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Abstract

Behavioural models offer the ability to simulate autonomous entities like organisms and living beings.
Such entities are able to perceive their environment, to communicate with other creatures and to execute
some decided actions either on themselves or on their environment. Building such systems requires the
design of a reactive system treating flows of data to and from its environment, in a complex way needing
modularity, concurrency and hierarchy, and involving task control and preemption. Accordingly, in this
paper we address the adequateness to the decisional part of the behavioural model of the following
programming paradigms: reactivity, concurrency, data-flow and hierarchical preemption.

The reactive languages provide users with complete design environments (including graphical tools
for designing, simulating, implementing and formally verifying) for such systems. The specification
of concurrent behaviours is naturally supported in the synchronous languages, and some of them are
more suited for control-intensive applications (sequencing and preempting tasks), while others address
computation-intensive applications (data-flow). SIGNALG Ti is an extension of the language SIGNAL where
data-flow processes can be composed into nested preemptive tasks.

An application in the simulation of a transportation system shows how these programming paradigms
can be of use, and how SIGNALGT¢ can support their implementation.

Keywords: Simulation, Behavioural Animation, Reactive Systems, Synchronous Languages, Concurrency,
Data-flow, Hierarchical Preemption.

1 Introduction

Context. Behavioural animation consists in a high level motion control of dynamic objects, which offers
the ability to simulate autonomous entities like organisms and living beings. Such entities are able to perceive
their environment, to communicate with other creatures and to execute some actions either on themselves
or on their environment. This requires to make a deliberative choice of the behaviour, and for that we
have to design a reactive system continuously in communication with the environment (data-flow). The
behaviour of a creature, even for the simplest, is composed of different activity lines (modularity) which can
be completely distinct but also concurrent. Hierarchy and preemption are some other important notions
for such a system, because they enable them in a modular and re-usable way, defining behaviours from
sub-behaviours, sequenced, interrupted or suspended by preemption.

Reactive languages (and particularly synchronous ones) handle these programming paradigms in dif-
ferent forms. Additionally, they open up perspectives concerning the formal verification of safety-critical
behaviours, the distributed compilation of applications, ... However they do so by concentrating each on one
or two paradigms, not integrating them all. The tasking extension of SIGNAL called SIGNALGT? integrates
the concurrency and data-flow reactivity of SIGNAL with notions of sequencing and hierarchical preemption
of tasks. Hence, it is a fitting candidate for the programming of the class of applications evoked above.



Behavioural animation. The objective of animation is the calculation of an image sequence correspond-
ing to discrete time states of an evolving system. Animation consists at first in expressing relationships
linking successive states (specification phase) and then making an evaluation of them (execution phase).
Motion control models are the heart of any animation/simulation system that determines the friendliness
of the user interface, the class of motions and deformations produced, and the application fields. Motion
control models can be classified into three general families : descriptive, generative and behavioural models
[15]. Descriptive models are used to reproduce an effect without any knowledge about its cause. This kind
of models include key frame animation techniques and procedural methods. Unlike preceding models, gener-
ative models offer a causal description of objects movement (describe the cause which produces the effects),
for instance, their mechanics. In this case, the user control consists in applying torques and forces on the
physical model. Thus, it is not easy to determine causes which can impose some effects onto the mechanical
structure to produce a desired motion. Two kinds of tools have been designed for the motion control problem:
loosely and tightly coupled control. The loosely coupled control method consists in automatically comput-
ing the mechanical system inputs from the last value of the state vector and from the user specification of
the desired behaviour, while in the other method, the motion control is achieved by determining constraint
equations and by inserting directly these equations into the mechanical system motion equations. Motion
control tools provide the user with a set of elementary actions, but 1t is difficult to control simultaneously
a large number of dynamic entities. The solution consists in adding a higher level which controls the set of
elementary actions. This requires to make a deliberative choice of the object behaviour, and is done by the
third model named behavioural. The goal of the behavioural model is to simulate autonomous entities like
organisms and living beings. A behavioural entity possesses the following capabilities: perception of its en-
vironment, decision, action and communication. As mentionned above, paradigms needed for programming
a realistic behavioural model are reactivity, data-flow, modularity, concurrency and hierarchical preemption.

Synchronous reactive languages, SIGNAL and SIGNALGTi. Reactive systems are characterized by the
fact that they are in constant interaction with their environment: their pace is determined by discrete events
to which they react. The synchronous languages are derived from theoretical and applied studies on discrete
event systems with real time aspects, and on specification methodologies and programming environments for
their development [7, 14]. Synchrony consists in that the languages have a notion of simultaneous events, and
that synchronous communications allow processes to synchronize their transitions on shared instants. This
model of time 1s the basis of clear semantics, a model of concurrency easier to handle than the asynchronous
one, and efficient analysis tools. These languages evolved into a technology supported by commercial products
that are used in industrial applications. Their aim 1s to support the design of safety critical applications,
especially those involving signal processing and process control. The synchronous approach guarantees the
determinism of the specified systems, and supports techniques for formal verification (like the detection of
causality cycles and logical incoherences). A family of languages is based on this approach [14], featuring
ESTEREL, LUSTRE, SIGNAL, ARGOS and also STATECHARTS.

Among them, SIGNAL [18] is a data-flow language, with a declarative style: processes are systems of equa-
tions on values and their occurrence instants. The compiler transforms the specification into an optimized
executable code (in C, FORTRAN or ADA) computing and outputting the solutions to this system of equations
at each reaction. Automated formal verification of dynamic properties of programs is based on polynomial
dynamic systems. Experimentations of the specification, simulation and verification methods have concerned
the controller for a robotic production cell, an active robot vision system [20], and a control system for a
power transformer station [21]. A recent extension to SIGNAL provides constructs for the specification of
nested preemptive tasks on intervals of time [28, 29]. The model of time in SIGNAL is based on instants, and
actions of the language are executed within the reaction. It is not particularly suited to the specification
of systems commuting between activities, involving the abortion or suspension of tasks with a duration. In
particular, there are no constructs enabling directly the specification of complex behaviours with preemp-
tion on hierarchies of tasks and sub-tasks. This is why notions of task and of associated time interval were



introduced in the language. This extension is implemented in SIGNALGTi1[30], a pre-processor to SIGNAL,
fully compatible with the tools in the environment, and hence benefitting from their functionalities such as
proof, code generation in various languages, ...

Organization of the paper. The nature of behavioural animation is presented in the following section.
The section 3 presents an application which requires Realistic Behaviours. In the section 4, a set of character-
istics needed for the specification of a virtual driver are listed and a Modular and Hierarchical Behavioural
Model integrating these characteristics is presented. Section 5 gives a presentation of the synchronous
reactive data-flow language SIGNAL, and of its extension with hierarchical preemptive tasks SIGNALGTL.
Next, section 6 discusses the adequacy of the paradigms proposed by SIGNALGTi for the description of our
behavioural model, with the example of a driving simulation system.

2 Behavioural Animation

There are two kinds of behavioural models: internal transformation models (plant growth, facial animation,
...) [9, 24] and external animation models (animals, humans; alone or in group) [5, 6]. In this paper, we are
not interested by internal models and in the following, we will only discuss external ones, which are based
on two kinds of relationships between the object and its environment: perception and action (cf figure 1). In
this case, the temporal dependency relation of the state of an entity E(¢;) at the time ¢; is globally expressed
by a function f(E(ti—1),..., E(ti—1), P(t}_k, o 15),C(t4), 1), where C(2;) is the set of messages received
by the entity at time ¢; and P represents the environment perception function during the temporal interval
[t g ], with ¢ <t .

Environment

"Behavioural Entity

Figure 1: A behavioural agent immersed in its environment.

Different approaches have been studied for the decision part of these models [10]:

Sensor-effector Approach The behaviour of objects is defined by sensors, effectors and a neural network
which connects them. The way an object behaves in the environment depends on how the environment
is sensed, and how this information is passed through the neural network to the effectors that produce
the motion of the object. The same neural network can produce different kinds of motion depending
on the parameterization of nodes and on the weight of connections. [33, 35]

Behaviour Rule Approach Like the previous approach, it takes sensed information as its input and motor
controls as its output, but the behaviour of the object 1s controlled by a set of behaviour rules. The
possible behaviours can be represented by a decision tree in which each branch represents one alternative
behaviour [32, 16, 25, 31, 34]. This method offers a higher level of description than the preceding one,
but the difficulty results from the choice of the rating strategy.

Predefined Environment Approach This approach is based on the fact that the environment is prede-
fined and static: thus, all possible paths from the initial position to the goal position can be explored. It
is easy to determine an optimal solution inside the set of enumerated solutions, according to behaviour

Twhich stands for Gestion de Tdches et d’ intervalles, the french for: tasks and intervals management.



criteria, but on the other hand a little change in the environment implies a complete recomputation of
the motion [26].

Finite Automaton Approach In this approach, the behaviour of an object is either controlled by one
finite automaton or by combining elementary behaviours and designing a supervisor for the resulting
composite behaviour. The use of a single automaton is not convenient: firstly making conceptually
simple changes in behaviours requires widespread modification of the finite state machine, secondly
it is difficult to express concurrent constraints on control processes [8]. Modularity, hierarchy and
concurrency can be obtained by using Hierarchical Concurrent State Machines (HCSM) [1]. We have
also described the behaviour of a car-driver by using a hierarchical modular system, in which the higher
level (supervisor) is principally composed by a hierarchical parallel automata [11, 3].

Most of these systems have been designed for some particular examples, in which modularity and concur-
rency are not necessary. This is due to the fact that entities possess only one activity line and because possible
interactions between an object and its environment are very simple: sensors and actuators are reduced to
minimal capabilities which, most of the time, permit only to avoid obstacles in a 2D or 3D world. Another
point which is generally not treated is the notion of time. In a system mixing different objects described
by different kinds of models (descriptive, generative and behavioural), it is necessary to take into account
the explicit management of time, either during the specification phase (memorization, prediction, action
duration, etc.) or during the execution phase (synchronization of objects with different internal times).

3 An application which requires Realistic Behaviour: Driving
Simulation for the Praxitele Project

3.1 The Praxitele Project

The Praxitele project combines the efforts of two large government research institutes, one in transportation
technologies (INRETS), the other in computer science and automation (INRIA), in cooperation with large
industrial companies (RENAULT, EDF, CGEA). This project designs a novel transportation system based
on a fleet of small electric public cars under supervision from a central computer [23]. These public cars
are driven by their users but their operation can be automated in specific instances. The system proposed
should bring a solution to the congestion and pollution in most cities through the entire world.

The concept of a public transport system based on a fleet of small electric vehicles has already been the
subject of experiments several times but with poor results. The failure of these experiments can be traced to
one main factor : poor availability of the vehicles when a customer needs one. To solve this main problem,
Praxitele project develops and implements automated cooperative driving of a platoon of vehicles, only the
first car is driven by a human operator [22]. This function is essential to move easily the empty vehicles from
one location to another.

The realization of such a project requires experiments of the behaviour of autonomous vehicles in an
urban environment. Because of the danger of this kind of experiments in a real site, it is necessary to
design a virtual urban environment in which simulations can be done. Our simulation platform permits to
simulate a platoon of vehicules evolving in a virtual urban environment and so to test control algorithms of
the automated cars.

3.2 A Simulation Platform

With the intention of making the three kinds of motion control models work together, we have been interested
by their integration into a single system and we have proposed the architecture of a simulation platform [11].
The simulation platform is composed of a set of agents/actors whose synchronization and communication
are managed by a real-time kernel. The main part of this kernel is the general controller. Communication
between the agents is both synchronous and asynchronous. The synchronous part is data-flow based where



each agent has its own frequency and is managed by the general controller. So, the data-flow communication
channels include all the mechanisms to adapt to the local frequency of the sender and receiver agents
(over-sampling, sub-sampling, interpolation, extrapolation, etc... ). The asynchronous part is based on two
mechanisms :

e event based communication between agents and the general controller.

e global data-structure updating and accessing mechanisms.
Different experimentations have been realized for the car-driving application:

e A mono-user modular version in which synchronization and control are specified in the synchronous
reactive language SIGNAL.

e Two multi-processes versions by using PVM (Parallel Virtual Machine) [13] and Chorus (micro-kernel
technology) [27].

A first version of the simulation platform is currently in developpment. PVM is used to define the
real-time kernel which is in charge of communication and synchronization between different processes, while
SIGNAL is used to assume internal management of each process.

3.3 Simulation of an Urban Environment

An urban environment is composed of many dynamic entities evolving in a static scene. These dynamic
entities have to be both autonomous and controllable and also realistic in term of behaviour. It is necessary
to combine the three motion control models to describe dynamic entities of the environment. For example,
to describe traffic lights it is not necessary to use a generative model when a descriptive model (finite
state automata) is sufficient. On the other hand, for a realistic car driving, we need both generative and
behavioural models (the first one to simulate the dynamic of the vehicle and the second one to simulate the
driver).

The static scene. As we want to control entities evolving, we need to link dynamic entities with the
static scene in which they are moving. This link requires a semantic knowledge on the scene. If we want to
simulate as completely as possible the life of a city, we need a lot of semantic informations. Informations
required for the simulation are:

e geometric (geometry of the town, roadsigns),
e topologic (the road network, a grid of visibility),
e semantic

— road informations: roadsigns, color of traffic lights, qualitative aspect of the road, ...

— city informations: name of streets, quarters, particular buildings, squares, ...

To describe such a scene, an urban modeling system is currently in development. This system is an
extension of the Scriptography (Declarative Design System) [12], in which geometric, topologic and semantic
informations are mixed.

Dynamic objects. To take into account natural phenomena, the first work is to choose a physical model to
represent the object. A vehicle is an articulated rigid object structure if we do not consider the deformations
of the tires and the component flexibility [4]. From a high level description of articulated rigid body systems,
a simulation blackbox is generated whose inputs are two torques (motor and guidance) and outputs are
position and orientation parameters. We have now to determine how to control this physical model that is
to say, depending on the actual state of the entity what kind of torque must we apply to it to obtain the
desired motion 7 In the case of an automatic motion control, this question can be decomposed in two parts:
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Figure 2: Geometric, topologic and semantic informations.

1. how to control the physical model?
2. what 1s the desired motion?

The answer to the first question consists in using motion control algorithms [19] well known in the auto-
matic and robotic communities, which can permit to build a library of elementary actions. The behavioural
model tries to answer to the second question by defining actions and reactions of an entity [32, 11, 17].

4 A Virtual Driver

4.1 A Modular and Hierarchical Behavioural Model

We have chosen to define a modular and hierarchical behavioural model, as shown in the figure 3, to specify
the behaviour of a car driver. This model is decomposed in a set of specialized agents who use themselves
some experts to reconstruct the new state of the world, before proposing their diagnosis to the decisional
agent. Therefore, the supervisor decides to activate some of the specialized agents and this decision depends
on its own state and on sensor data. The road signs module 1s, at the moment, in charge of determining the
value of three parameters: speed limitation (real value), overtaking (YES | NO) and crossroads priority (right
of way | priority to the right way | stop | traffic lights). The dtinerary module is in charge of determining
the new direction at each crossroads, so this module is only activated when the vehicle is near one of them.
The obstacle detection module has to determine if there are some possible intersections between the vehicle
desired trajectory and predicted trajectories of other vehicles, and if so to propose a new trajectory. Actions
managed by the state feedback control module consist in determining the guidance torque (follow a desired
trajectory) and the motor torque (accelerate, brake, stop, etc). In order to simplify calculation, the human
vision is not completely simulated but is replaced by a global knowledge on the scene geometry and on the
location of objects, then by using visual sensors we obtain qualitative informations about objects in the
vision cone.

The work of the decisional model is to compare and mix different possible behaviours according to
the desired behaviour and then to make a decision of the adopted behaviour. To deal with complex and
concurrent behaviours, we have proposed to use hierarchical parallel transition systems to describe the
decisional model of the driver. The use of hierarchical parallel transition systems allows us to take into
account concurrency and abstraction in the description of the behaviour, like Kearney et al. with their
hierarchical concurrent state machines [17, 1]. Because of the integration of our behavioural model in a
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Figure 3: Modular and hierarchical structure of the driver.

simulation platform, we have also the ability to deal with real time during the specification and the execution
phases.

4.2 Hierarchical parallel transition systems for decision

The Decisional model consists in a reactive system, which is composed of a hierarchy of state machines
(possible behaviours). Each state machine of the system can be viewed as a blackbox with an In/Out data-
flow and a set of control parameters. It can be defined by the following tuple < S, I'; IS, OS, CP, LV, IF >
in which:

S : is a set of sub-state machines,

I' : is the activity function,

IS : is a set of Input Signals,

OS : is a set of Output Signals,

CP : is a set of Control Parameters,
LV : is a set of Local Variables,

IF : is the integration function.

State Machine. FEach state machine of the system is either an atomic state machine (S = @), or a
composite state machine. An activity parameter is associated to each state machine which corresponds to
the current status of this machine. This parameter is accessible by using the function status(state,instant),
which has five possible values:

(Vs € S)(Vk € N), status(s,time(k)) € {started, active, suspended, terminated, idle}
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Figure 4: One example of obtained simulation: the traffic light being red on his way, the user decides to

stop the first car of the platoon, then the three others decelerate also, while an automatically driven car is
passing through the crossroad.

The activity function. Activity of a state evolves during the simulation, and this is determined by an
activity function I'. This function possesses four parameters and returns the new status.

(Vs € S)(Vk € N7), status(s, time(k)) = ['(status(s,time(k — 1)), [S,CP, LV)

This function permits to represent some transitions between different sub-state machines, but more than
one sub-state can be active at each instant (concurrency). For example, in the figure 5, Driving and Road
Shape sub-state machines work in parallel. This function handles also hierarchical preemption, by the fact

that one argument of the function is a set of Control Parameters (CP) which permits to deal with internal
events as “substate 7 1s ferminated ” or external events as “an ambulance s coming”.

Input / Output parameters.

Input and output parameters correspond to continuous signals of standard
type (integer, real, boolean,

...). The value of an Output signal is undetermined when the state machine is
tdle or suspended. For the driver example, some of the input signals of the Automatic Driving State Machine

and of its sub-state machines are shown on the figure 6. In this example, there are two output signals:
Guidance action and Motor action; the first one determines what lane has to be followed and actions are for

example turn left or filter to the right, while the second one determines what kind of action must be applied
to the vehicle motor and can be for example brake or cover(distance, delay).
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Figure 5: State transition aspect of the state machine.

Local variables. Local variables are some variables of standard type, whose value is computed by using
the € function. Local variables can either retain their values between activations or be reinitialized on each
reactivation (started status).

(Vv € V)(Vk € N7), value(v, time(k)) = Q(value(v, time(k — 1)), status(s, time(k — 1)), 15,CP)

Control parameters. Control parameters permit to modulate the behaviour of an entity, depending
on external or internal decision. The type of a control parameter is either boolean or interval (value €
[Vmin, Vimax]). For example, a sub process can inform its parent process that its status become terminated,
while a process can notify another subprocess that it has to be started.

The integration function. The integration function has to manage the coherence of the actions proposed
by the different sub-processes, and make a synthesis of them. This 1s in fact a function which takes as inputs
the outputs of all sub-processes and delivers the value of the process outputs. In the case of concurrent
behaviours proposed by different sub-state machines, this function has to make a choice and to deliver a
unified behaviour as output of the state machine (cf figure 6). Let E be < S, T', IS, OS, CP, LV, I >.

OS = IF(output(S), LV,CP)

Automatic Driving

Driving

Guidance
Preceding Vehicle Speed action
Preceding Vehicle distance
Guidance
action
Motor
crossroads distance Road Shape v action
crossroads status /

turn distance

Figure 6: Data-flow aspect of the state machine.



4.3 Conclusion

Characteristics needed for the specification and for a high level programming of the behavioural model are:
e reactivity, which encompasses sporadic or asynchronous events, exceptions, ...

e modularity in the behaviour description, which allows for parallelism and concurrency of sub-
behaviours,

e data-flow, for the specification of the communication between different modules,

e hierarchical structuring of the behaviour, which means the possibility of preempting sub-behaviours
on transitions in the meta-behaviour, as a kind of exception or interruption. It means also that sub-
behaviours can notify the meta-behaviour of their activity.

This combination of data-flow and event-driven features is not present in many languages; MANIFOLD is
one of them, a language for the coordination of processes through a data-flow network, which can change
state as a result of the occurrence of an event. Its behaviour i1s asynchronous, and can be defined in terms
of transition systems [2]. In the synchronous approach to reactive systems, there exists a combination of
the languages LUSTRE into ARGOLUS, where a state in the hierarchical automata language ARGOS can be
refined into a data-flow process in LUSTRE, and in a LUSTRE data-flow network, a node can be refined
into an ARGOS automaton. In our approach, we chose the data-flow synchronous language SIGNAL, and its
extension with hierarchical preemption tasks: SIGNALGTY, both presented in the next section. In section 4,
we will illustrate that this language can answer most of the requirements of a behavioural model combining
the preceding characteristics.

5 Nested preemption of reactive data-flow tasks: SIGNALGT!

5.1 The synchronous reactive data-flow language SIGNAL

As said in Section 1, SIGNAL is a synchronous real-time language, data flow oriented (i.e., declarative) and
built around a minimal kernel of operators [18]. It manipulates signals, which are unbounded series of typed
values (integer, logical, ...). They have an associated clock determining the instants where values are
present. For instance, a signal X denotes the sequence (x;);emnv of data indexed by time-index ¢. Signals of a
special kind called event are characterized only by their clock i.e., their presence (they are given the boolean
value true at each occurrence). Given a signal X, its clock is CX obtained by CX := event X, giving the
event present simultaneously with X. The constructs of the language can be used to specify, in an equational
style, relations or constraints between signals i.e.; between their values and between their clocks. Systems of
equations on signals are built using composition.
The kernel of SIGNAL comprises the following primitive processes and their composition:

Functions are defined on the types of the language (e.g., boolean negation of a signal E: not E). The signal
(Y:), defined by an instantaneous function f: V¢,V; = f(X1,, Xa,, ..., Xp,) is specified in SIGNAL by:

‘Y := £{ X1, X2, ... , Xn} ‘ The signals Y, X1, ..., Xn are constrained to have the same clock.

Delay gives the past value of a signal X (i.e. at instant (¢ — 1) of its clock): ZX; = X;_1, with initial value
Vo (e, when t = 1: ZX, = Xy = V). Tt is specified by: ‘ZX := X$1 init VO ‘ X and ZX have the
same clock.

Selection of a signal X according to a boolean condition C is: |Y := X when C | Signal Y is present if and

only if X and C are present at the same time , and C has the value true. When Y is present, its value
is that of X. In other terms, the clock of Y is the intersection of that of X and the subset of that of C
when C has the value true.



Deterministic merge defines the prioritary mixing of two signals of the same type. It is written as follows:
| Z := X default Y | The value of Z is the value of X when 1t 1s present, or else that of Y if it is present
and X is not (i.e., priority is given to X). The clock of Z is the union of that of X and that of Y.

Parallel composition of processes is made by the associative and commutative operator “|”, denoting

the union of the underlying systems of equations. Systems communicate and interact through signals
defined in one system and used in others. For these signals, composition preserves constraints from all
systems, especially temporal ones. This means that they are present if the equations systems allow it.

In SIGNAL, for processes P; and P2, composition is written (with parentheses): ‘ (0PI P 1)

Furthermore, it is possible to confine signals locally to a process. This is done with the restriction

operator “/”: restricting signal X to process P is written .

The following table illustrates each of the primitives with a trace:

X -1 2 6 3 -5 12 7 -3 -8 13
Y =X+ 1 0o 3 7 4 -4 13 8 -2 -7 14
ZY := Y$1 init O o 0o 3 7 4 -4 13 8 -2 -7
PY := ZY when ZY>0 3 7 4 13 8
Z := PY default (0 when (event X)) | O 0O 3 7 4 0 13 8 0 0

The rest of the language 1s built upon this kernel . A structuring mechanism is proposed in the form of
process schemes, defined by a name, typed parameters, input and output signals, a body, and local declara-
tions. Instances of processes in a program are expanded by a pre-processor of the compiler. Derived operators
have been defined from the primitive operators, providing programming comfort. E.g., synchro{X,Y} con-

strains the signals X and Y to be synchronous, 1.e. their clocks to be equal. The process CB := when B
gives the clock CB of occurrences of the logical signal B at the value true. The process Y := X cell B
memorizes values of X and outputs them when B is true. In the process C := # X, C is an integer counter

of the occurrences of signal X. Delays can be made of N instants, or on windows of M past values. Arrays of
signals and of processes are available as well.

The SIGNAL compiler performs the analysis of the consistency of the system of equations (absence of
causal cycles), and determines whether the synchronization constraints between the signals are verified or
not. If the relational program is constrained enough to be a function computing a deterministic solution, then
executable code can be produced automatically (in C, FORTRAN or ADA). The compiler can also produce
output for the SYNDEX system, where the quantitative analysis of computation times can be performed, as
well as the distribution of the code on distributed, multi-processor architectures. The complete programming
environment also features a graphical user interface with a block diagram oriented editor, a proof system for
dynamical properties of programs, and the synthesis of VHDL for the compilation into integrated circuits.

As was said before, the SIGNAL language manipulates series of values called signals. This fact influences
the programming style, which consists in writing systems of equations on these signals, thereby constraining
their occurrences and values. This style corresponds to the specification of control systems given by control
theorists and engineers in terms of equations over time-indexed variables. For example, a filter defined by
equation y; = w 1s written in a style very close to this in SIGNAL: Y := (X + X$1 + X$2)/3.
The selection operator when can be used to condition computations upon the value of a boolean. E.g., in the
case of the filter given above, if we have: X := Z when Z>0, then the value will be computed only on the
occurrences of Z with positive values. This way, the filter computation can be suspended when this condition
is absent or false.

Another example®is that of a memory cell, of which the value is read on signal V, and modified (i.e.,

2This very simple example is meant to describe the basics of the way SIGNAL works; it should be noted that variables and
counters are provided to the users as language constructs, and do not have to be re-defined by them at this lower level.
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Figure 7: Time intervals.

written) by signal V_IN. It can be specified as follows:

process CELL= (V.0) {?V_IN, Clk !V}
(I Vv := V_.IN default (V$1 init V.0) | synchro{V, V_IN default Clk} |)
end

The first equation specifies that the output (read) value V is equal to the input (write) value V_IN when
there is one and otherwise to the former value V$1. It is initialized at the parameter value V_0. As such, this
equation does not specify V completely: the instants at which it is present are the union (by the operator
default) of those at which it is written and those at which it is read. However, the clock of the readings is
needed in order to know the clock of V; therefore, the CELL has a second input Clk, and the second equation
defines the presence of V by the synchro operation. This process is in fact the expansion of the SIGNAL
operator cell, more precisely V := V_IN cell Clk.

This example shows how state information can be memorized and managed. Combined with the selection
operator, it does enable the suspension or activation of reactions depending on the state, hence the specifi-
cation of sequential behaviours in SIGNAL. The same applies to other data-flow languages like LUSTRE , but
imperative languages like ESTEREL and ARGOS are better suited for pure sequencing.

5.2 Time intervals and nested preemptive tasks in SIGNALGT/

SIGNALGTi extends SIGNAL with constructs for the activation, triggering, suspension and interruption of
data-flow processes. We propose a language-level integration of the data flow and preemption paradigms,
by extending SIGNAL with two kinds of tasks (suspendable or interruptible) which associate a process with
the time interval on which it is active [28]. This extension is integrated to the SIGNAL environment as a
pre-processor to the compiler [30]. Tt has been applied to an active robot vision system [20], and a control
system for a power transformer station [21].

A new type is introduced in the language: interval. It can take two values: inside or outside. The
purpose of intervals is to sub-divide the global interval of an application: Jea,w] into slices of time (see

Figure 7). The construction of an interval with initial value I0 is noted: ‘I := ]1B,E] init IO ‘, where
B and E are begin and end events. Repeatedly, I opens at the first occurrence of B, and is inside until
it closes at the next occurrence of E, and then it is outside until the next opening, etc ... Bounding
events are given by, respectively: |0 := open I|and|C := close I| Intervals are lefi-open / righi-closed:
transitions (going in and out of the interval) occur in reaction to an event, and depending on the current
state, resulting in the new state only after the reaction instant (like in reactive automata). Time intervals can

be composed in expressions such as union | I := Il union I2 |, complement |I := comp J| or intersection

|I := I1 inter I2 | The restriction of signal X to time intervals is |[XI := X in I |for occurrences of X

inside I, and |XO := X out I | for those outside I. Note that X out I is X in (comp I), and that open I
is B out I, and close IisE in I.
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Figure 8: Tasks, and how the interval affects the time of the process.
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Figure 9: Time intervals and nested tasks: example of a counter.

Time intervals and processes are associated to form tasks. The process is active inside the time interval, it
is triggered by the opening event. Outside the time interval, it is absent (in a sense, it is out of time: its clock
is cut off). Time intervals do condition the existence and activity of the processes; the other way around,
time intervals can be defined by the activity of the associated process. Tasks switch between activity and
inactivity when the interval switches between the values inside and outside. When the interval re-opens,
the process re-starts; it can do so in one of the two following ways:

suspendable tasks are noted , where the process P is suspended on each closing of I, and on its
opening it re-starts from the current state of its state variables. The behaviour of P is split on windows
in time where I is inside (as illustrated by Figure 8(a)).

interruptible tasks are noted , where a process P is nterrupted on each closing of I, and on
its opening it re-starts from the initial state of its state variables (according to their declaration). The
behaviour of P is replicated on each time window inside I. (see Figure 8(b)).

The process in a task can be decomposed into sub-processes, which can be tasks themselves. Hierarchies
of tasks and sub-tasks can be built that way. In particular, when a task is built with each, re-entering the
interval involves re-initializing all sub-intervals and all sub-tasks recursively.

Figure 9 gives the example of a counter with output C counting occurrences of its input X: ¢ := # X. It is
initially inactive, started by B and terminated by E; in the meantime it can be suspended by S and resumed
by R. Figure 9(a) shows how the counter is associated in a suspendable task with interval J, and how this
task is itself asociated with interval I into an interruptible task. Figure 9(b) shows a possible execution trace
of this task, illustrating suspensions and interruptions of the counting.

Parallelism between several tasks is obtained naturally using the composition
same interval, or overlapping intervals. Sequencing tasks then amounts to constraining the intervals of the
tasks, by constraining their bounding events. Each time interval holds some state information, and events
cause transitions between these states. With hierarchies of tasks, it is then possible to specify hierarchical
parallel place/transition systems.

“]” when tasks share the
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Figure 10: Sequencing, concurrency and nested preemption in SIGNALGTL.

For example, in the behaviour illustrated in Figure 10(a), a transition leads from the initial place 81 to
place S2 on the occurrence of an event E, except if the event C occurs before, leading in place S3. If E and
C happen synchronously or are constrained to be equal, then both places S2 and S3 are entered. This i1s a
sub-behaviour attached to a place entered upon event A and left upon event B. This can be coded by a task
and intervals such that the closing of the one is the opening of the other, as in Figure 10(b).

This last example illustrates a hierarchy of tasks and intervals; it could also have featured data-flow
equations. This is the advantage of embedding such constructs into a data-flow language and environment:
it enables the integration of the two aspects for the specification of hybrid applications.

6 Using SiGNALGTi for behavioural animation

6.1 Data-flow between perception, decision and action

At the global level, where the loop of perception-decision-action is handled, SIGNAL provides naturally the
data-flow structures needed, especially through its graphical editing interface, as shown in the figure 11.

Across the levels, data-flow processes in SIGNAL can be organised in hierarchies, where a process is
decomposed into a network of connected subprocesses itself. The process in the left part of the figure 11
is the car driver, controlling the sensor by defining its position, orientation and opening angle. The vehicle
model 18 also controlled by the driver by determining the value of the guidance and motor torques, which are
the inputs of the mechanical model of the vehicle. The driver is decomposed into sub-processes managing
each one a particular aspect of the model (itinerary, obstacle detection, decisional part, ...). Also, the
possibility is given to declare process models, that can be instanciated in different places in a program, thus
introducing re-usability.

The specification of multi-rate computations is handled by the multi-clocked aspect in SIGNAL: signals
can be under-sampled and merged, hence leading to the presence of signals and computations on them having
different clocks. This can be achieved as the decomposition of a basic clock into sub-clocks for the activation
of sub-modules at different frequencies. However it should be noted that the SIGNAL compiler performs a
resolution of clocks where they are ordered into an inclusion hierarchy; therefore, the global clock or base
clock can be synthesized by the compiler, and does not have to be managed by the programmer. In the
example of the figure 11, each of the three modules possesses its own clock (HP, HC and HM) and then
by using the cell operator, data generated at one particular frequency can be read at another one. For
example, the frequency of the driver module is 10 Hz while the one of the vehicle model is 50 Hz, thus each
value of the motor and guidance torques is used five times.

In a network of data-flow processes, the activation of computations in a process P; depends on the
presence of the inputs, which can be themselves outputs of another process Fy. In that case there should
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Figure 11: The hierarchical data-flow structure of a SIGNAL process (car driver).

be a sequencing of Py before P;. This kind of sequencing of computations within a reaction is motivated by
data dependencies but not by a real temporal precedence (from one instant to the other). This is scheduled
by the compiler on the base of a graph representing actual data-dependencies between operations.

In SIGNAL programs, it is possible to call external functions; that is, some of the processes in the data flow
network can be declared as being externally defined: only their interface (inputs, outputs and parameters)
has to be known. This way, SIGNAL programs are open, and enable links with external modules written in C
or in FORTRAN (e.g. numerical functions generated by mathematical systems, operating systems, windowing
systems, ...). In the example of the figure 11, SENSOR() and VEHICLE_MODEL() are external functions.

6.2 SIGNALGT! for hierarchical parallel transition systems and concurrent data-
flow tasks

An example featuring sequencing, concurrency and nested preemption in SIGNALGTi was presented in Fig-
ure 10. It must be noted that in synchronous languages, the concepts of “asynchronous” events is handled
in a way perfectly coherent with the general notion of events; therefore they should preferably be called
sporadic events instead, in our framework. The reactive aspect of transitions is handled in the same way as
the data-flow aspect.

Transition systems are given by time intervals and the constraints between their bounds. Indeed, each



interval holds some partial state information. Leaving one interval and opening another one on the occurrence
of the same event constitutes a sequencing from the one to the other. The fact that time intervals are
inherently parallel makes that constrained time intervals support the definition of place/transition systems
(4 la Petri nets) rather than state/transition systems (sequential finite state automata).

The construction of hierarchies of behaviours, featuring definitive or temporary preemption of sub-tasks,
1s handled by the constructors on and each. They can be used to specify the re-initialization of local modules
or agents upon the occurrence of events from the global controller: this is a case for the application of the
each constructor, where the task interval is entered upon this event from the global controller. It must be
noted that events can come as well from inside of the agents as from outside them.

Some behaviours require to first have a given data-flow network, continuously treating data in a certain
way. Then, the occurrence of an event causes a change. This event can be either received from the external
environment or caused by an internal event, like reaching a threshold. A new data-flow network, i.e. a
new continuous interaction with the environment has to be installed. This sequencing of tasks between
configurations of the network, involving a transition between states, is obtained simply by associating the
processes of these tasks with intervals constrained accordingly.

These tasks can be connected in a data-flow network; their outputs and inputs can be shared, provided
this does not impose incoherent constraints on their presence. E.g., in the driving simulation application,
part of the driver requires the “integration” of the flows of results “proposed” by various concurrent tasks

P1
(I % sequencing % 1
(I' T :=1a, B] %
| J := comp I
1) P2 Bi TA
| % tasks % X c2 . C
(1 ¢1 :=P1{X} on I ﬁ integrate ——=
| €2 := P2{X} each J
| €3 := P3{X}
D) P3
| % integration %
C := integrate{C1,C2,C3} @03

1)

Figure 12: Structural separation between sequencing, data-flow, and integration.

The specification of such behaviours in SIGNALGTi provides a methodologically clean separation between
the following aspects, that are specified in parallel:

e the sequencing of tasks, which is achieved by the constraining of time intervales (see Section 4.2)

e the data-flow processes, associated to the intervals into tasks using on or each, and connected into a
network

e the integration processes taking as inputs the flows of results of the tasks, which may have overlapping
time intervals. The integration process composes them in order to produce the unique result for the
upper level (choice, averadge, sum, max, ...)

Figure 12 gives a sketch of how SIGNALGTi code can be structured this way. There can be an arbitrary
recursive interleaving of data-flow and sequencing, i.e. data-flows between communicating automata or
transitions between data-flow processes. This is because processes and tasks are unified into a coherent
language framework.



7 Conclusions and perspectives

We have presented in this paper the behavioural model, and more precisely the decisional part of this
model. A formal model of a Hierarchical Parallel Transition System has been presented to describe Real-
1stic behaviours, which requires different programming paradigms: reactivity, concurrency, data-flow and
hierarchical preemption. These paradigms are all integrated in SIGNALGT! which is a tasking extension
of the declarative synchronous language SIGNAL and we have outlined how this model can be described in
SIGNALGTi considering this work is currently in progress.

This model will allow us to describe, in a same way, different kinds of living beings, and to simulate them
in the same virtual environment, while most of behavioural models are actually restricted to the animation
of one model in a specific environment. Another important point is that our behavioural model has been
constructed to generate dynamic entities which are both autonomous and controllable. allowing us to use
the same model in different contexts and moreover with different level of control.

Perspectives for SIGNAL and SIGNALGT: that are relevant to the domain of behavioural animation
systems concern both the specification and the implementation aspects. On the side of the programming
language and implementation of the systems:

e it would be interesting to be able to declare external tasks “driven” from GT¢ (asynchronous tasks
started, stopped, suspended, resumed upon the occurrence of corresponding events); this would enable
the linking with external tasks written in other languages.

e the former could be done by connecting G7: to a real-time operating system, taking advantage of
lower-level functionalities for the preemption of external tasks

e work is currently in progress around SIGNAL in order to compile programs so as to produce distributed
executable code; given the complexity of computations involved in graphics, it is beneficial to have a
dixtributed implementation of systems. In the SIGNAL approach, the semantical equivalence between
specification and distributed implementation would be guaranteed, which constitutes a great help for
ensuring program correctness.

Another aspect of the synchronous approach, although also based on its formal grounds, is that the envi-
ronments include tools for the automated analysis of formal properties of the specified systems and their
behaviour (absence of deadlocks, reachability of states, or on the contrary non-reachability of a “bad” state).
This point is important:

o for development purposes: it is a complement to tests in the debugging phase, in order to verify that
the systems really has the expected or required behaviour.

e for the certification of the safety of the controllers and behaviours, which is particularly meaningful
regarding safety-critical applications like in the domain of transportation.
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