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Abstract: A robust control for a stepper motor with no position nor velocity sensors and
only needing current and voltage measurements is designed. Second order sliding mode based
observers are realized to estimate both rotor angular position and velocity. Moreover, a robust
control law, which is also based on second order sliding modes and which uses the estimates
of the observer, is designed. The stability of the observer based control loop is discussed. The
results obtained in simulations indicate the usefulness and the robustness of the method.
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1. INTRODUCTION

Stepper motors are widely used in industry and in con-
sumer goods. In order to design a robust control law
for such a motor, the knowledge of the angular position
and velocity of the motor is required. However, in many
applications, the implementation of mechanical sensors
measuring these signals is not desirable. This may be due
to the space they require, the wires, their fragility, and
also because of non negligible additional cost. For all these
reasons, during the last years there has been an increasing
interest in designing observers and control laws for the
stepper motor which rely on measurements of electrical
variables only.

One can find work in the literature which deals with the
design of a control supposing that the rotor position is
known and using a speed observer (Chiasson et al. [1993],
Defoort et al. [2009], Nollet et al. [2008]). Recently,
some other work deals with ”sensorless” control based on
different velocity and position estimation methods, as in
Chen et al. [2000], Poulain et al. [2008], and Xu et al.
[2007].

The subject of the present work is resumed in Fig. 1. An
observer based on second order sliding modes is presented,
which provides accurate estimates of the velocity and the
position of the stepper motor and uses electric variables
measurements only. Then, a robust control law using
the estimated variables, based on second order sliding
modes and on the notion of flatness (see Fliess et al.
[1992]) is designed in order to achieve trajectory tracking.
The performance of this control scheme is illustrated by
simulation results showing the robustness of the method,
even in the presence of perturbation and noise.

Fig. 1. Sensorless control scheme for the stepper motor

The paper is organized as follows. In Section 2, the
different models of the stepper motor that will be used
for the observation and the control are displayed. The
notion of higher order sliding modes is recalled in Section
3. In Section 4, observers are presented, and in Section 5,
a control law based on those observers is analyzed. The
results obtained are illustrated by simulations.

2. STEPPER MOTOR MODELS

2.1 Model in the fixed frame (α - β)

The following model will be used to design the observer:
diα

dt
=

1

L
(vα −Riα +KΩ sinNθ)

diβ

dt
=

1

L
(vβ − Riβ −KΩcosNθ)

dΩ

dt
=

1

J
(K(iβ cosNθ − iα sinNθ)− fvΩ− τL)

dθ

dt
= Ω

(1)



in which iα and iβ are the coil currents, vα and vβ are
the voltage inputs, θ is the rotor position, and Ω its
velocity. The parameter R represents the resistance, L the
inductance, N the rotor number of teeth, K the motor
torque constant, J the rotor moment of inertia, fv the
coefficient of friction, and τL the torque load, which will
be assumed to be an unknown perturbation.

Only the voltage inputs and the stator currents will be
assumed to be measured. Note that the stepper motor
without mechanical sensors is observable except for zero
velocities.

2.2 Model in the moving frame (d - q)

From the model presented above, one can derive a model
in a moving frame, linked to the rotor, thanks to a simple
rotation:

[id, iq]
T
= Mp [iα, iβ]

T

[vd, vq]
T
= Mp [vα, vβ ]

T with Mp =

(

cosNθ sinNθ
− sinNθ cosNθ

)

.

Using this change of coordinates, the system (1) becomes

did

dt
=

1

L
(vd −Rid +NLΩiq)

diq

dt
=

1

L
(vq −Riq −NLΩid −KΩ)

dΩ

dt
=

1

J
(Kiq − fvΩ− τL)

dθ

dt
= Ω.

(2)

This model will be used to design the control law in Section
5.

3. HIGHER ORDER SLIDING MODE

Sliding modes (see Perruquetti et al. [2002]) are often used
to design robust nonlinear observers or control laws. The
aim of sliding mode control is, by means of a discontinuous
control, to robustly constrain the system to reach and stay,
after a finite time, on a sliding surface where the resulting
behavior has some prescribed dynamics. The sliding sur-
face is defined by the vanishing of a corresponding sliding
variable s and its successive time derivatives up to a certain
order, i.e. the rth order sliding set

Sr =
{

x ∈ R
n : s(x) = ṡ(x) = · · · = s(r−1)(x) = 0

}

.

A control law leading to such a behavior is called a
rth order ideal sliding mode algorithm with respect to
s. Higher order sliding modes, that are characterized by
a discontinuous control acting on the rth , r > 1, time
derivatives of the sliding vector (instead of the first time
derivative in classical sliding mode, r = 1), can reduce the
chattering phenomenon while preserving the robustness
properties.

A wide range of applications using sliding modes for either
observation or control, as in mechanics, robotics, or electric
machines, can be found in the literature (see for example
Bartolini et al. [2003], Butt et al. [2008], Canale et al.
[2008], Defoort et al. [2008], Drakunov et al. [2005]
Floquet et al. [2003], Martinez et al. [2008], Pisano

et al. [2008], Riachy et al. [2008]). In what follows, higher
order sliding mode observers will be designed because
they allow one to obtain estimates in finite time without
introducing a low-pass filter (which is not the case with
a first order sliding mode, for which it is necessary to
filter the high frequency oscillations). Especially, the super
twisting algorithm (see Levant [2001]) will be used, which
is a second order sliding mode defined by

ust(s) = u1(s) + u2(s) (3)

with
{

u̇1(s) = −αsign(s)

u2(s) = −λ|s|
1

2 sign(s)
(4)

where s is the sliding variable, and where α and λ are
two parameters which have to satisfy sufficient conditions
(see Levant [2001]) depending on the system and the
chosen sliding variable in order to ensure the finite time
convergence towards the second order sliding set

S2 = {x ∈ R
n : s(x) = ṡ(x) = 0}. (5)

4. POSITION AND VELOCITY OBSERVER BASED
ON SECOND ORDER SLIDING MODES

In order to design the observer, consider the two electric
equations of model (1), and replace the unknown terms
by an output injection based on the second order sliding
mode algorithm described above. The observer dynamics
is described by

dîα

dt
=

1

L
[vα −Riα]− χ1

dîβ

dt
=

1

L
[vβ −Riβ]− χ2

(6)

The sliding variables are chosen as the current estimation
errors:

ε1 = iα − îα
ε2 = iβ − îβ.

and the output injections χ1 and χ2 are functions of ε1
and ε2 given by the super twisting algorithm (3):

χ1 = ust(ε1)
χ2 = ust(ε2).

(7)

The observation error dynamics is obtained using (1) and
(6):

ε̇1 =
K

L
Ω sinNθ + χ1

ε̇2 = −
K

L
ΩcosNθ + χ2.

(8)

In order to satisfy the conditions given in Levant [2001]
that insure the finite time convergence of the estimation
errors onto the sliding set defined in (5), one needs to
set the parameters α and λ from both super twisting
algorithms described in (3) and (4):

α > C0 and λ2 > 4C0
α+ C0

α− C0
,

with

C0 =
K

L
(|Ω̇|max +N |Ω2|max).

With these conditions, one has ε1 = ε̇1 = 0 and ε2 = ε̇2 =
0 after a finite time. This yields



χ1 = −
K

L
Ω sinNθ

χ2 =
K

L
ΩcosNθ.

(9)

From the two latter equations, estimates of the rotor
position θ and velocity Ω are given by

Ω̂ = ±
L

K

√

χ2
1 + χ2

2

θ̂ =























θ̂0 if Ω̂ = 0,

−
1

N
arctan

(

χ1

χ2

)

if Ω̂χ2 > 0,

1

N
arctan

(

χ1

χ2

)

otherwise

(10)

where θ̂0 is the latest calculated value of θ̂ before Ω̂ = 0.

Two problems caused by the non-uniqueness of the solu-
tions of the electrical system of (1) can be pointed out.
The first is that the sign of the velocity is undetermined,
since if (θ,Ω) is a solution of (9), (θ± π

N
,−Ω) is a solution

too. This also means that if the estimate of the sign of
the velocity is not correct, the position estimate will be
shifted by ± π

N
. The second problem is that the value of the

position estimate is only obtained modulo 2π
N

because θ̂ is
calculated according to (10) within the interval ]− π

N
, π
N
[.

Assuming the sign of the velocity is known, the observer
can achieve good performance even in presence of pertur-
bations. However, the two problems mentioned above are
still to be solved.

The idea for solving the sign issue is to study the evolution

of the position. To this end, the estimate θ̂ of the position is
used and another super twisting algorithm based observer
is introduced:

d
ˆ̂
θ

dt
= χ3(θ̂ −

ˆ̂
θ) (11)

where χ3 is given by the super twisting algorithm.

Writing ε3 = θ̂ −
ˆ̂
θ as the observation error, the error

dynamics is:

ε̇3 =
dθ̂

dt
− χ3(ε3).

Setting the parameters for this other super twisting algo-
rithm

α > C′

0 and λ2 > 4C′

0

α+ C′

0

α− C′

0

,

with

C′

0 =

∣

∣

∣

∣

∣

dΩ̂

dt

∣

∣

∣

∣

∣

max

implies the finite time convergence of the observer towards

the second order sliding set {ε3 = ε̇3 = 0} and thus:
ˆ̂
θ = θ̂

and
ˆ̂
Ω = χ3(ε3) =

dθ̂
dt
.

It has been seen that one has θ̂ = θ± π
N

if the estimate of
the velocity sign is wrong. In this case, the time derivative

of θ̂ is equal to Ω. Then, the output of the third observer
ˆ̂
Ω converges towards the actual value of the velocity Ω. As

a consequence, the sign of the velocity estimate
ˆ̂
Ω is fully

determined, except locally around possible discontinuity

points of θ̂, for which the sliding mode could be destroyed.
Those discontinuity points can create estimation errors for
this observer. In order to solve this problem, one can use
an algorithm to detect these discontinuity points on the

sliding variable ε3 = θ̂ −
ˆ̂
θ (see Fig. 2).

Fig. 2. Discontinuity point detection and position recon-
struction algorithm

Such an algorithm to detect the discontinuity points is
by construction sensitive to measurement noise: a ”jump”
caused by the noise could be interpreted as a passage
to another interval by the algorithm. However, the super
twisting algorithm used for the position observation in
the observer (11) plays the role of a filter and provides

a continuous position estimate
ˆ̂
θ. The results obtained in

simulation for a system with large perturbations (τL =
τh
2 sin(6πt), with τh the motor holding torque) and mea-
surement noise (white noise - up to 5% of the nominal
current) highlight the interest of the method (see Fig. 3).

5. SENSORLESS CONTROL

In this section, a robust control law without any mechani-
cal sensor is designed using the estimate obtained with the
observers defined above.

The control objective is to accurately track a given tra-
jectory. First, note that the system (2) is flat (see Fliess
et al. [1992]) with z = [θ, id]

T as a flat output. This implies
that all the system states and inputs can be expressed as
functions of a flat output z and a finite number of its time
derivatives. Thanks to this property, one can easily define a
reference trajectory (denoted Γr), satisfying the nominal
system dynamics without load torque. The dynamics of
the tracking error

e = [id − idr
, iq − iqr ,Ω− Ωr, θ − θr]

T = [e1, e2, e3, e4]
T

is then given by
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Fig. 3. Real (in red) and estimated (in blue) values of θ
and Ω

ė1 =
1

L
(v̄d −Re1 +NL(e3e2 + e3iqr + e2Ωr))

ė2 =
1

L
(v̄q −Re2 −NL(e3e1 + e3idr

+ e1Ωr)−Ke3)

ė3 =
1

J
(Ke2 − fve3 − τL)

ė4 = e3
(12)

with v̄d = vd − vdr
and v̄q = vq − vqr the new system

inputs.

5.1 State feedback control

Before designing the sensorless control law, let us recall a
second order sliding mode control described in Nollet et al.
[2008] that requires the knowledge of the full state.

Two sliding variables are defined as

Sθ = ke4 + ė4 and Sid = e1, for k > 0.

It can be seen that the sliding motion Sθ = Sid = 0 implies
the vanishing of the position tracking error e4 and the
direct current tracking error e1.

Because the system has relative degree 2 with respect to
Sθ, one has to compute the second time derivative of Sθ

in order to derive the control law used for the tracking of
the position:

S̈θ =
K

JL
v̄q + µθ(e,Γr)−

(

k

J
−

fv

J2

)

τL −
1

J

dτL

dt

where

µθ(e,Γr) =
k

J
(Ke2 − fve3)−

fv

J2
(Ke2 − fve3)

−

K

JL
(Re2 +NL(e3e1 + e3idr + e1Ωr) +Ke3).

Then, a control law based on the sampled twisting
algorithm (see Levant [1993]) is considered (it is well
suited to systems with relative degree 2):

K

JL
v̄q = −µθ(e,Γr) + ute(Sθ,∆Sθ) (13)

ute(S,∆S) =

{

−λmsign(S) if S∆S ≤ 0
−λM sign(S) if S∆S > 0

(14)

where ∆S is the variation of S during a sampling period.

To guarantee the finite time convergence in finite time on
the surface Sθ = 0, λm and λM have to verify

λm >

∣

∣

∣

∣

(

k

J
−

fv

J2

)

τL −
1

J

dτL

dt

∣

∣

∣

∣

max

λM > λm + 2

∣

∣

∣

∣

(

k

J
−

fv

J2

)

τL −
1

J

dτL

dt

∣

∣

∣

∣

max

(15)

Because the system has relative degree 1 with respect to
Sid , the first time derivative of Sid is calculated in order
to derive the control law used for the tracking of the direct
current:

Ṡid = ė1 =
1

L
v̄d + µid(e,Γr) (16)

where

µid(e,Γr) =
1

L
(−Re1 +NL(e3e2 + e3iqr + e2Ωr)).

The super twisting algorithm (well suited to systems with
relative degree 1) is then used to design the control law

1

L
v̄d = −µid(e,Γr) + ust(Sid). (17)

Setting the parameters α > 0 and λ > 0 of this super
twisting algorithm ensures the finite time convergence
towards the surface Sid = 0.

Therefore, the designed control law guarentees the expo-
nential convergence of the tracking error for a system in
which the whole state is measured. It is also shown (see
Nollet et al. [2008]) that the system is robust with respect
to perturbations and parametric uncertainties.

5.2 Observer based control

Suppose now that only the electrical variables are mea-
sured and derive a sensorless control law based on the
state feedback one described in Section 5.1. Denote the
observation error vector as

ε = [iα − îα, iβ − îβ, θ̂ −
ˆ̂
θ]T = [ε1, ε2, ε3]

T .

Then, the dynamics of the whole system state, composed
of the tracking error and the observation errors

Ξ = [e1, e2, e3, e4, ε1, ε2, ε3]
T

is given by

Ξ̇ =



























−

R

L
e1 +N(e3e2 + e3iqr + e2Ωr)

−

Re2 +Ke3

L
−N(e3e1 + e3idr + e1Ωr)

1

J
(Ke2 − fve3 − τL)

e3
K

L
(e3 + Ωr) sin(N(e4 + θr))

−

K

L
(e3 +Ωr) cos(N(e4 + θr))

e3 + Ωr



























+



















1

L
v̄d

1

L
v̄q

0
0

χ1(ε1)
χ2(ε2)
χ3(ε3)



















.

(18)



Consider the control given in (13) and (17). The values
of the control inputs v̄q and v̄d have to be adapted to the
sensorless case. For this, the following error between the
estimated values of the state and the reference values is
introduced:

ξ = [̂id − idr
, îq − iqr ,

ˆ̂
Ω− Ωr,

ˆ̂
θ − θr]

T = [ξ1, ξ2, ξ3, ξ4]
T .

Then, one has

K

JL
v̄q = −µ̂θ(ξ,Γr) + ute(Ŝθ,∆Ŝθ)

1

L
v̄d = −µ̂id(ξ,Γr) + ust(Ŝid)

(19)

where Ŝθ and Ŝid are the new sliding variables (similar to
Sθ and Sid)

{

Ŝθ = kξ4 + ξ̇4
Ŝid = ξ1

, k > 0

and where µ̂θ(ξ,Γr) and µ̂id(ξ,Γr) are given by

µ̂θ(ξ,Γr) =
k

J
(Kξ2 − fvξ3)−

fv

J2
(Kξ2 − fvξ3)

−
K

JL
(Rξ2 +NL(ξ3ξ1 + ξ3idr

+ ξ1Ωr) +Kξ3)

µ̂id(ξ,Γr) =
1

L
(−Rξ1 +NL(ξ3ξ2 + ξ3iqr + ξ2Ωr)).

The superposition principle cannot be used to prove the
closed-loop system stability because the system is non-
linear. Therefore, the convergence of both systems (ob-
server/control), considered separately, does not imply the
convergence of the whole system.

In order to prove the exponential stability of the closed-
loop system, it will first be shown that the state is
bounded in finite time. Then, since the designed observers
converge in finite time, after a finite time the system will
behave exactly like the system controlled with the state
feedback described in the subsection 5.1 and will hence be
exponentially stable.

Let us prove that the system (18) is bounded in finite time.
To do this, write ξ as a function of the system state Ξ,
the reference trajectory Γr, and the control inputs χ1(ε1),

χ2(ε2), χ3(ε3), ute(Ŝθ,∆Ŝθ) and ust(Ŝid). One has
(

ξ1
ξ2

)

=

(

îd
îq

)

−

(

idr

iqr

)

.

Since one also has
(

îd
îq

)

=

(

cos(Nθ̂) sin(Nθ̂)

− sin(Nθ̂) cos(Nθ̂)

)(

îα
îβ

)

with

θ̂ = −
1

N
arctan

(

χ1

χ2

)

,

{

îα = iα − ε1
îβ = iβ − ε2

as well as
(

iα
iβ

)

=

(

cos(N(e4 + θr)) − sin(N(e4 + θr))
sin(N(e4 + θr)) cos(N(e4 + θr))

)(

id
iq

)

and
(

id
iq

)

=

(

e1 + idr

e2 + iqr

)

then one obtains
(

ξ1
ξ2

)

= Φ(χ1, χ2)
(

Ψ(e4 + θr)
(

e1 + idr
e2 + iqr

)

−
(

ε1
ε2

))

−
(

idr
iqr

)

(20)

with

Φ(χ1, χ2) =



















1
√

1 +
(

χ1

χ2

)2
−

χ1

χ2
√

1 +
(

χ1

χ2

)2

χ1

χ2
√

1 +
(

χ1

χ2

)2

1
√

1 +
(

χ1

χ2

)2



















and

Ψ(e4 + θr) =

(

cos(N(e4 + θr)) − sin(N(e4 + θr))
sin(N(e4 + θr)) cos(N(e4 + θr))

)

.

The variable ξ3 can also be expressed as

ξ3 =
ˆ̂
Ω− Ωr = χ3 − Ωr. (21)

After substituting in the system (18) the equations of the
controls v̄d and v̄q (19) with the expressions (20) and
(21) of the errors between the estimated values and the
reference values, one gets a model depending only on the
state and the control inputs:

Ξ̇ = F (Ξ,Γr, χ1, χ2, χ3, ute(Ŝθ,∆Ŝθ), ust(Ŝid)).

Without loss of generality, it can be assumed that the
chosen reference trajectory Γr is bounded. Then one has,
using (20) and (21)

{

ξ1 = O(e1 + e2 + ε1)
ξ2 = O(e1 + e2 + ε2)
ξ3 = O(ε3).

(22)

Since the currents id and iq are saturated, as well as

their estimated values îd and îq, the tracking errors of
the currents, e1 and e2, as well as the estimation errors ε1
and ε2 are bounded. Hence, ξ1 and ξ2 are also bounded
according to (22).

It can be seen that the sampled twisting control input (14)
is also bounded, as well as the super twisting algorithms
(7), (11) and (17) since they are continuous functions with
values in a compact set.

As a consequence, the following inequality can be obtained:

‖Ξ̇‖ ≤ Q‖Ξ‖+ ḡ (23)

where Q and ḡ are positive constants.

Then, by integrating (23), one gets

‖Ξ(t)‖ ≤ ‖Ξ(0)‖+

∫ t

0

(Q‖Ξ(τ)‖ + ḡ)dτ

and after applying Grönwall’s lemma, one obtains

‖Ξ(t)‖ ≤ ‖Ξ(0)‖ exp(Ct) +
ḡ

Q
exp(Ct− 1)

where C is a positive constant.

Thus, the trajectories of the whole system state Ξ are
bounded in finite time, which concludes the proof of
exponential stability of the closed-loop system (18)-(19).

In Fig. 4 are reported simulation results obtained with
large perturbations (τL = 2

3τhsin(6πt), with τh the motor
holding torque), measurement noise (white noise - up to
5% of the nominal current) and parametric errors (5% on
parameters R, L, K, J and fv).
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Fig. 4. Reference (in red) and real (in blue) values of θ and
Ω with measurement noise and parametric errors

It can be seen in Fig. 4 that good tracking of both
position and velocity is achieved, even in the presence of
perturbations, noise and parameter uncertainties.

6. CONCLUSION

Higher order sliding mode observers have been designed to
estimate the mechanical state of a stepper motor. Then,
a robust sensorless control law using those observers has
been presented. The results obtained in simulation for the
observation scheme as well as the control are convincing
and show the potential of the method.
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