
HAL Id: hal-00549322
https://hal.science/hal-00549322

Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reactivity, concurrency, data-flow and hierarchical
preemption for behavioural animation

Stéphane Donikian, Eric Rutten

To cite this version:
Stéphane Donikian, Eric Rutten. Reactivity, concurrency, data-flow and hierarchical preemption for
behavioural animation. Eurographics Workshop on Programming Paradigms in Graphics 1995, Sep
1995, Maastricht, Netherlands. pp.137-153. �hal-00549322�

https://hal.science/hal-00549322
https://hal.archives-ouvertes.fr

Reactivity, concurrency, data-
ow and hierarchical preemptionfor behavioural animationSt�ephane Donikian and �Eric RuttenIRISAF-35042 RENNES, Francedonikian@irisa.fr, rutten@irisa.frAbstractBehavioural models o�er the ability to simulate autonomous entities like organisms and living beings.Such entities are able to perceive their environment, to communicate with other creatures and to executesome decided actions either on themselves or on their environment. Building such systems requires thedesign of a reactive system treating
ows of data to and from its environment, in a complex way needingmodularity, concurrency and hierarchy, and involving task control and preemption. Accordingly, in thispaper we address the adequateness to the decisional part of the behavioural model of the followingprogramming paradigms: reactivity, concurrency, data-
ow and hierarchical preemption.The reactive languages provide users with complete design environments (including graphical toolsfor designing, simulating, implementing and formally verifying) for such systems. The speci�cationof concurrent behaviours is naturally supported in the synchronous languages, and some of them aremore suited for control-intensive applications (sequencing and preempting tasks), while others addresscomputation-intensive applications (data-
ow). SignalGT _� is an extension of the language Signal wheredata-
ow processes can be composed into nested preemptive tasks.An application in the simulation of a transportation system shows how these programming paradigmscan be of use, and how SignalGT _� can support their implementation.Keywords: Simulation, Behavioural Animation, Reactive Systems, Synchronous Languages, Concurrency,Data-
ow, Hierarchical Preemption.1 IntroductionContext. Behavioural animation consists in a high level motion control of dynamic objects, which o�ersthe ability to simulate autonomous entities like organisms and living beings. Such entities are able to perceivetheir environment, to communicate with other creatures and to execute some actions either on themselvesor on their environment. This requires to make a deliberative choice of the behaviour, and for that wehave to design a reactive system continuously in communication with the environment (data-
ow). Thebehaviour of a creature, even for the simplest, is composed of di�erent activity lines (modularity) which canbe completely distinct but also concurrent. Hierarchy and preemption are some other important notionsfor such a system, because they enable them in a modular and re-usable way, de�ning behaviours fromsub-behaviours, sequenced, interrupted or suspended by preemption.Reactive languages (and particularly synchronous ones) handle these programming paradigms in dif-ferent forms. Additionally, they open up perspectives concerning the formal veri�cation of safety-criticalbehaviours, the distributed compilation of applications, ... However they do so by concentrating each on oneor two paradigms, not integrating them all. The tasking extension of Signal called SignalGT _� integratesthe concurrency and data-
ow reactivity of Signal with notions of sequencing and hierarchical preemptionof tasks. Hence, it is a �tting candidate for the programming of the class of applications evoked above.

Behavioural animation. The objective of animation is the calculation of an image sequence correspond-ing to discrete time states of an evolving system. Animation consists at �rst in expressing relationshipslinking successive states (speci�cation phase) and then making an evaluation of them (execution phase).Motion control models are the heart of any animation/simulation system that determines the friendlinessof the user interface, the class of motions and deformations produced, and the application �elds. Motioncontrol models can be classi�ed into three general families : descriptive, generative and behavioural models[15]. Descriptive models are used to reproduce an e�ect without any knowledge about its cause. This kindof models include key frame animation techniques and procedural methods. Unlike preceding models, gener-ative models o�er a causal description of objects movement (describe the cause which produces the e�ects),for instance, their mechanics. In this case, the user control consists in applying torques and forces on thephysical model. Thus, it is not easy to determine causes which can impose some e�ects onto the mechanicalstructure to produce a desired motion. Two kinds of tools have been designed for the motion control problem:loosely and tightly coupled control. The loosely coupled control method consists in automatically comput-ing the mechanical system inputs from the last value of the state vector and from the user speci�cation ofthe desired behaviour, while in the other method, the motion control is achieved by determining constraintequations and by inserting directly these equations into the mechanical system motion equations. Motioncontrol tools provide the user with a set of elementary actions, but it is di�cult to control simultaneouslya large number of dynamic entities. The solution consists in adding a higher level which controls the set ofelementary actions. This requires to make a deliberative choice of the object behaviour, and is done by thethird model named behavioural. The goal of the behavioural model is to simulate autonomous entities likeorganisms and living beings. A behavioural entity possesses the following capabilities: perception of its en-vironment, decision, action and communication. As mentionned above, paradigms needed for programminga realistic behavioural model are reactivity, data-
ow, modularity, concurrency and hierarchical preemption.Synchronous reactive languages, Signal and SignalGT _�. Reactive systems are characterized by thefact that they are in constant interaction with their environment: their pace is determined by discrete eventsto which they react. The synchronous languages are derived from theoretical and applied studies on discreteevent systems with real time aspects, and on speci�cation methodologies and programming environments fortheir development [7, 14]. Synchrony consists in that the languages have a notion of simultaneous events, andthat synchronous communications allow processes to synchronize their transitions on shared instants. Thismodel of time is the basis of clear semantics, a model of concurrency easier to handle than the asynchronousone, and e�cient analysis tools. These languages evolved into a technology supported by commercial productsthat are used in industrial applications. Their aim is to support the design of safety critical applications,especially those involving signal processing and process control. The synchronous approach guarantees thedeterminism of the speci�ed systems, and supports techniques for formal veri�cation (like the detection ofcausality cycles and logical incoherences). A family of languages is based on this approach [14], featuringEsterel, Lustre, Signal, Argos and also Statecharts.Among them, Signal [18] is a data-
ow language, with a declarative style: processes are systems of equa-tions on values and their occurrence instants. The compiler transforms the speci�cation into an optimizedexecutable code (in C, Fortran or Ada) computing and outputting the solutions to this system of equationsat each reaction. Automated formal veri�cation of dynamic properties of programs is based on polynomialdynamic systems. Experimentations of the speci�cation, simulation and veri�cation methods have concernedthe controller for a robotic production cell, an active robot vision system [20], and a control system for apower transformer station [21]. A recent extension to Signal provides constructs for the speci�cation ofnested preemptive tasks on intervals of time [28, 29]. The model of time in Signal is based on instants, andactions of the language are executed within the reaction. It is not particularly suited to the speci�cationof systems commuting between activities, involving the abortion or suspension of tasks with a duration. Inparticular, there are no constructs enabling directly the speci�cation of complex behaviours with preemp-tion on hierarchies of tasks and sub-tasks. This is why notions of task and of associated time interval were

introduced in the language. This extension is implemented in SignalGT _�1[30], a pre-processor to Signal,fully compatible with the tools in the environment, and hence bene�tting from their functionalities such asproof, code generation in various languages, ...Organization of the paper. The nature of behavioural animation is presented in the following section.The section 3 presents an application which requires Realistic Behaviours. In the section 4, a set of character-istics needed for the speci�cation of a virtual driver are listed and a Modular and Hierarchical BehaviouralModel integrating these characteristics is presented. Section 5 gives a presentation of the synchronousreactive data-
ow language Signal, and of its extension with hierarchical preemptive tasks SignalGT _�.Next, section 6 discusses the adequacy of the paradigms proposed by SignalGT _� for the description of ourbehavioural model, with the example of a driving simulation system.2 Behavioural AnimationThere are two kinds of behavioural models: internal transformation models (plant growth, facial animation,...) [9, 24] and external animation models (animals, humans; alone or in group) [5, 6]. In this paper, we arenot interested by internal models and in the following, we will only discuss external ones, which are basedon two kinds of relationships between the object and its environment: perception and action (cf �gure 1). Inthis case, the temporal dependency relation of the state of an entity E(ti) at the time ti is globally expressedby a function f(E(ti�l); : : : ; E(ti�1); P (t0j�k; : : : ; t0j); C(ti); ti), where C(ti) is the set of messages receivedby the entity at time ti and P represents the environment perception function during the temporal interval[t0j�k; : : : ; t0j], with t0j � ti .
Behavioural Entity

Environment

Perception Decision Action

CommunicationFigure 1: A behavioural agent immersed in its environment.Di�erent approaches have been studied for the decision part of these models [10]:Sensor-e�ector Approach The behaviour of objects is de�ned by sensors, e�ectors and a neural networkwhich connects them. The way an object behaves in the environment depends on how the environmentis sensed, and how this information is passed through the neural network to the e�ectors that producethe motion of the object. The same neural network can produce di�erent kinds of motion dependingon the parameterization of nodes and on the weight of connections. [33, 35]Behaviour Rule Approach Like the previous approach, it takes sensed information as its input and motorcontrols as its output, but the behaviour of the object is controlled by a set of behaviour rules. Thepossible behaviours can be represented by a decision tree in which each branch represents one alternativebehaviour [32, 16, 25, 31, 34]. This method o�ers a higher level of description than the preceding one,but the di�culty results from the choice of the rating strategy.Prede�ned Environment Approach This approach is based on the fact that the environment is prede-�ned and static: thus, all possible paths from the initial position to the goal position can be explored. Itis easy to determine an optimal solution inside the set of enumerated solutions, according to behaviour1which stands for Gestion de Tâches et d' _�ntervalles, the french for: tasks and intervals management.

criteria, but on the other hand a little change in the environment implies a complete recomputation ofthe motion [26].Finite Automaton Approach In this approach, the behaviour of an object is either controlled by one�nite automaton or by combining elementary behaviours and designing a supervisor for the resultingcomposite behaviour. The use of a single automaton is not convenient: �rstly making conceptuallysimple changes in behaviours requires widespread modi�cation of the �nite state machine, secondlyit is di�cult to express concurrent constraints on control processes [8]. Modularity, hierarchy andconcurrency can be obtained by using Hierarchical Concurrent State Machines (HCSM) [1]. We havealso described the behaviour of a car-driver by using a hierarchical modular system, in which the higherlevel (supervisor) is principally composed by a hierarchical parallel automata [11, 3].Most of these systems have been designed for some particular examples, in which modularity and concur-rency are not necessary. This is due to the fact that entities possess only one activity line and because possibleinteractions between an object and its environment are very simple: sensors and actuators are reduced tominimal capabilities which, most of the time, permit only to avoid obstacles in a 2D or 3D world. Anotherpoint which is generally not treated is the notion of time. In a system mixing di�erent objects describedby di�erent kinds of models (descriptive, generative and behavioural), it is necessary to take into accountthe explicit management of time, either during the speci�cation phase (memorization, prediction, actionduration, etc.) or during the execution phase (synchronization of objects with di�erent internal times).3 An application which requires Realistic Behaviour: DrivingSimulation for the Praxitele Project3.1 The Praxitele ProjectThe Praxitele project combines the e�orts of two large government research institutes, one in transportationtechnologies (INRETS), the other in computer science and automation (INRIA), in cooperation with largeindustrial companies (RENAULT, EDF, CGEA). This project designs a novel transportation system basedon a
eet of small electric public cars under supervision from a central computer [23]. These public carsare driven by their users but their operation can be automated in speci�c instances. The system proposedshould bring a solution to the congestion and pollution in most cities through the entire world.The concept of a public transport system based on a
eet of small electric vehicles has already been thesubject of experiments several times but with poor results. The failure of these experiments can be traced toone main factor : poor availability of the vehicles when a customer needs one. To solve this main problem,Praxitele project develops and implements automated cooperative driving of a platoon of vehicles, only the�rst car is driven by a human operator [22]. This function is essential to move easily the empty vehicles fromone location to another.The realization of such a project requires experiments of the behaviour of autonomous vehicles in anurban environment. Because of the danger of this kind of experiments in a real site, it is necessary todesign a virtual urban environment in which simulations can be done. Our simulation platform permits tosimulate a platoon of vehicules evolving in a virtual urban environment and so to test control algorithms ofthe automated cars.3.2 A Simulation PlatformWith the intention of making the three kinds of motion control models work together, we have been interestedby their integration into a single system and we have proposed the architecture of a simulation platform [11].The simulation platform is composed of a set of agents/actors whose synchronization and communicationare managed by a real-time kernel. The main part of this kernel is the general controller. Communicationbetween the agents is both synchronous and asynchronous. The synchronous part is data-
ow based where

each agent has its own frequency and is managed by the general controller. So, the data-
ow communicationchannels include all the mechanisms to adapt to the local frequency of the sender and receiver agents(over-sampling, sub-sampling, interpolation, extrapolation, etc...). The asynchronous part is based on twomechanisms :� event based communication between agents and the general controller.� global data-structure updating and accessing mechanisms.Di�erent experimentations have been realized for the car-driving application:� A mono-user modular version in which synchronization and control are speci�ed in the synchronousreactive language Signal.� Two multi-processes versions by using PVM (Parallel Virtual Machine) [13] and Chorus (micro-kerneltechnology) [27].A �rst version of the simulation platform is currently in developpment. PVM is used to de�ne thereal-time kernel which is in charge of communication and synchronization between di�erent processes, whileSignal is used to assume internal management of each process.3.3 Simulation of an Urban EnvironmentAn urban environment is composed of many dynamic entities evolving in a static scene. These dynamicentities have to be both autonomous and controllable and also realistic in term of behaviour. It is necessaryto combine the three motion control models to describe dynamic entities of the environment. For example,to describe tra�c lights it is not necessary to use a generative model when a descriptive model (�nitestate automata) is su�cient. On the other hand, for a realistic car driving, we need both generative andbehavioural models (the �rst one to simulate the dynamic of the vehicle and the second one to simulate thedriver).The static scene. As we want to control entities evolving, we need to link dynamic entities with thestatic scene in which they are moving. This link requires a semantic knowledge on the scene. If we want tosimulate as completely as possible the life of a city, we need a lot of semantic informations. Informationsrequired for the simulation are:� geometric (geometry of the town, roadsigns),� topologic (the road network, a grid of visibility),� semantic{ road informations: roadsigns, color of tra�c lights, qualitative aspect of the road, ...{ city informations: name of streets, quarters, particular buildings, squares, ...To describe such a scene, an urban modeling system is currently in development. This system is anextension of the Scriptography (Declarative Design System) [12], in which geometric, topologic and semanticinformations are mixed.Dynamic objects. To take into account natural phenomena, the �rst work is to choose a physical model torepresent the object. A vehicle is an articulated rigid object structure if we do not consider the deformationsof the tires and the component
exibility [4]. From a high level description of articulated rigid body systems,a simulation blackbox is generated whose inputs are two torques (motor and guidance) and outputs areposition and orientation parameters. We have now to determine how to control this physical model that isto say, depending on the actual state of the entity what kind of torque must we apply to it to obtain thedesired motion ? In the case of an automatic motion control, this question can be decomposed in two parts:

STOP

27th Street

Straight Line

Corner

Trajectory
Road signs

Winston Churchill Avenue

Figure 2: Geometric, topologic and semantic informations.1. how to control the physical model?2. what is the desired motion?The answer to the �rst question consists in using motion control algorithms [19] well known in the auto-matic and robotic communities, which can permit to build a library of elementary actions. The behaviouralmodel tries to answer to the second question by de�ning actions and reactions of an entity [32, 11, 17].4 A Virtual Driver4.1 A Modular and Hierarchical Behavioural ModelWe have chosen to de�ne a modular and hierarchical behavioural model, as shown in the �gure 3, to specifythe behaviour of a car driver. This model is decomposed in a set of specialized agents who use themselvessome experts to reconstruct the new state of the world, before proposing their diagnosis to the decisionalagent. Therefore, the supervisor decides to activate some of the specialized agents and this decision dependson its own state and on sensor data. The road signs module is, at the moment, in charge of determining thevalue of three parameters: speed limitation (real value), overtaking (YES j NO) and crossroads priority (rightof way j priority to the right way j stop j tra�c lights). The itinerary module is in charge of determiningthe new direction at each crossroads, so this module is only activated when the vehicle is near one of them.The obstacle detection module has to determine if there are some possible intersections between the vehicledesired trajectory and predicted trajectories of other vehicles, and if so to propose a new trajectory. Actionsmanaged by the state feedback control module consist in determining the guidance torque (follow a desiredtrajectory) and the motor torque (accelerate, brake, stop, etc). In order to simplify calculation, the humanvision is not completely simulated but is replaced by a global knowledge on the scene geometry and on thelocation of objects, then by using visual sensors we obtain qualitative informations about objects in thevision cone.The work of the decisional model is to compare and mix di�erent possible behaviours according tothe desired behaviour and then to make a decision of the adopted behaviour. To deal with complex andconcurrent behaviours, we have proposed to use hierarchical parallel transition systems to describe thedecisional model of the driver. The use of hierarchical parallel transition systems allows us to take intoaccount concurrency and abstraction in the description of the behaviour, like Kearney et al. with theirhierarchical concurrent state machines [17, 1]. Because of the integration of our behavioural model in a

Road Signs

Moving

Obstacles

Obstacle Detection

Obstacles

Static

Event Based
Communication

Decisional Model

concurrency

modularity

Environment

Driver

sensors

actuators

data-flow

communication

New State of the World

Itinerary

Supervisor

Link with the

common datastructure

Control Algorithm

State Feedback

data-flow

hierarchy

reactivityFigure 3: Modular and hierarchical structure of the driver.simulation platform, we have also the ability to deal with real time during the speci�cation and the executionphases.4.2 Hierarchical parallel transition systems for decisionThe Decisional model consists in a reactive system, which is composed of a hierarchy of state machines(possible behaviours). Each state machine of the system can be viewed as a blackbox with an In/Out data-
ow and a set of control parameters. It can be de�ned by the following tuple < S; �; IS; OS; CP; LV; IF >in which:S : is a set of sub-state machines,� : is the activity function,IS : is a set of Input Signals,OS : is a set of Output Signals,CP : is a set of Control Parameters,LV : is a set of Local Variables,IF : is the integration function.State Machine. Each state machine of the system is either an atomic state machine (S = �), or acomposite state machine. An activity parameter is associated to each state machine which corresponds tothe current status of this machine. This parameter is accessible by using the function status(state,instant),which has �ve possible values:(8s 2 S)(8k 2 N); status(s; time(k)) 2 fstarted ; active; suspended ; terminated ; idleg

Figure 4: One example of obtained simulation: the tra�c light being red on his way, the user decides tostop the �rst car of the platoon, then the three others decelerate also, while an automatically driven car ispassing through the crossroad.The activity function. Activity of a state evolves during the simulation, and this is determined by anactivity function �. This function possesses four parameters and returns the new status.(8s 2 S)(8k 2 N �); status(s; time(k)) = �(status(s; time(k � 1)); IS; CP; LV)This function permits to represent some transitions between di�erent sub-state machines, but more thanone sub-state can be active at each instant (concurrency). For example, in the �gure 5, Driving and RoadShape sub-state machines work in parallel. This function handles also hierarchical preemption, by the factthat one argument of the function is a set of Control Parameters (CP) which permits to deal with internalevents as \substate i is terminated " or external events as \an ambulance is coming".Input / Output parameters. Input and output parameters correspond to continuous signals of standardtype (integer, real, boolean, ...). The value of an Output signal is undetermined when the state machine isidle or suspended. For the driver example, some of the input signals of the Automatic Driving State Machineand of its sub-state machines are shown on the �gure 6. In this example, there are two output signals:Guidance action and Motor action; the �rst one determines what lane has to be followed and actions are forexample turn left or �lter to the right, while the second one determines what kind of action must be appliedto the vehicle motor and can be for example brake or cover(distance, delay).

Exit

Automatic Driving

Free Driving Straight
Line

TurnFollow

Driving

Overtaking

Filter

Cut in

Pass
Crossroad

Road Shape

Figure 5: State transition aspect of the state machine.Local variables. Local variables are some variables of standard type, whose value is computed by usingthe
 function. Local variables can either retain their values between activations or be reinitialized on eachreactivation (started status).(8v 2 V)(8k 2 N �); value(v; time(k)) =
(value(v; time(k � 1)); status(s; time(k � 1)); IS; CP)Control parameters. Control parameters permit to modulate the behaviour of an entity, dependingon external or internal decision. The type of a control parameter is either boolean or interval (value 2[Vmin; V max]). For example, a sub process can inform its parent process that its status become terminated,while a process can notify another subprocess that it has to be started.The integration function. The integration function has to manage the coherence of the actions proposedby the di�erent sub-processes, and make a synthesis of them. This is in fact a function which takes as inputsthe outputs of all sub-processes and delivers the value of the process outputs. In the case of concurrentbehaviours proposed by di�erent sub-state machines, this function has to make a choice and to deliver auni�ed behaviour as output of the state machine (cf �gure 6). Let E be < S; �; IS; OS; CP; LV; F >.OS = IF (output(S); LV;CP)
IF

turn distance

action

crossroads distance

crossroads status

Guidance

Preceding Vehicle Speed

Preceding Vehicle distance
Motor

action

Guidance action

action

action

Motor

Motor

action
Guidance

Road Shape

Driving

Automatic Driving

Figure 6: Data-
ow aspect of the state machine.

4.3 ConclusionCharacteristics needed for the speci�cation and for a high level programming of the behavioural model are:� reactivity, which encompasses sporadic or asynchronous events, exceptions, ...� modularity in the behaviour description, which allows for parallelism and concurrency of sub-behaviours,� data-
ow, for the speci�cation of the communication between di�erent modules,� hierarchical structuring of the behaviour, which means the possibility of preempting sub-behaviourson transitions in the meta-behaviour, as a kind of exception or interruption. It means also that sub-behaviours can notify the meta-behaviour of their activity.This combination of data-
ow and event-driven features is not present in many languages;Manifold isone of them, a language for the coordination of processes through a data-
ow network, which can changestate as a result of the occurrence of an event. Its behaviour is asynchronous, and can be de�ned in termsof transition systems [2]. In the synchronous approach to reactive systems, there exists a combination ofthe languages Lustre into Argolus, where a state in the hierarchical automata language Argos can bere�ned into a data-
ow process in Lustre, and in a Lustre data-
ow network, a node can be re�nedinto an argos automaton. In our approach, we chose the data-
ow synchronous language Signal, and itsextension with hierarchical preemption tasks: SignalGT _�, both presented in the next section. In section 4,we will illustrate that this language can answer most of the requirements of a behavioural model combiningthe preceding characteristics.5 Nested preemption of reactive data-
ow tasks: SignalGT _�5.1 The synchronous reactive data-
ow language SignalAs said in Section 1, Signal is a synchronous real-time language, data
ow oriented (i.e., declarative) andbuilt around a minimal kernel of operators [18]. It manipulates signals, which are unbounded series of typedvalues (integer, logical, ...). They have an associated clock determining the instants where values arepresent. For instance, a signal X denotes the sequence (xt)t2IN of data indexed by time-index t. Signals of aspecial kind called event are characterized only by their clock i.e., their presence (they are given the booleanvalue true at each occurrence). Given a signal X, its clock is CX obtained by CX := event X, giving theevent present simultaneously with X. The constructs of the language can be used to specify, in an equationalstyle, relations or constraints between signals i.e., between their values and between their clocks. Systems ofequations on signals are built using composition.The kernel of Signal comprises the following primitive processes and their composition:Functions are de�ned on the types of the language (e.g., boolean negation of a signal E: not E). The signal(Yt), de�ned by an instantaneous function f : 8t; Yt = f(X1t ; X2t; :::; Xnt) is speci�ed in Signal by:Y := ff X1, X2, ... , Xng . The signals Y, X1, ..., Xn are constrained to have the same clock.Delay gives the past value of a signal X (i.e. at instant (t� 1) of its clock): ZXt = Xt�1, with initial valueV0 (i.e., when t = 1: ZX1 = X0 = V0). It is speci�ed by: ZX := X$1 init V0 . X and ZX have thesame clock.Selection of a signal X according to a boolean condition C is: Y := X when C . Signal Y is present if andonly if X and C are present at the same time , and C has the value true. When Y is present, its valueis that of X. In other terms, the clock of Y is the intersection of that of X and the subset of that of Cwhen C has the value true.

Deterministic merge de�nes the prioritary mixing of two signals of the same type. It is written as follows:Z := X default Y . The value of Z is the value of X when it is present, or else that of Y if it is presentand X is not (i.e., priority is given to X). The clock of Z is the union of that of X and that of Y.Parallel composition of processes is made by the associative and commutative operator \|", denotingthe union of the underlying systems of equations. Systems communicate and interact through signalsde�ned in one system and used in others. For these signals, composition preserves constraints from allsystems, especially temporal ones. This means that they are present if the equations systems allow it.In Signal, for processes P1 and P2, composition is written (with parentheses): (| P1 | P2 |) .Furthermore, it is possible to con�ne signals locally to a process. This is done with the restrictionoperator \/": restricting signal X to process P is written P / X .The following table illustrates each of the primitives with a trace:X -1 2 6 3 -5 12 7 -3 -8 13 : : :Y := X + 1 0 3 7 4 -4 13 8 -2 -7 14 : : :ZY := Y$1 init 0 0 0 3 7 4 -4 13 8 -2 -7 : : :PY := ZY when ZY>0 3 7 4 13 8 : : :Z := PY default (0 when (event X)) 0 0 3 7 4 0 13 8 0 0 : : :The rest of the language is built upon this kernel . A structuring mechanism is proposed in the form ofprocess schemes, de�ned by a name, typed parameters, input and output signals, a body, and local declara-tions. Instances of processes in a program are expanded by a pre-processor of the compiler. Derived operatorshave been de�ned from the primitive operators, providing programming comfort. E.g., synchrofX,Yg con-strains the signals X and Y to be synchronous, i.e. their clocks to be equal. The process CB := when Bgives the clock CB of occurrences of the logical signal B at the value true. The process Y := X cell Bmemorizes values of X and outputs them when B is true. In the process C := # X, C is an integer counterof the occurrences of signal X. Delays can be made of N instants, or on windows of M past values. Arrays ofsignals and of processes are available as well.The Signal compiler performs the analysis of the consistency of the system of equations (absence ofcausal cycles), and determines whether the synchronization constraints between the signals are veri�ed ornot. If the relational program is constrained enough to be a function computing a deterministic solution, thenexecutable code can be produced automatically (in C, Fortran or Ada). The compiler can also produceoutput for the Syndex system, where the quantitative analysis of computation times can be performed, aswell as the distribution of the code on distributed, multi-processor architectures. The complete programmingenvironment also features a graphical user interface with a block diagram oriented editor, a proof system fordynamical properties of programs, and the synthesis of VHDL for the compilation into integrated circuits.As was said before, the Signal language manipulates series of values called signals. This fact in
uencesthe programming style, which consists in writing systems of equations on these signals, thereby constrainingtheir occurrences and values. This style corresponds to the speci�cation of control systems given by controltheorists and engineers in terms of equations over time-indexed variables. For example, a �lter de�ned byequation yt = xt+xt�1+xt�23 is written in a style very close to this in Signal: Y := (X + X$1 + X$2)/3.The selection operator when can be used to condition computations upon the value of a boolean. E.g., in thecase of the �lter given above, if we have: X := Z when Z>0, then the value will be computed only on theoccurrences of Z with positive values. This way, the �lter computation can be suspended when this conditionis absent or false.Another example2is that of a memory cell, of which the value is read on signal V, and modi�ed (i.e.,2This very simple example is meant to describe the basics of the way Signal works; it should be noted that variables andcounters are provided to the users as language constructs, and do not have to be re-de�ned by them at this lower level.

� !� � �X � � � � � � � � � ��IX in IX out I � � �� �� � � � � ��� �close Iopen I � � ���Figure 7: Time intervals.written) by signal V IN. It can be speci�ed as follows:process CELL= (V 0) f? V IN, Clk ! Vg(| V := V IN default (V$1 init V 0) | synchrofV, V IN default Clkg |)endThe �rst equation speci�es that the output (read) value V is equal to the input (write) value V IN whenthere is one and otherwise to the former value V$1. It is initialized at the parameter value V 0. As such, thisequation does not specify V completely: the instants at which it is present are the union (by the operatordefault) of those at which it is written and those at which it is read. However, the clock of the readings isneeded in order to know the clock of V; therefore, the CELL has a second input Clk, and the second equationde�nes the presence of V by the synchro operation. This process is in fact the expansion of the Signaloperator cell, more precisely V := V IN cell Clk.This example shows how state information can be memorized and managed. Combined with the selectionoperator, it does enable the suspension or activation of reactions depending on the state, hence the speci�-cation of sequential behaviours in Signal. The same applies to other data-
ow languages like Lustre , butimperative languages like Esterel and Argos are better suited for pure sequencing.5.2 Time intervals and nested preemptive tasks in SignalGT _�SignalGT _� extends Signal with constructs for the activation, triggering, suspension and interruption ofdata-
ow processes. We propose a language-level integration of the data
ow and preemption paradigms,by extending Signal with two kinds of tasks (suspendable or interruptible) which associate a process withthe time interval on which it is active [28]. This extension is integrated to the Signal environment as apre-processor to the compiler [30]. It has been applied to an active robot vision system [20], and a controlsystem for a power transformer station [21].A new type is introduced in the language: interval. It can take two values: inside or outside. Thepurpose of intervals is to sub-divide the global interval of an application:]�,!] into slices of time (seeFigure 7). The construction of an interval with initial value I0 is noted: I :=]B,E] init I0 , whereB and E are begin and end events. Repeatedly, I opens at the �rst occurrence of B, and is inside untilit closes at the next occurrence of E, and then it is outside until the next opening, etc ... Boundingevents are given by, respectively: O := open I and C := close I . Intervals are left-open / right-closed:transitions (going in and out of the interval) occur in reaction to an event, and depending on the currentstate, resulting in the new state only after the reaction instant (like in reactive automata). Time intervals canbe composed in expressions such as union I := I1 union I2 , complement I := comp J , or intersectionI := I1 inter I2 . The restriction of signal X to time intervals is XI := X in I for occurrences of Xinside I, and XO := X out I for those outside I. Note that X out I is X in (comp I), and that open Iis B out I, and close I is E in I.

� !I (a) Task on interval I, splitting time. !�I �0 !0 !000�000�00 !00(b) Task each interval I, replicating time.Figure 8: Tasks, and how the interval a�ects the time of the process.(| I :=]B,E] init outside| (| J :=]R,S] init inside| (| C:= # X |) on J|) each I |)(a) Speci�cation in SignalGT _� X � � � � � � � � � � � � � � �I o o i i i i i i i i i o o i iJ i i i o o i i o i i oC 1 2 3 4 5 6 1(b) A trace of the counter.Figure 9: Time intervals and nested tasks: example of a counter.Time intervals and processes are associated to form tasks. The process is active inside the time interval, itis triggered by the opening event. Outside the time interval, it is absent (in a sense, it is out of time: its clockis cut o�). Time intervals do condition the existence and activity of the processes; the other way around,time intervals can be de�ned by the activity of the associated process. Tasks switch between activity andinactivity when the interval switches between the values inside and outside. When the interval re-opens,the process re-starts; it can do so in one of the two following ways:suspendable tasks are noted P on I , where the process P is suspended on each closing of I, and on itsopening it re-starts from the current state of its state variables. The behaviour of P is split on windowsin time where I is inside (as illustrated by Figure 8(a)).interruptible tasks are noted P each I , where a process P is interrupted on each closing of I, and onits opening it re-starts from the initial state of its state variables (according to their declaration). Thebehaviour of P is replicated on each time window inside I. (see Figure 8(b)).The process in a task can be decomposed into sub-processes, which can be tasks themselves. Hierarchiesof tasks and sub-tasks can be built that way. In particular, when a task is built with each, re-entering theinterval involves re-initializing all sub-intervals and all sub-tasks recursively.Figure 9 gives the example of a counter with output C counting occurrences of its input X: C := # X. It isinitially inactive, started by B and terminated by E; in the meantime it can be suspended by S and resumedby R. Figure 9(a) shows how the counter is associated in a suspendable task with interval J, and how thistask is itself asociated with interval I into an interruptible task. Figure 9(b) shows a possible execution traceof this task, illustrating suspensions and interruptions of the counting.Parallelism between several tasks is obtained naturally using the composition \|" when tasks share thesame interval, or overlapping intervals. Sequencing tasks then amounts to constraining the intervals of thetasks, by constraining their bounding events. Each time interval holds some state information, and eventscause transitions between these states. With hierarchies of tasks, it is then possible to specify hierarchicalparallel place/transition systems.

S1 S2S3ED CFA B(a) Hierarchical place/transition system. (| S1 :=](D in S2) default (F in S3),E default C] init inside| S2 :=]E in S1, D] init outside| S3 :=]C in S1, F] init outside|) each]A, B] init outside(b) Speci�cation in SignalGT _�.Figure 10: Sequencing, concurrency and nested preemption in SignalGT _�.For example, in the behaviour illustrated in Figure 10(a), a transition leads from the initial place S1 toplace S2 on the occurrence of an event E, except if the event C occurs before, leading in place S3. If E andC happen synchronously or are constrained to be equal, then both places S2 and S3 are entered. This is asub-behaviour attached to a place entered upon event A and left upon event B. This can be coded by a taskand intervals such that the closing of the one is the opening of the other, as in Figure 10(b).This last example illustrates a hierarchy of tasks and intervals; it could also have featured data-
owequations. This is the advantage of embedding such constructs into a data-
ow language and environment:it enables the integration of the two aspects for the speci�cation of hybrid applications.6 Using SignalGT _� for behavioural animation6.1 Data-
ow between perception, decision and actionAt the global level, where the loop of perception-decision-action is handled, Signal provides naturally thedata-
ow structures needed, especially through its graphical editing interface, as shown in the �gure 11.Across the levels, data-
ow processes in Signal can be organised in hierarchies, where a process isdecomposed into a network of connected subprocesses itself. The process in the left part of the �gure 11is the car driver, controlling the sensor by de�ning its position, orientation and opening angle. The vehiclemodel is also controlled by the driver by determining the value of the guidance and motor torques, which arethe inputs of the mechanical model of the vehicle. The driver is decomposed into sub-processes managingeach one a particular aspect of the model (itinerary, obstacle detection, decisional part, ...). Also, thepossibility is given to declare process models, that can be instanciated in di�erent places in a program, thusintroducing re-usability.The speci�cation of multi-rate computations is handled by the multi-clocked aspect in Signal: signalscan be under-sampled and merged, hence leading to the presence of signals and computations on them havingdi�erent clocks. This can be achieved as the decomposition of a basic clock into sub-clocks for the activationof sub-modules at di�erent frequencies. However it should be noted that the Signal compiler performs aresolution of clocks where they are ordered into an inclusion hierarchy; therefore, the global clock or baseclock can be synthesized by the compiler, and does not have to be managed by the programmer. In theexample of the �gure 11, each of the three modules possesses its own clock (HP, HC and HM) and thenby using the cell operator, data generated at one particular frequency can be read at another one. Forexample, the frequency of the driver module is 10 Hz while the one of the vehicle model is 50 Hz, thus eachvalue of the motor and guidance torques is used �ve times.In a network of data-
ow processes, the activation of computations in a process P1 depends on thepresence of the inputs, which can be themselves outputs of another process P0. In that case there should

Figure 11: The hierarchical data-
ow structure of a Signal process (car driver).be a sequencing of P0 before P1. This kind of sequencing of computations within a reaction is motivated bydata dependencies but not by a real temporal precedence (from one instant to the other). This is scheduledby the compiler on the base of a graph representing actual data-dependencies between operations.In Signal programs, it is possible to call external functions; that is, some of the processes in the data
ownetwork can be declared as being externally de�ned: only their interface (inputs, outputs and parameters)has to be known. This way, Signal programs are open, and enable links with external modules written in Cor in Fortran (e.g. numerical functions generated by mathematical systems, operating systems, windowingsystems, ...). In the example of the �gure 11, SENSOR() and VEHICLE MODEL() are external functions.6.2 SignalGT _� for hierarchical parallel transition systems and concurrent data-
ow tasksAn example featuring sequencing, concurrency and nested preemption in SignalGT _� was presented in Fig-ure 10. It must be noted that in synchronous languages, the concepts of \asynchronous" events is handledin a way perfectly coherent with the general notion of events; therefore they should preferably be calledsporadic events instead, in our framework. The reactive aspect of transitions is handled in the same way asthe data-
ow aspect.Transition systems are given by time intervals and the constraints between their bounds. Indeed, each

interval holds some partial state information. Leaving one interval and opening another one on the occurrenceof the same event constitutes a sequencing from the one to the other. The fact that time intervals areinherently parallel makes that constrained time intervals support the de�nition of place/transition systems(�a la Petri nets) rather than state/transition systems (sequential �nite state automata).The construction of hierarchies of behaviours, featuring de�nitive or temporary preemption of sub-tasks,is handled by the constructors on and each. They can be used to specify the re-initialization of local modulesor agents upon the occurrence of events from the global controller: this is a case for the application of theeach constructor, where the task interval is entered upon this event from the global controller. It must benoted that events can come as well from inside of the agents as from outside them.Some behaviours require to �rst have a given data-
ow network, continuously treating data in a certainway. Then, the occurrence of an event causes a change. This event can be either received from the externalenvironment or caused by an internal event, like reaching a threshold. A new data-
ow network, i.e. anew continuous interaction with the environment has to be installed. This sequencing of tasks betweencon�gurations of the network, involving a transition between states, is obtained simply by associating theprocesses of these tasks with intervals constrained accordingly.These tasks can be connected in a data-
ow network; their outputs and inputs can be shared, providedthis does not impose incoherent constraints on their presence. E.g., in the driving simulation application,part of the driver requires the \integration" of the
ows of results \proposed" by various concurrent tasks(| % sequencing %(| I :=]A, B]| J := comp I|)| % tasks %(| C1 := P1{X} on I| C2 := P2{X} each J| C3 := P3{X}|)| % integration %C := integrate{C1,C2,C3}|) X C1C2C3P2P3P1 AB CintegrateFigure 12: Structural separation between sequencing, data-
ow, and integration.The speci�cation of such behaviours in SignalGT _� provides a methodologically clean separation betweenthe following aspects, that are speci�ed in parallel:� the sequencing of tasks, which is achieved by the constraining of time intervales (see Section 4.2)� the data-
ow processes, associated to the intervals into tasks using on or each, and connected into anetwork� the integration processes taking as inputs the
ows of results of the tasks, which may have overlappingtime intervals. The integration process composes them in order to produce the unique result for theupper level (choice, averadge, sum, max, ...)Figure 12 gives a sketch of how SignalGT _� code can be structured this way. There can be an arbitraryrecursive interleaving of data-
ow and sequencing, i.e. data-
ows between communicating automata ortransitions between data-
ow processes. This is because processes and tasks are uni�ed into a coherentlanguage framework.

7 Conclusions and perspectivesWe have presented in this paper the behavioural model, and more precisely the decisional part of thismodel. A formal model of a Hierarchical Parallel Transition System has been presented to describe Real-istic behaviours, which requires di�erent programming paradigms: reactivity, concurrency, data-
ow andhierarchical preemption. These paradigms are all integrated in SignalGT _� which is a tasking extensionof the declarative synchronous language Signal and we have outlined how this model can be described inSignalGT _� considering this work is currently in progress.This model will allow us to describe, in a same way, di�erent kinds of living beings, and to simulate themin the same virtual environment, while most of behavioural models are actually restricted to the animationof one model in a speci�c environment. Another important point is that our behavioural model has beenconstructed to generate dynamic entities which are both autonomous and controllable. allowing us to usethe same model in di�erent contexts and moreover with di�erent level of control.Perspectives for Signal and SignalGT _� that are relevant to the domain of behavioural animationsystems concern both the speci�cation and the implementation aspects. On the side of the programminglanguage and implementation of the systems:� it would be interesting to be able to declare external tasks \driven" from GT _� (asynchronous tasksstarted, stopped, suspended, resumed upon the occurrence of corresponding events); this would enablethe linking with external tasks written in other languages.� the former could be done by connecting GT _� to a real-time operating system, taking advantage oflower-level functionalities for the preemption of external tasks� work is currently in progress around Signal in order to compile programs so as to produce distributedexecutable code; given the complexity of computations involved in graphics, it is bene�cial to have adixtributed implementation of systems. In the Signal approach, the semantical equivalence betweenspeci�cation and distributed implementation would be guaranteed, which constitutes a great help forensuring program correctness.Another aspect of the synchronous approach, although also based on its formal grounds, is that the envi-ronments include tools for the automated analysis of formal properties of the speci�ed systems and theirbehaviour (absence of deadlocks, reachability of states, or on the contrary non-reachability of a \bad" state).This point is important:� for development purposes: it is a complement to tests in the debugging phase, in order to verify thatthe systems really has the expected or required behaviour.� for the certi�cation of the safety of the controllers and behaviours, which is particularly meaningfulregarding safety-critical applications like in the domain of transportation.References[1] O. Ahmad, J. Cremer, S. Hansen, J. Kearney, and P. Willemsen. Hierarchical, concurrent state ma-chines for behavior modeling and scenario control. In Proceedings of Conference on AI, Planning, andSimulation in High Autonomy Systems, Gainesville, Florida, USA, 1994.[2] F. Arbab and E. Rutten. Manifold: a programming model for massive parallelism. In Proceedingsof Proceedings of the Working Conference on Massively Parallel Programming Models, pages 151{159,IEEE, Berlin, German, Sep. 1993.[3] B. Arnaldi, R. Cozot, and S. Donikian. Virtual urban environment for the simulation of an automatedelectrical cars platoon in the praxitele project. In Proceedings of Second Eurographics Workshop onVirtual Environments, Monte Carlo, Jan. 1995.

[4] B. Arnaldi and G. Dumont. Vehicle simulation versus vehicle animation. In Proceedings of ThirdEurographics Workshop on Animation and Simulation, Cambridge, Sep. 1992.[5] N. I. Badler, C. B. Phillips, and B. L. Webber. Simulating Humans : Computer Graphics Animationand Control. Oxford University Press, 1993.[6] N. I. Badler, B. L. Webber, J. Kalita, and J. Esakov, editors. Making them move: mechanics, control,and animation of articulated �gures. Morgan Kaufmann, 1991.[7] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems. Proceedingsof the IEEE, 79(9):1270{1282, Sep. 1991.[8] M. Booth, J. Cremer, and J. Kearney. Scenario control for real-time driving simulation. In Proceedingsof Fourth Eurographics Workshop on Animation and Simulation, pages 103{119, Politechnical Universityof Catalonia, Sep. 1993.[9] P. de Re�ye, C. Edelin, J. Francon, M. Jaeger, and C. Puech. Plant models faithful to botanical structureand development. In Proceedings of Computer Graphics (SIGGRAPH '88 Proceedings), J. Dill, editor,pages 151{158, Aug. 1988.[10] S. Donikian. Les mod�eles comportementaux pour la g�en�eration du mouvement d'objets dans une sc�ene.Revue Internationale de CFAO et d'Infographie, 9(6):847{871, 1994. Num�ero Sp�ecial 1re journ�ees AFIGGroplan.[11] S. Donikian and B. Arnaldi. Complexity and concurrency for behavioral animation and simula-tion. In Proceedings of Fifth Eurographics Workshop on Animation and Simulation, G. H�egron andO. Fahlander, editors, Oslo, Norv�ege, Sep. 1994.[12] S. Donikian and G. H�egron. A declarative design method for 3d scene sketch modeling. In Proceedingsof EUROGRAPHICS'93 Conference Proceedings, Barcelona, Spain, Sep. 1993.[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel VirtualMachine. The MIT Press, 1994.[14] N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.[15] G. H�egron and B. Arnaldi. Computer Animation : Motion and Deformation Control. Eurographics'92Tutorial Notes, Eurographics Technical Report Series, Cambridge (Grande-Bretagne), Sep. 1992.[16] D. Kalra and A. Barr. Modeling with time and events in computer animation. In Proceedings ofEurographics, A. Kilgour and L. Kjelldahl, editors, pages 45{58, Blackwell, Cambridge, United Kingdom,Sep. 1992.[17] J. Kearney, J. Cremer, and S. Hansen. Motion control through communicating, hierarchical statemachines. In Proceedings of Fifth Eurographics Workshop on Animation and Simulation, G. Hegronand O. Fahlander, editors, Oslo, Norway, Sep. 1994.[18] P. Le Guernic, M. Le Borgne, T. Gautier, and C. Le Maire. Programming real time application withSignal. Proceedings of the IEEE, 79(9):1321{1336, September 1991.[19] C. Lecerf. Contrôle du mouvement de syst�emes m�ecaniques en animation. PhD thesis, Universit�e deRennes 1, Sep. 1994.[20] E. Marchand, E. Rutten, and F. Chaumette. Applying the Synchronous Approach to Real TimeActive Visual Reconstruction. Research Report 2383, INRIA, Oct. 1994. (ftp ftp.inria.fr, �le/INRIA/publication/RR/RR-2383.ps.Z).

[21] H. Marchand, E. Rutten, and M. Samaan. Specifying and verifying a transformer station in Signaland SignalGT _�. Publication Interne 916, IRISA, March 1995.[22] M. Parent and P. Daviet. Automatic driving for small public urban vehicles. In Proceedings of IntelligentVehicle Symposium, Tokyo, Japon, July 1993.[23] M. Parent and P. Texier. A public transport system based on light electric cars. In Proceedings ofFourth International Conference on Automated People Movers, Irving, Texas, U.S.A., March 1993.[24] P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness. Animation of plant development. In Proceedingsof Computer Graphics (SIGGRAPH '93 Proceedings), J. T. Kajiya, editor, pages 351{360, Aug. 1993.[25] C. W. Reynolds. Flocks, herds, and schools: a distributed behavioral model. In Proceedings ofComputerGraphics (SIGGRAPH '87 Proceedings), M. C. Stone, editor, pages 25{34, July 1987.[26] G. Ridsdale and T. Calvert. Animating microworlds from scripts and relational constraints. In Proceed-ings of Computer Animation '90 (Second workshop on Computer Animation), N. Magnenat-Thalmannand D. Thalmann, editors, pages 107{118, Springer-Verlag, Apr. 1990.[27] M. Rozier, V. Abrassimov, F. Armand, M. Boule, M. Gien, M. Guillemont, F. Herrman, C. Kaiser,S. Langlois, P. Leonard, and W. Neuhauser. Overview of the chorus distributed operating system.In Proceedings of Usenix Symposium on micro-kernels and other kernels architectures, pages 39{69,Seattle, Apr. 1992.[28] E. Rutten and P. L. Guernic. Sequencing data
ow tasks in Signal. Research Report 2120, INRIA,Nov. 1993. (FTP site ftp.inria.fr, �le: INRIA/publication/RR/RR-2120.ps.Z).[29] E. Rutten and P. Le Guernic. The sequencing of data
ow tasks in Signal. In Proceedings of Proceedingsof the ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems,Orlando, Florida, June 1994.[30] E. Rutten and F. Martinez. SignalGT _�: implementing task preemption and time intervals in thesynchronous data
ow language Signal. In Proceedings of Proceedings of the 7th Euromicro Workshopon Real Time Systems, (IEEE Publ.), 1995.[31] H. Sun and M. Green. The use of relations for motion control in an environment with multiple movingobjects. In Proceedings of Graphics Interface, pages 209{218, Toronto, Ontario, May 1993.[32] X. Tu and D. Terzopoulos. Arti�cial �shes: physics, locomotion, perception, behavior. In Proceedingsof Computer Graphics (SIGGRAPH'94 Proceedings), pages 43{50, Orlando, Florida, July 1994.[33] M. van de Panne and E. Fiume. Sensor-actuator networks. In Proceedings of Computer Graphics(SIGGRAPH '93 Proceedings), J. T. Kajiya, editor, pages 335{342, Aug. 1993.[34] T. Widyanto, A. Marriott, and M. West. Applying a visual perception model to a behavioural animationsystem. In Proceedings of Eurographics Workshop on Animation and Simulation, pages 89{98, Vienna,Austria, Sep. 1991.[35] J. Wilhelms and R. Skinner. A \notion" for interactive behavioral animation control. IEEE ComputerGraphics and Applications, 10(3):14{22, May 1990.

