N

N

Timesheets.js: Tools for Web Multimedia

Fabien Cazenave, Vincent Quint, Cécile Roisin

» To cite this version:

Fabien Cazenave, Vincent Quint, Cécile Roisin. Timesheets.js: Tools for Web Multimedia. ACM
Multimedia 2011, Nov 2011, Scottsdale, Arizona, United States. 4 p. hal-00619396

HAL Id: hal-00619396
https://hal.science/hal-00619396

Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00619396
https://hal.archives-ouvertes.fr

Timesheets.js: Tools for Web Multimedia

Fabien Cazenave, Vincent Quint
INRIA
655 avenue de I'Europe
38334 Saint Ismier, France

{fabien.cazenave, vincent.quint}@inria.fr

ABSTRACT

Timesheets.js is a JavaScript library for publishing multimedia web
documents that take advantage of the new features of HTMLS5 and
CSS3. The library allows web developers to extend their skills to
synchronized multimedia contents. This technology has been ex-
perimented in a class where students had to implement an XSLT
transformation for converting OpenOffice Impress presentations into
web formats. The resulting slideshows run in web browsers thanks
to the timesheets.js library.

Categories and Subject Descriptors
1.7 [Document and Text Processing]: Document Preparation—
Languages and systems, Markup languages

General Terms
Design, Experimentation

Keywords

Declarative languages, Multimedia web applications, SMIL, HTMLS,

Timesheets

1. INTRODUCTION

The SMIL language has been available for a while for publish-
ing multimedia applications on the web, but the lack of widely
deployed tools has limited its impact. Among its most attractive
capabilities are its timing and synchronization features, but fortu-
nately these features are not restricted to the SMIL language and
can be added to other document languages.

With the advance of HTMLS, and notably its new graphic, au-
dio and video contents, it is now possible to develop multimedia
standard-based applications that can run natively in web browsers.
The only missing piece is the SMIL features, that are not currently
supported by browsers, but this problem can be solved by imple-
menting these features in JavaScript. This is what we have done
with the timesheet.js library.

ACM Multimedia, MM’11, November 28-December 1, 2011, Scottsdale,
Arizona, USA.

Cécile Roisin
Grenoble University & INRIA
655 avenue de I'Europe
38334 Saint Ismier, France
cecile.roisin@inria.fr

With this library, sophisticated multimedia applications can be de-
veloped in a completely declarative way, and based on languages
that are widely known to web developers, such as HTML and CSS.
This approach is also interesting for teaching. The timing and syn-
chronization concepts on which SMIL is based are very convenient
for introducing students to the multimedia domain. We were used
to present these concepts to students with the SMIL language, sep-
arately from other web languages. They can now be taught in the
same context and with a more consistent approach.

The rest of the paper is organized as follows: the next section
presents the timesheets.js library. Section 3 gives an example of
a media annotation application that runs in the browser with this
library. Finally section 4 explains how these tools are used in a
course on XML and multimedia.

2. THE TIMESHEETS.JS LIBRARY

SMIL has been thought as a full specification describing all aspects
of a multimedia document: content, presentation, synchronization,
and interaction. However, the SMIL 3.0 Timing and Synchroniza-
tion module' (a.k.a. SMIL Timing) is also designed to be integrated
into other host languages, thus bringing synchronization and user
interaction features to otherwise a-temporal document languages.
As specified in this module, timing can be inserted inline in the
markup of a static document thanks to two attributes for timing in-
tegration: t imeContainer and timeAction.?

SMIL Timimg is complemented by another W3C specification, SMIL
Timesheets,” that allows the most significant SMIL timing fea-
tures of a document to be gathered in external resources called
timesheets, thus separating the timing and synchronization aspects
from the host language, and allowing time behavior to be shared
among several documents. To paraphrase the SMIL Timesheets
specification, SMIL Timing and SMIL Timesheets can be seen as
a temporal counterpart of inline style and external CSS stylesheets,
respectively.

2.1 Using HTMLS, CSS3 and SMIL Timing

The solution we propose [1] is to combine HTML5+CSS3 and
SMIL Timing/Timesheets. We take advantage of the recent addi-
tion of new media objects such as audio and video to HTMLS, and
new style properties such as animation and transition to CSS3. The
addition of SMIL Timing extends these multimedia features signif-
icantly. It allows, for instance, some discrete parts (text, images) of

"http://www.w3.org/TR/smil/smil-timing.html
Zhttp://www.w3.0rg/TR/SMIL3/smil-timing.html#q48
3http://www.w3.0org/TR/timesheets/

a HTML page to be synchronized declaratively with the continuous
parts or with other discrete parts. This also allows user interaction
to be specified in a purely declarative way.

Our approach can be summed up in three points:

e use HTMLS5+CSS3 for structuring and styling the content
and for rendering it natively in the browser with a clean con-
tent/presentation separation;

e rely on SMIL Timing/Timesheets to handle timing, media
synchronization, and user interaction;

e do not redefine timing features that already exist in HTML,
SVG and CSS (e.g. animations and transitions).

This approach applies to a very broad range of interactive synchro-
nized multimedia web applications,* such as slide shows, captioned
video clips, annotated audio recordings, graphic animations, aug-
mented recorded conferences, interactive photo albums, web docu-
mentaries, and so on. All these applications can be developed using
only declarative languages, thus making multimedia web author-
ing available to a broader audience. The declarative approach also
provides advantages from an engineering point of view. It makes
it easier to maintain and reuse content, as opposed to the purely
scripting approach.

2.2 A Basic Example

As an example, here is the very simple case of a rotating banner.

<script type="text/javascript"
src="timesheets.js"/>
<link href="banner.smil" rel="timesheet"
type="application/smil+xml"/>
<div id="banner">

</div>

where file banner.smil is a timesheet containing:

<?xml version="1.0" encoding="UTF-8"7?>
<timesheet xmlns="http://www.w3.org/ns/SMIL">
<seq repeatCount="indefinite">
<item select="#banner img" dur="3s"/>
</seqg>
</timesheet>

The three images are turned by the timesheet into items displayed
in a sequence, each one during 3 seconds, and this sequence is
repeated indefinitely.

Like in CSS, selectors are used to associate elements from the

HTML document with time behaviors defined in the external timesheet.

For instance, the select attribute of element item performs a

querySelectorAll () action: for each DOM node that is matched

by the #banner img selector, a SMIL item is created. This al-
lows the same timesheet to be reused for several HTML pages: the
SMIL timesheet above always works whatever the number of im-
ages in the banner.

*see http://wam.inrialpes.fr/timesheets/

2.3 Timesheets Engine

As SMIL Timing and Timesheets are not supported natively by
web browsers, a JavaScript implementation of these specifications
is required to make them available widely. Therefore, we have
developed timesheets.js which is an open-source, cross-browser,
dependency-free library that supports the common subset of the
SMIL Timing and Timesheets specifications.

This library parses the SMIL Timing data (both inline timing and
timesheet files), finds all DOM elements that are targeted (for in-
stance, the img elements that are selected by item nodes in the
banner.smil example above), creates a smil attribute on each
of them with the value “idle”, and schedules the activation of each
target DOM element.

This scheduler acts on these DOM elements when they are acti-
vated:

e the smil attribute is set to “active” (if web browsers sup-
ported SMIL Timing natively, this would be a CSS pseudo-
class);

e if the t imeAction attribute is set, a specific CSS style rule
is applied (e.g. “display: none”, “visibility: visible”, or a
class is added);

e the DOM element fires a ‘begin event.

When the target element has to be deactivated, its smil attribute
is set to “done”, the specific style rule (if any) is removed, and an
“end” event is fired.

This implementation obviously relies on JavaScript, but as stated
above, no specific JavaScript development is required from a web
developer. When an application is running, some parts of it (HTML
and CSS) are executed natively by the browser, some other parts are
executed by the browser’s JavaScript engine.

Timesheets.js is not the first SMIL Timesheets engine running in
the browser. Vuorimaa [2], for instance, has developed a Timesheets
JavaScript Engine, but it was before HTMLS5. Therefore, it can syn-
chronize only discrete contents.

Our implementation is available in open source under the MIT li-
cense. It is rather compact (about 2000 lines of code), and the
whole engine is less than 10 Kbytes in the minified/gzipped ver-
sion. There is no need to install anything for using timesheets.js; a
script link in the HTML page to the on-line library® is enough
(see first line of the above example).

Technically speaking, the timesheet scheduler is very modular by
design:

e Each time container node has its own clock, methods, prop-
erties and event handlers.

e Each time container parses its own descendants (time nodes)
and pre-computes the begin/end times according to its tem-
poral behavior: sequential, parallel or exclusive.

e All time containers expose a significant part of the HTML-
MediaElement API (which is exposed by the audio and
video elements of HTMLS): web developers can control
SMIL time containers with the usual .play () / .pause ()

Shttp://wam.inrialpes.fr/timesheets/public/timesheets.js

methods, check the time with the . current Time property
and register to standard t imeupdate DOM events.

3. APPLICATION: INA WEBRADIO

We have worked with INA, the French national archive of audiovi-
sual, to publish on the web archived radio programs enhanced with
associated material.® A typical INA Webradio page involves (see
Figure 1):

e a rich audio player, i.e. a segmented timeline displaying a
specific HTML fragment for each section of the audio track
(bottom of Figure 1);

e buttons that users can click to display complementary con-
tent — possibly involving other multimedia sources (top right
corner of Figure 1).

Une école de musique aujourd’hui
Quel réle pour une école de musique : transmission, conservation, création ?
Comment aborder un apprentissage musical ? Compléments

L'atelier sonore

Sommaire
» Introduction

L’atelier sonore

» L'importance de I'écoute

o L'écoute collective
» Fontaine des musiciens « Enfants »

o Visuels : « Fontaine des musiciens »
« Laplace de la création dans une école de musique
» La Source

o Les musiques actuelles dans une école de musique

Figure 1: INA Webradio application

The idea is to propose a visually enhanced experience of a radio
program, while allowing users to browse the content in a non-linear
way, for instance with the table of contents (Sommaire) of Figure 1.

3.1 Document Processing Workflow

INA uses a SCENARI-based, XML publishing workflow to create
multimedia documents. The SCENARI 7 authoring environment
is used to divide a continuous media object (the recorded radio
program) into several contiguous time segments, to associate an
HTML fragment to each time segment, and finally to publish a dy-
namic multimedia document as a Flash object. One of the main
limitations of this workflow, besides the usual Flash-related issues
(accessibility, indexability, compatibility with mobile devices...),
is that neither content authors nor web designers can control effi-
ciently the presentation of resulting multimedia documents.

Our approach here is to keep the SCENARI content editor, but pub-
lish multimedia documents in HTMLS5 + CSS + SMIL Timesheets,
in order to separate:

e content: every HTML fragment is defined in SCENARI;

e synchronization: SMIL Timesheets are used both to define
time segments on the main audio track and to describe user
interactions;

®http://wam.inrialpes.fr/timesheets/public/webRadio/
"http://scenari-platform.org/projects/scenari/en/pres/

e presentation: generic CSS stylesheets can be defined by web
designers for a consistent integration of these multimedia
documents in the main website, and content authors can use
specific style rules when necessary.

The idea here is to keep the efficiency of an XML publishing work-
flow and the benefits of CSS style sheets, while allowing multime-
dia documents to be modified in a way that is familiar to all web
developers. The only specific part is the timesheet below:

<timesheet xmlns="http://www.w3.org/ns/SMIL">
<!-— slide show / main section —-->
<excl timeAction="display" mediaSync="#main"
controls="#timeController" dur="20:47">

<item select="#sectionl" begin="00:00.000"/>
<item select="#section2" begin="01:12.120"/>
<item select="#section3" begin="04:41.742"/>

</excl>
<!-- extra material: multimedia pages —-->
<excl>
<item select="#extral"
begin="open2.click; toc-extraZ2.click"
end="close2.click; section2.end"/>
<item select="#extra3l"
begin="open3.click; toc-extra3.click"
end="close3.click; section3.end"/>
</excl>
<!-— extra material: audio ——>

<par mediaSync="#track2a" controls="#timeline2a"

dur="2:24.039"/>

<par mediaSync="#track2b" controls="#timeline2b"

dur="3:59.928"/>
<!-- extra material: rotating pictures ——>
<seq timeAction="display"
repeatCount="indefinite">
<item select="#extrad img" dur="3s"/>
</seq>
</timesheet>

3.2 Direct Editing

The goal of this modular approach is to enable “wysiwyg”, fine-
grain editing of the resulting multimedia documents.

With the initial document processing workflow, content editors could
specify the semantic content for each audio section but had no easy
way to refine the resulting document: that was a one-way, XML-
to-Flash conversion. Every modification had to be done within the
XML editor, then published in Flash to see how it looks like — and
that only applied to semantic content. Now that the multimedia
document is published in HTMLS, it is possible to fine-tune all tim-
ing and presentation details, after conversion, directly in a Firefox
extension.

Another benefit with the new workflow is that the workload can be
shared efficiently between content authors and web designers: as
presentation is entirely defined by CSS style sheets, web design-
ers can work directly on the published multimedia documents to
adapt the look to the website and to propose visual transitions be-
tween successive time segments, and content authors can see how
all HTML fragments are displayed with these style sheets.

As the content, presentation and synchronization data are defined
in three separate resources (HTMLS, CSS and SMIL Timesheets,

respectively), all local modifications can be easily backported to
the XML publishing chain.

3.3 Browser Support

These HTMLS5+SMIL Timesheets multimedia documents are sup-
ported natively by all modern desktop browsers implementing the
audio and video tags. As a consequence, users of the HTMLS
version of the INA Webradio pages get a better user experience with
the native multimedia player of these browsers than with external
players: better responsiveness, better CPU resource usage.

Unlike the Flash version, the HTMLS Webradio pages can be served
to mobile devices: most smartphones support the audio and video
tags natively and can play multimedia resources without draining
the battery. As the layout is defined by style sheets, a specific touch-
screen layout can be served to mobile devices with a simple declar-
ative CSS media query.

3.4 Extensibility: DOM Events, JavaScript

Most of the synchronization logic and user interaction can be de-
fined with SMIL Timesheets. However, there are cases where a
more specific dynamic interaction should be implemented.

For this purpose, each node fires a begin and an end DOM event
when it is activated and deactivated by the timesheet scheduler, re-
spectively. This allows some specific JavaScript code to be trig-
gered easily — either with an onbegin / onend attribute in the
HTML document, or with event listeners in the JavaScript code.

Besides the APIs mentioned in section 2.3 that can be used to con-
trol time containers, timesheets.js also exposes an API that allows
time containers to be created dynamically. This mechanism is used
in the timesheets-controls. js companion library to dis-
play a segmented media timeline and to keep it synchronized with
the main audio track.

4. TEACHING WEB MULTIMEDIA WITH
TIMESHEETS.JS

We have experienced a first course with the timesheets.js library.
This course was dedicated to XML technologies and addressed
XML schema definitions, the XSLT language and multimedia doc-
uments. Basic web technologies such as HTML and CSS were
already known to students through previous courses. A few classes
were given and then most of the work was to realize a complete
project in small groups.

The goal of the project was to implement a process that: 1) merges
several OpenOffice Impress presentations, and 2) transforms the
result into a web document that includes navigation and animation
features.

The testbed source documents contain simple slides as well as an-
imated text and graphics. It is worth noting that the name space
used by OpenOffice documents for animations is the SMIL one. It
was suggested to the students to generate HTMLS5 content with ap-
propriate style sheets and to reuse the s1ideshow structures and
styles available on-line.®

Most groups succeeded in producing an animated web slideshow
and proved a good understanding of both XML transformation tech-
niques and sound structuring of multimedia documents on the web.

8http://wam.inrialpes.fr/timesheets/

As an example, Figure 2 shows the architecture of a project along
with the generated files.

CSS
XSLT
createCSS.xsl
LA
-,
: HTML5
ODP Model styles.xml with inline
: timing
| XSLT
createHTML5.xsl
ungip XSLT
merge.xsl
content.xml Global
of each content.xml
ODP presentation
Sources

Figure 2: A student project

In the evaluation of the course, students have indicated that this
project brought them a better perception of the role of the differ-
ent languages of the web, including SMIL. The main difficulties
they encountered were to master the XSLT language and to face
the complexity of the OpenOffice style definitions.

5. CONCLUSION

We have presented the timesheets.js library and two use cases of
this open technology for the web. The first one, Webradio, shows
how it can be used for producing standard-based, high quality mul-
timedia presentations, while the second one describes a teaching
experience. The source code of the library and various examples
are available on-line and developers are welcome to contribute on
GitHub.”

We are currently working in two directions to 1) develop an author-
ing tool for media segmentation and annotation and 2) experiment
microformats (such as HTML Slidy'®) for rendering multimedia
presentations with slideshow effects.

6. ACKNOWLEDGEMENTS

The work presented in this paper was done in the C2M project,
funded by the French National Research Agency (ANR) under its
CONTINT 2009 program. The authors are grateful to Dominique
Saint-Martin from INA-GRM for providing the Webradio applica-
tion.

The authors thank also Stéphane Bonhomme, the teacher of the
XML course of LP SIL and the students of that class that have
experimented with timesheets.js.

7. REFERENCES

[1] F. Cazenave, V. Quint, and C. Roisin. Timesheets.js: When
SMIL meets HTMLS and CSS3. In DocEng 2011:
Proceedings of the Eleventh ACM Symposium on Document
Engineering. ACM, Sept. 2011.

[2] P. Vuorimaa. Timesheets JavaScript Engine,
http://www.tml.tkk.fi/"pv/timesheets/, 2007.

*https://github.com/fabilcazenave/timesheets.js
Ohttp://www.w3.org/Talks/Tools/Slidy2/

