for example think of exotic distribution patterns based on a
decomposition into heterogeneous blocks or on a random mapping policy. One could
also decide to provide an implementation ad hoc for triangular or band distributed
matrices. With the OO approach, the extensibility of a class hierarchy such as that
of PALADIN has virtually no limit. It is always possible to incorporate new classes
seamlessly in a pre-existing class hierarchy.

3 Making Parallel Libraries Efficient

3.1 Optimization Techniques

The techniques presented in the previous section permit to achieve the transparent
distribution of an aggregate: from the viewpoint of an application programmer, there
is no fundamental difference between the services offered by a distributed aggregate
and those offered by a local —sequential— one. It is only possible to handle larger
aggregates due to the fact that the total memory offered by a DCS usually amounts
to several times that of a mono-processor machine. However, the flow of control
of all methods is still sequential, so that not much performance can be expected
yet. To get better performances, it is necessary to redefine those operators of the
distributed aggregate that can be considered as critical ones (that is, computation
intensive ones). The method consists in using the facilities provided by the EPEE
toolbox again, but this time the goal is to optimize the operators.

The optimization techniques involved at this level are rather classical: most of

13

them result from the work led in the projects that aim at transforming sequential
imperative languages like Fortran and C into parallel languages. These techniques
are briefly enumerated below:

Discarding useless Refresh /Exec When redefining an operator, if it can be stat-
ically deduced from the distribution pattern of the aggregate considered that a
data is locally present, this data can then be directly accessed. This optimiza-
tion saves the useless tests and communications that are otherwise implied by
the Refresh and Ezrec mechanisms. Likewise, when it can be locally decided
that a remote data has not been updated between two remote readings, then
a Refresh operation can be saved using a temporary variable.

Restricting iteration domains So far, each processor must mark every step of
an iteration, although only those steps that have to do with local data should
be considered. Operators can be redefined so as to mark in an iteration only
those steps that have to do with local data. In the best case, the size of an
iteration domain —and consequently the duration of its execution— can be
divided by the number of processors implied in the computation.

Optimizing index transformations Accessing an element of a distributed aggre-
gate is usually a costly operation, due to the many calculations that are needed
to locate this element. Since the methods that compute index transformations
can usually be encapsulated in a class (as shown in section 2.5 with the exam-
ple of classes DISTRIBUTION_2D), it is possible to perform most of the index
computations once and for all, and store the results in private tables. Index
conversion tables are created and filled in when a new distributed aggregate
is created. These tables make it possible to locate an item quickly. They do
not need to be updated, unless the aggregate whose distribution pattern they
describe is redistributed dynamically. With this optimization technique, the
cost of an index conversion is only that of an indirection. Using index conver-
sion tables thus reduces index conversion times, at the expense of the memory
consumption.

Communication vectorization On most modern parallel architectures the cost
of communications decreases every time a long message is preferred to many
short ones. This observation led to a bunch of techniques for assembling
several basic data elements in a single message (e.g., direct communication,
data coalescing, data aggregation, data vectorization). In EPEE, all these
techniques can be used transparently, since data exchanges are encapsulated
in classes and thus remain hidden to the user. We simply call communication
vectorization the technique that consists in transmitting a large part of an
aggregate instead of several smaller parts.

For example, the algorithm associated with method trace in class MATRIX (see
example 2) is purely sequential and hence does not take into account the possi-
ble distribution of the matrix considered. We can redefine operator trace in class

14

DisT_MATRIX, providing the method with an algorithm that fits better the charac-
teristics of a distributed matrix. The computation of the trace is now performed in
two steps. In the first step, each processor computes locally a partial trace for the
items it owns. The locality test reduces the iteration domain so that each processor
only deals with local diagonal items. The second step of the algorithm is a classical
SPMD reduction.

The parallelization of computations such as matrix multiply is more complex.
The method mult takes two matrices as parameters and computes the product of
these two matrices. It can thus be invoked to multiply two matrices A and B and
assigning the result to a third matrix C, just by introducing the expression C.mult (A,
B) in an application program. It was implemented quite simply in class MATRIX,
based on three nested loops and accessors put and item. However, this default
implementation is purely sequential, and therefore quite inefficient if at least one of
A Bor Cis distributed. We encapsulated in class DBLOCK_MATRIX another method
mult_dblock that also computes the matrix product, but only if the three matrices
implied in the computation are distributed by blocks.

Instead on relying on the basic scalar accessors put and item, the algorithm of
mult_dblock is directly expressed in terms of block matrix operations. The iteration
domain is reduced thanks to locality tests so that each processor only performs
local calculations. Communications, when they cannot be avoided, are naturally
vectorized due to the fact that the data exchanged are block matrices instead of
scalar elements.

Actually, vectorizing data access is not profitable to communications only. Re-
structuring the algorithms encapsulated in class MATRIX and its descendants so
that they perform block matrix operations in their inner loops globally enhances
the performances of PALADIN, because it contributes to reduce memory swapping
and cache defaults on most modern processors. Providing multi-level accessors to
an aggregate therefore has an interesting consequence: it enhances the performances
of operators thanks to a better exploitation of the memory architecture and thanks
to a reduction of the cost of data exchanges between the processors of a DCS.

At this stage, it must be understood that this approach does not lead to an
explosion of the number of methods in the library. Indeed, for each operation only
a few number of distribution combinations can lead to an optimized parallel solver
(e.g., the matrix multiply above). If the object distributions do not fit them, one
can either use the default (inherited) algorithm or (dynamically) redistribute one or
several of the involved objects to select an efficient solver.

3.2 Preserving User Friendliness

With the optimization techniques discussed above, each operator declared in class
MATRIX may be given several alternative implementations, each implementation
being devoted to a particular representation or distribution pattern of the operands.
It is obviously not desirable to have the application programmer specify explicitly

15

which version of an operator is the most appropriate to mark every computation
step in an application program.

The OO answer to this problem lies in the dynamic binding of methods to objects.
Available in all OO languages, this mechanism ensures the transparency of method
dispatching for parameterless methods such as method trace.

The problem is more complex for operators that admit several operands. Let us
consider the method mult again. Remember that method mult was given a default
sequential implementation in class MATRIX, but that DBLOCK_MATRIX encapsu-
lates another method mult_dblock that is especially devoted to the computation of
the product of two matrices distributed by blocks. It is actually most important
to understand why we did not simply overwrite method mult in DBLOCK_MATRIX.
Since it only permits to compute the product of matrices distributed by blocks, the
algorithm of method mult_dblock cannot just replace that of method mult, which
computes the product of any two matrices of compatible size, be they represented
the same way or not. Because the service they offer to the application programmer
is not exactly equivalent in both operators, mult and mult_dblock must remain
available simultaneously in DBLOCK_MATRIX. Yet, this does not mean that the ap-
plication programmer must be responsible for selecting which of these two operators
is the most appropriate to compute the matrix product. Ideally, the selection of the
most appropriate algorithm should be performed automatically at runtime based on
the dynamic types of the operands. Such a mechanism of multiple dispatching is
provided by some OO languages (e.g., CLOS [Gabriel91] and Cecil [Chambers92]),
but not by the Eiffel language neither by Modula-3, Ada 95 or C++ (whose function
overloading mechanism is just syntactic sugar). Anyway, one can emulate multiple
dispatching by performing explicit tests on the dynamic type of operands. The idea
is to redefine method mult in class DBLOCK_MATRIX so as to test the dynamic
type of the arguments A and B (see example 6). If the test shows that the dy-
namic types of A and B do not conform to type DBLOCK_MATRIX, then the default
algorithm inherited from class MATRIX —and renamed as mult_default in the in-
heritance statement of class DBLOCK_MATRIX— is invoked. On the other hand,
if the arguments are recognized as being matrices distributed by blocks, then the
optimized parallel algorithm mult_dblock can be invoked. In both cases, the cost
of the tests performed to select one or the other algorithm is negligible compared to
the complexity of the algorithms that actually compute the matrix product. For the
application programmer, however, the full transparency of the method dispatching
is ensured.

There are actually other techniques to emulate multiple dispatching with a lan-
guage such as Eiffel or C++ (e.g., implementation of binary multi-methods based
on a technique of reverse delegation), but as far as we know none of these techniques
is fully satisfactory either. We are still looking forward to seeing an OO language

16

Example 6

class DBLOCK MATRIX inherit
DIST MATRIX

rename
mult as mult default —— Keep the default sequential operator
end 5
feature —— Optimized operators
mult (A, B: MATRIX) is
do
if A.conforms to ("DBLOCK_MATRIX") 10

and B.conforms to ("DBLOCK_MATRIX") then
mult_dblock (A, B)
else mult_default (A, B)
end —— if
end —— mult 15

end —— class DBLOCK MATRIX

combining such features as static type checking?, data encapsulation®, and multiple
dispatching.

3.3 Experimental Results

The OO approach leads naturally to the design of quite complex class hierarchies,
and the question of their efficient implementation arises naturally. Efficiency is actu-
ally a crucial issue, since the main rationale for using DCSs lies in the exploitation
of their ever growing computational power. If we were to end up with a parallel
code running slower than the (best) equivalent sequential code, we would clearly
have missed the point. Fortunately, it is not so.

Figure 4 shows the speedups® obtained when performing parallel Q.R decom-
positions of N x N dense square matrices distributed by columns, using a parallel
implementation of the Gram-Schmidt algorithm on the Intel Paragon XP/S super-
computer.

The performances of PALADIN were significantly improved by interfacing some
of its classes with the BLAS kernel [Lawson et al.89]. Thanks to this interfacing,
BLAS routines are invoked whenever possible, that is, when the BLAS kernel is
available on the target machine and when all the operands implied in an operation

2CLOS offers multiple dispatching but it is dynamically typed.

3Cecil implements multi-methods by partially breaking the encapsulation.

“We define the speedup as the execution time of a parallel Eiffel code on N nodes over the
execution time of an equivalent sequential C code on one node.

17

[P | time (sec) | speedup | efficiency |

N = 256
. ‘s Ref. 84.17 — —
Gram-Schmidt decomposition 1 a7 53 % 96 %
T T T T 2 44.42 1.89 94 %
32 - 4 22.87 3.68 92 %
12.45 6.76 84 %
16 7.16 11.75 73 %
94] 32 4.79 17.57 54 %
N =512
Ref. 654.21 — —
16 - 2 357.12 1.83 91 %
4 178.27 3.66 91 %
8 91.95 7.11 88 %
3 | 16 48.78 13.41 83 %
32 27.61 23.69 74 %
N = 1024
Ref. 6358.98 — —
0 1 6692.34 .95 95 %
0 8 16 24 32 2 2998.96 2.12 106 %
Nb proc 4 1426.17 4.45 111 %
8 722.79 8.79 109 %
16 371.80 17.10 106 %
32 196.50 32.36 101 %

Figure 4: Gram-Schmidt decomposition of NxN dense matrices distributed by
columns

have a Fortran-compatible representation. For example, whenever the product of
two instances of LOCAL_MATRIX must be computed, the BLAS subroutine GEMM
(GEneral Matrix Multiply) is invoked transparently to perform the computation
instead of the default Eiffel routine defined in class MATRIX. Figure 5 shows the
performances observed when computing a double precision matrix-matrix product
(with matrices distributed by blocks) on the Paragon XP/S. Despite the use of a
high-level OO language — and thanks to the use of the BLAS kernel to perform the
inner block matrix products —, we get the best performances out of the Paragon
XP/S (around 1.5 Gflops on 50 nodes).

4 Conclusion

An OO library is built around the specifications of the basic data structures it deals
with. The principle of dissociating the abstract specification of a data structure
(somewhat its abstract data type) from any kind of implementation detail enables
the construction of reusable and extensible libraries of parallel software components.
Using this approach, we have shown in this paper that existing sequential OO lan-
guages are versatile enough to enable an efficient and easy use of DCSs. Thanks
to the distributed data structures of a parallel library such as PALADIN, any pro-
grammer can write an application program that runs concurrently on a DCS. The
parallelization can actually proceed in a seamless way: the programmer first designs

18

[P | time (sec) | Mflops | Mflops/node |

Matrix product N =1200
2000 | : : | | 10 8.83 391.39 39.13
20 5.69 607.38 30.36
1200 —— 30 4.53 762.91 25.43
40 4.07 849.14 21.22
1500 + ;888 _] 50 4.53 762.91 15.25
N = 1600
24 ——
00 16 14.41 568.49 35.53
32 8.69 942.69 29.45
1000 - 40 7.64 1072.25 26.80
Mflops 50 7.36 1113.04 22.26
N = 2000
500 L] 20 21.56 742.12 37.11
25 17.63 907.54 36.30
40 12.72 1257.86 31.44
50 11.45 1397.37 27.94
0]]]] 1 N = 2400
1 9 4 30 26.31 1050.85 35.02
0 0 ONb 30 d 0 50 60 40 20.61 1341.49 33.54
- nodes 48 18.39 1503.42 31.32
50 17.92 1542.85 30.85

Figure 5: Matrix multiply of NxN dense matrices distributed by blocks

a simple application using only local aggregates. The resulting sequential applica-
tion can then be transformed into a SPMD application, just by changing the type of
the aggregates implied in the computation. For large computations, we have shown
that the overhead brought about by the higher level of OO languages remains neg-
ligible. By interfacing the internals of PALADIN with the BLAS kernel, we also
demonstrated that the OO approach makes it possible to benefit from highly opti-
mized machine code libraries and provide the best performances without sacrificing
conceptual high level of the user’s point of view. Using the same framework, we are
in the process of extending PALADIN to deal with sparse computations and control
parallelism.

Although our approach hides a lot of the tedious parallelism management, the
application programmer still remains responsible for deciding which representation
format is the most appropriate for a given aggregate. Hence, when transforming
a sequential program into an SPMD one, the programmer must decide which ag-
gregate shall be distributed and how it shall be distributed. This may not always
be an easy choice. Finding a “good” distribution may be quite difficult for com-
plex application programs, especially since a distribution pattern that may seem
appropriate for a given computation step of an application may not be appropriate
anymore for the following computation step. Dynamically redistributing aggregates
as and where needed (as is possible in PALADIN) might be a way to go round this
problem. The redistribution could be controlled by the user, or even encapsulated
with the methods needing special distributions to perform an operation efficiently.
On this topic the OO approach has an important edge over HPF compilers that can

19

only bind methods to objects statically, thus producing very inefficient code if the
dynamic redistribution pattern is not trivial.

Acknowledgments The work on the Paragon XP/S described in this paper is
supported by Intel SSD under an External Research and Development Program
(INRIA contract no. 193C21431318012).

References

[Abelson et al.85]

[America87]

[Andre et al.90]

[Callahan et al.88]

[Cardelli et al.85]

[Chambers92|

[Fahringer et al.92]

[Gabriel91]

Abelson (H.), Jay Sussman (G.) and Sussman (J.). — Structure
and Interpretation of Computer Programs. — MIT Press, Mac
Graw Hill Book Company, 1985.

America (P.). — Pool-T: A parallel object-oriented program-
ming. In: Object-Oriented Concurrent Programming, éd. par
Yonezawa (A.). pp. 199-220. — The MIT Press, 1987.

André (F.), Pazat (J.L.) and Thomas (H.). — Pandore: a system
to manage data distribution. In: ACM International Confer-
ence on Supercomputing. — June 11-15 1990.

Callahan (D.) and Kennedy (K.). — Compiling programs for
distributed-memory multiprocessors. The Journal of Supercom-
puting, vol. 2, 1988, pp. 151-169.

Cardelli (L.) and Wegner (P.). — On understanding types,
data abstraction, and polymorphism. ACM Computing Surveys,
vol. 17 (4), 1985, pp. 211-221.

Chambers (C.). — Object-Oriented Multi-Methods in Cecil. In :
Proceedings of the FEuropean Conference on Object-Oriented
Programming (ECOOP’92). — 1992.

Fahringer (T.), Blasko (R.) and Zima (H. P.). — Automatic
Performance Prediction to Support Parallelization of Fortran
Programs for Massively Parallel Systems. In: 6th ACM Inter-
national Conference on Supercomputing, pp. 347-356. — Wash-
ington, D.C., July 1992.

Gabriel (R. et al.). = CLOS: Integrating Object-Oriented and
Functional Programming. Communications of the ACM, vol. 34
(9), 1991.

20

[Guidec et al.95]

[Hamelin et al.94]

[Hpf forum93]

[Jezequel93]

[Kessler94]

[Lawson et al.89]

[Meyer88|

[Pancake et al.90]

[Valiant90]

[Yonezawa et al.86]

[Zima et al.88§]

Guidec (F.) and Mahéo (Y.). — POM: a Virtual Parallel Ma-
chine Featuring Observation Mechanisms. In: Proc. of the In-

ternational Conference on High Performance Computing, New
Delhi, India. — December, 27-30 1995.

Hamelin (F.), Jézéquel (J.-M.) and Priol (T.). — A Multi-
paradigm Object Oriented Parallel Environment. In: Int. Par-
allel Processing Symposium IPPS’°94 proceedings, éd. par Siegel
(H. J.). pp. 182-186. — IEEE Computer Society Press, April
1994.

HPF-Forum. — High Performance Fortran Language Specifica-
tion. — Technical Report Version 1.0, Rice University, May
1993.

Jézéquel (J.-M.). — EPEE: an Eiffel environment to program
distributed memory parallel computers. Journal of Object Ori-
ented Programming, vol. 6 (2), May 1993, pp. 48-54.

Kessler (C.W.). — Symbolic Array Data Flow Analysis and
Pattern Recognition in Dense Matrix Computations. In: Pro-
ceedings of the Working Conference on Programming Environ-
ments for Massively Parallel Distributed Systems. — IFIP WG
10.3, April 1994.

Lawson (C.), Hanson (R.), Kincaid (D.) and Krogh (F.). — Basic
Linear Algebra Subprograms for Fortran. ACM Transactions on
Math. Software, vol. 14, 1989, pp. 308-325.

Meyer (B.). — Object-Oriented Software Construction. —
Prentice-Hall, 1988.

Pancake (C.) and Bergmark (D.). — Do parallel languages re-
spond to the needs of scientific programmers? IEEE COM-
PUTER, December 1990, pp. 13-23.

Valiant (Leslie G.). — A bridging model for parallel computa-
tion. CACM, vol. 33 (8), Aug 1990.

Yonezawa (Akinori), Briot (Jean-Pierre) and Shibayama (Et-
suya). — Object-oriented concurrent programming in ABCL/1.
In: OOPSLA’86 Proceedings. — September 1986.

Zima (Hans P.), Bast (Heinz-J.) and Gerndt (Michael). — SU-
PERB: a Tool for Semi-Automatic MIMD/SIMD Paralleliza-
tion. Parallel Computing, no6, 1988, pp. 1-18.

21

Jean-Marc JEZEQUEL received an engineering degree in Telecommunications
from the ENSTB in 1986, and a Ph.D. degree in Computer Science from the Uni-
versity of Rennes, France, in 1989. He is a research manager in the Irisa Lab for the
Centre National de la Recherche Scientifique. His research interests include software
engineering and object oriented technology for telecommunications and distributed
computers. He is the author of the book Object Oriented Software Engineering with
FEiffel, Addison-Wesley, Feb. 1996.

Frédéric GUIDEC received his Ph.D. degree in Computer Science from the Uni-
versity of Rennes, France, in 1995. His research interests include the design of pro-
gramming environments for distributed computing systems in a context of software
engineering, using object-oriented techniques. He is now a Research Assistant at
the Swiss Federal Institute of Technology (EPFL, Lausanne, Switzerland).

Jean-Lin PACHERIE received his DEA (Master) in Computer Science from the
University of Grenoble, France, in 1994. He is now pursuing a PhD in Computer
Science in IRISA (Rennes I, France). His research interests are focused on the design
of reusable parallel software components for massively parallel architectures, with
emphasis on data parallelism with a Distributed Shared Memory.

22

Figure 1: Inheritance structure for matrix aggregates (partial view)

local
my_dist: DISTRIBUTION_2D;
my_mapping: COLUMN_WISE_MAPPING;

do
!my_dist.make (10, 10, 5, 2, my_mapping); Processor #
2
1 10 @
1 [l N NN N N
5 0)J(2)10)J(2)J(0
Partitioning Mapping
B — . o _——P
18] ()] [€9) [¢S))] [¢H
10 [l N NN

Figure 2: Example of a distribution allowed by class DISTRIBUTION_2D.

Local Local
matrix
matrix
/’ % ot %
Local
O] o matrix
item (4, 6) || Owner =0 | >
—_— —_—
Block = (0, 2)
ajola 0
Distributed matrix Table of blocks

on processor 0 [means "not owner

Figure 3: Internal representation of a matrix distributed by blocks

23

[P | time (sec) | speedup | efficiency |

N =256
: " Ref. 84.17 — —
Gram-Schmidt decomposition 1 a7 53 9% 96 %
I I I I 2 44.42 1.89 94 %
32 - 4 22.87 3.68 92 %
12.45 6.76 84 %
16 7.16 11.75 73 %
o4 |- | 32 4.79 17.57 54 %
N =512
Ref. 654.21 — —
16 - 2 357.12 1.83 91 %
4 178.27 3.66 91 %
8 91.95 7.11 88 %
i 16 48.78 13.41 83 %
32 27.61 23.69 74 %
N =1024
Ref. 6358.98 — —
1 6692.34 .95 95 %
0 8 16 24 32 2 2998.96 2.12 106 %
Nb proc 4 1426.17 4.45 111 %
722.79 8.79 109 %
16 371.80 17.10 106 %
32 196.50 32.36 101 %

Figure 4: Gram-Schmidt decomposition of NxN dense matrices distributed by
columns

[P | time (sec) | Mflops | Mflops/node |

Matrix product N = 1200
2000 | | : | | 10 8.83 391.39 39.13
20 5.69 607.38 30.36
1200 —— 30 4.53 762.91 25.43
40 4.07 849.14 21.22
1500 5888 _ 50 4.53 762.91 15.25
16 14.41 568.49 35.53
32 8.69 942.69 29.45
1000 - 40 7.64 1072.25 26.80
Mflops 50 7.36 1113.04 22.26
N = 2000
500 b | 20 21.56 742.12 37.11
25 17.63 907.54 36.30
40 12.72 1257.86 31.44
50 11.45 1397.37 27.94
O | | | | | N = 2400
1 9 4 30 26.31 1050.85 35.02
0 0 ONb 30 d 0 50 60 40 20.61 1341.49 33.54
- nodes 48 18.39 1503.42 31.32
50 17.92 1542.85 30.85

Figure 5: Matrix multiply of NxN dense matrices distributed by blocks

24

