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Abstract. In the LDDMM framework, optimal warps for image regis-
tration are found as end-points of critical paths for an energy functional,
and the EPDiff equations describe the evolution along such paths. The
Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM)
extension of LDDMM allows scale space information to be automati-
cally incorporated in registrations and promises to improve the standard
framework in several aspects. We present the mathematical foundations
of LDDKBM and derive the KB-EPDiff evolution equations, which pro-
vide optimal warps in this new framework. To illustrate the resulting dif-
feomorphism paths, we give examples showing the decoupled evolution
across scales and how the method automatically incorporates deforma-
tion at appropriate scales.

Keywords: LDDKBM, LDDMM, diffeomorphic registration, scale space,
computational anatomy, kernels, momentum

1 Introduction

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework
plays an increasingly important role in image registration for medical image
analysis as it provides good registration results along with a solid mathematical
foundation allowing meaningful statistics to be computed on the registration re-
sults. It has its foundations in the seminal work of Grenander [3] and Christensen
et al. [1] together with the theoretical contributions of Dupuis et al. and Trouvé
[2, 7]. The theory in its present state is well described in the paper of Younes
et al. [9] and the monograph of Younes [8]. The purpose of this paper is to dis-
cuss the mathematical foundation behind a multi scale extension of LDDMM,
the Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM), and
develop the resulting evolution equations for the registration diffeomorphisms.

The LDDMM construction is based on the concept of kernels which encode
the scale of the registration. Coarse to fine approaches, such as used in [4] for non-
parametric image registration, can be used as tools to guide the search for the
optimal registration but a scale mechanism for LDDMM which is truly consistent
with the framework must be linked to the kernels. The role of the kernel and



deformation at different scales in LDDMM have been addressed by Risser et
al. in [5] where the authors propose a multi-kernel approach which constructs
new kernel shapes by adding Gaussian kernels. The method effectively changes
only the shape of the kernel and does not allow decoupled momentum across
scales. To improve the ability of the registration to adapt to scale information,
we developed in [6] the LDDKBM extension of LDDMM which allows decoupling
of the energy and momentum at each scale, and it therefore enables the algorithm
to select the appropriate deformation at each scale individually. An example of
an LDDKBM registration is given in Figure 1.

1.1 Content and Outline

In the next section, we will summarize the LDDMM framework before provid-
ing a detailed account of the mathematical foundation behind the LDDKBM
extension. We then progress to developing the KB-EPDiff equations describing
the evolution of critical paths in the framework and extending the fundamental
EPDiff equations in LDDMM. We will present experiments in Section 5 and
conclude in Section 6. The paper thus contributes by

(1) providing a detailed account of the theoretical foundation of the LDDKBM
framework for multi scale diffeomorphic registration,

(2) deriving the KB-EPDiff equations which are fundamental for the theoretical
understanding of LDDKBM and necessary for practical implementations,

(3) and through examples showing the evolution of diffeomorphism paths gov-
erned by the KB-EPDiff equations and how the evolution is decoupled across
scales.

2 The LDDMM Framework

In the sequel, Ω will denote a hold-all domain of Rd (d = 2, 3 in applications)
and V will denote a Hilbert space of vector fields v : Ω → R

d such that V with
associated norm ‖ · ‖V is included in L2(Ω,Rd) and admissible as defined in [8,
Chap. 9]. Given a time-dependent vector field t 7→ vt with

∫ 1

0

‖vt‖
2
V dt < ∞ (1)

the associated differential equation ∂tϕt = vt ◦ ϕt has with initial condition
ϕs = ϕ a diffeomorphism ϕv

st as unique solution. The set GV of diffeomorphisms
built from V by such differential equations is a Lie group, and V is its tangent
space at each point. The inner product on V associated to the norm ‖ ·‖V makes
GV a Riemannian manifold with right-invariant metric. Setting ϕv

00 = IdΩ , the
map t 7→ ϕv

0t is a path from IdΩ to ϕ with energy given by (1). A critical path
for the energy is a geodesic on GV .

In the LDDMM framework, registration is performed through the action
of diffeomorphisms in GV on geometric objects. This approach is very general
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(a) Moving hand and landmarks (red) (b) Fixed hand and landmarks (black)
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Fig. 1. Matching landmarks of hand (a) to landmarks of hand (b) with LLDKBM
multiscale registration with Gaussian kernels of four scales. The critical path of diffeo-
morphisms determined by the KB-EPDiff equations derived in this paper is shown for
four time steps (c)-(f) along with the outline of hand (a) (red line) and deformation
of an initially square grid. Black curve shows the transported outline, and the grids
are colored with the trace of Cauchy-Green strain tensor (log-scale). As we will see in
Section 5, multiple scales are necessary to properly match the hands and movement
occur decoupled across scales for the critical path shown.

and allows the framework to be applied to both landmarks, curves, surfaces,
images, and tensors. In the case of landmarks, the action of a diffeomorphism ϕ

takes the form ϕ.x = ϕ(x), and given landmarks x1, . . . , xN and y1, . . . , yN , the
registration amounts to a search for ϕ such that ϕ.xi ∼ yi for all i = 1, . . . , N .
In exact matching, we wish ϕ.xi be exactly equal to yi but, more frequently,
we allow some amount of inexactness to account for noise and give smoother
diffeomorphisms. This is done by defining a quality of match measure U and a
regularization measure E1 to give a combined energy

E(ϕ) = E1(ϕ) + λU(ϕ) .

Here λ is a positive real representing the trade-off between regularity and good-
ness of fit and U is often the L2-error which in the landmark case takes the form
U(ϕ) =

∑N

i=1 ‖ϕ(xi)− yi‖
2. The regularization term E1 is defined as

E1(ϕ) = min
vt∈V,ϕv

01=ϕ

∫ 1

0

‖vs‖
2
V ds . (2)
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It penalizes highly varying paths and, therefore, a low value of E1(ϕ) implies
that ϕ is regular.

The regularity is ultimately controlled by the norm on V and this norm is
associated to a reproducing kernel K : Ω × Ω → R

d×d. The kernel is often
chosen to ensure rotational and translational invariance [8] and the Gaussian

kernel K(x, y) = exp(‖x−y‖2

σ2 )Idd is a convenient and often used choice. The
scaling factor σ is not limited to Gaussian kernels and allows for many kernels
to vary the amount of regularization. Larger scales lead in general to higher
regularization and smoother diffeomorphisms, whereas smaller kernels penalize
higher frequencies less and often gives better matches. This phenomenon is in
particular apparent for objects with sparse information and images with e.g.
areas of constant intensity.

3 Kernel, Momentum and LDDKBM

The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM)
framework extends LDDMM by equipping diffeomorphism manifolds GV in LD-
DMM with vector bundles allowing deformation to be described at different
scales. We start this section by discussing the relation between kernels and mo-
mentum in LDDMM before giving details on the mathematical foundation of
LDDKBM.

3.1 Kernel and Momentum

The admissibility of V implies that for any x ∈ Ω, the evaluation δx : v 7→
v(x) ∈ R

d is well-defined and continuous. Thus, for any a ∈ R
d the map a⊗ δx :

v 7→ aT v(x) belongs to the topological dual V ∗ of V implying the existence of
the kernel K : Ω×Ω → R

d×d so that, for any constant vector a ∈ R
d, the vector

field K(·, x)a ∈ V represents a ⊗ δx and 〈K(·, x)a,K(·, y)b〉V = aTK(x, y)b for
all points x, y ∈ Ω and all vectors a, b ∈ R

d. This latter property is denoted
the reproducing property and gives V the structure of a reproducing kernel
Hilbert space (RKHS). Tightly connected to the norm and kernels is the notion
of momentum given by the linear momentum operator L : V → L2(Ω,Rd) which
satisfies

〈Lv,w〉L2(Ω,Rd) =

∫

Ω

(

Lv(x)
)T

w(x)dx =: 〈v, w〉V

for all v, w ∈ V . The momentum operator connects the inner product on V with
the inner product in L2(Ω,Rd), and the image Lv of an element v ∈ V is denoted
the momentum of v. The reader can consult [8] for a thorough introduction to
reproducing kernels, especially with a view towards the LDDMM framework.

3.2 The Kernel Bundle and LDDKBM

The LDDMM framework is limited to the choice of only one kernel shape and
scale but deformation on different scales are often needed for good registration.
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To address this problem, we constructed in [6] a multi scale extension of LDDMM
resulting in the LDDKBM framework.

In order to use more kernels, we consider a parameter set IW and subspaces
Vr, r ∈ IW of the tangent space V where each Vr is equipped with a norm ‖ · ‖r,
corresponding kernel Kr, and momentum operator Lr. Typically, IW will be a
discrete set or a closed and bounded interval of R+ representing different scales.
We then let W be the space of functions w : IW → V , wr ∈ Vr such that

∫

IW

‖wr‖
2
r dr < ∞ and

∫

IW

‖wr‖r dr < ∞ .

The vector space structures on Vr induce a vector space structure on W , and it
can be shown that under reasonable assumptions, the inner product

〈v, w〉W =

∫

IW

〈vr, wr〉r dr, v, w ∈ W

turns W into a Hilbert space. Moreover the integral Ψ(w) =
∫

I
wr dr is well

defined for w ∈ W and allows us to pass fromW to V . With this construction, we
obtain a vector bundle GV ×W , the kernel bundle, allowing kernels of different
sizes and shapes, and a map GV × W → TGV = GV × V that provides an
extension of TGV to multiple scales.

Using Ψ we can connect time varying paths wt = {wt,r}r in W and paths on
the manifold GV by

wt 7→ ϕ
Ψ(w)
0t . (3)

The path energy is in LDDKBM measured using the norm on W , i.e. we define
the energy

EW
1 (wt) =

∫ 1

0

‖ws‖
2
Wds .

which induces a regularization measure on diffeomorphisms

EW
1 (ϕ) = min

wt∈W,ϕ
Ψ(w)
01 =ϕ

∫ 1

0

‖ws‖
2
W ds . (4)

Together with a quality of match measure U(ϕ), this allows a reformulation of
the registration problem as the search for a diffeomorphism minimizing

EW (ϕ) = EW
1 (ϕ) + λU(ϕ) . (5)

The above formulation should be compared with the standard LDDMM formu-
lation using the regularization (2), and it is immediately clear that the standard
LDDMM method is the special case with only one scale and hence W = V .

It is interesting to note that W possesses a structure very similar to a RKHS.
On V we have for each x ∈ Ω and a ∈ R

d the evaluation functional a⊗ δx(v) =
aT v(x). Using the integral map Ψ defined above, we define the linear maps on
W

a⊗ δΨx (w) :=

∫

IW

a⊗ δx(wr)dr =

∫

IW

aTwr(x)dr = a⊗ δx(Ψ(w)) .
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As seen from the equation, the maps evaluate wr at each scale and integrate the
results using Ψ . These maps are continuous and hence in the dual W ∗. For the
elements K(·, x)a = {K(·, x)ra}r ∈ W , we have

〈K(·, x)a,K(·, y)b〉W =

∫

IW

〈K(·, x)ra,K(·, y)rb〉r dr =

∫

IW

aTKr(x, y)b dr

= aT
∫

IW

Kr(x, y)b dr = a⊗ δΨx (K(·, y)b) = aTΨ (K(x, y)b)

which is similar to the reproducing property for LDDMM except for the integra-
tion performed by Ψ on the right-hand side of the equation. Also, close to the
RKHS situation, we see that

〈K(·, x)a, w〉W =

∫

IW

〈K(·, x)ra, wr〉r dr =

∫

IW

aTwr(x) dr = a⊗δΨx (w) , w ∈ V

again with the integration of w occuring in a⊗ δΨx (w).

4 EPDiff and KB-EPDiff

The EPDiff equations in LDDMM describes the evolution of optimal paths for
the registration problem. They are most often formulated in the following form:
let at = Lvt denote the momentum at time t and assume that ϕt is a path
minimizing E1(ϕ) with ϕ1 = ϕ minimizing E(ϕ) and vt is the derivative of ϕt.
Then vt satisfies the system

vt =

∫

Ω

K(·, x)at(x)dx ,
d

dt
at = −Datvt − at∇ · vt − (Dvt)

T at .

The first equation connects the momentum at with the velocity vt, and the
second describes the evolution of the momentum. The EPDiff equations can
be interpreted as geodesic equations on the manifold GV and are important
for implementations since we can limit the search for optimal paths to paths
satisfying the system.

As we will show in this section, there exists similar equations for LDDKBM:
if Ψ(wt) is the derivative of the path of diffeomorphisms ϕt minimizing (4) with
ϕ = ϕ1 minimizing (5) then

wr,t =

∫

Ω

Kr(·, x)ar,t(x)dx ,

d

dt
ar,t =

∫

IW

−Dar,tws,t − ar,t∇ · ws,t − (Dws,t)
T ar,t ds .

(6)

with ar,t being the momentum for the part wr,t of wt. In essence, the standard
EPDiff equations are integrated over the parameter space IW to obtain the
evolution of the momentum at each scale, and, in particular, the result will imply
that the momentum conservation property of LDDMM also holds in LDDKBM.
We will derive the KB-EPDiff equations in a more general form which implies
the above formulation, and, for doing this, we will follow the strategy in [8] for
the LDDMM case.
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4.1 Euler-Lagrange equations

For any time varying path wt in W , we denote by ϕ
Ψ(w)
t1t2

the diffeomorphism
obtained by integrating Ψ(wt) from time t1 to time t2. The end of the inte-

grated path ϕ
Ψ(w)
01 is the diffeomorphism used for the registration. For the energy

EW (wt) = EW (ϕ
Ψ(w)
01 ), we consider a variation ht ∈ W and calculate

d

dǫ
E(wt + ǫht) = 2

∫ 1

0

〈wt, ht〉W dt+
d

dǫ
U(ϕ

Ψ(w)+ǫΨ(h)
01 ) . (7)

Following [8], we define Adϕv(x) = (Dϕv)◦ϕ−1(x) for v ∈ V and get a functional
Ad∗ϕ on the dual V ∗ of V by (Ad∗ϕρ|v) = (ρ|Adϕ(v)). It is shown in [8] that a

variation h̃t in V of the match functional satisfies

d

dǫ
U(ϕv+ǫh̃

01 ) =

∫ 1

0

(

Ad∗ϕv
t1
∂̄U(ϕv

01)
∣

∣h̃t

)

dt

with ∂̄U denoting the Eulerian differential of U (see [8, Chap. 10]). Inserting
into (7) gives

d

dǫ
E(wt + ǫht) = 2

∫ 1

0

〈wt, ht〉W dt+

∫ 1

0

(

Ad∗
ϕ

Ψ(w)
t1

∂̄U(ϕ
Ψ(w)
01 )

∣

∣Ψ(ht)
)

dt . (8)

For each r, we define the operator AdT,r
ϕ v = Kr(Ad

∗
ϕ(Lrv)) which then satisfies

〈

AdT,r
ϕ v, w

〉

r
= (Ad∗ϕ(Lrv)|w), and we can now derive the fundamental results

[8, Prop. 11.6/Cor. 11.7] in the LDDKBM case:

Proposition 1. If wt is an optimal path for EW then for almost every r ∈ IW ,

wt,r = AdT,r

ϕ
Ψ(w)
t1

w1,r

with w1,r = − 1
2∇

VrU(ϕ
Ψ(w)
01 ).

Proof. Assume instead that there exists a time varying ht in W and t ∈ [0, 1]
such that

0 <

∫

IW

〈

wt,r −AdT,r

ϕ
Ψ(w)
t1

w1,r, ht,r

〉

r

dr =

∫

IW

〈wt,r, ht,r〉r dr −

∫

IW

〈

AdT,r

ϕ
Ψ(w)
t1

w1,r, ht,r

〉

r

dr

= 〈wt, ht〉+
1

2

∫

IW

(Ad∗

ϕ
Ψ(w)
t1

∂̄U(ϕ
Ψ(w)
01 )

∣

∣ht,r)dr

= 〈wt, ht〉+
1

2
(Ad∗

ϕ
Ψ(w)
t1

∂̄U(ϕ
Ψ(w)
01 )

∣

∣Ψ(ht)) .

But the right hand side vanishes for all t and all ht by (8) and the fact that wt

is optimal for EW , a contradiction.

Corollary 1. Under the same conditions, for almost every r ∈ IW ,

wt,r = AdT,r

ϕ
Ψ(w)
t0

w0,r . (9)

The proof of the corollary is identical to the proof of [8, Cor. 11.7].
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4.2 Scale Conservation and KB-EPDiff

In LDDKBM, the momentum of a path in general differ across scales. For a path
wt in W , we let at be the bundle momentum defined by at,r = Lr(wt,r) recalling
that Lr is the momentum operator at scale r. For each t, we can consider at to
be in the dual W ∗ by (at|w̃) =

∫

IW
(at,r|w̃r)dr which is continuous since

∣

∣

(

at|w̃
)∣

∣ ≤

∣

∣

∣

∣

∫

IW

(

at,r|w̃r

)

dr

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

IW

〈wt,r, w̃r〉r dr

∣

∣

∣

∣

≤ ‖wt‖‖w̃‖ .

Suppose now wt satisfies the transport equation (9) for almost every r ∈ IW .
Then for all w̃ ∈ W ,

(

at|w̃
)

=

∫

IW

〈wt,r, w̃r〉r dr =

∫

IW

〈

AdT,r

ϕ
Ψ(w)
t0

w0, w̃r

〉

r

dr

=

∫

IW

〈

w0,r,Adϕ
Ψ(w)
t0

w̃r

〉

r
dr =

(

a0|Adϕ
Ψ(w)
t0

w̃
)

(10)

where Ad
ϕ

Ψ(w)
t0

w̃ is the element of W obtained by applying Ad
ϕ

Ψ(w)
t0

to each w̃r.

The above equation shows that the momentum at time t is completely specified
by the momentum at time 0 and thus reproduces the momentum conservation
property for LDDMM. Note that since w̃ can be chosen arbitraly in (10), the
momentum is conserved for each scale separately. By differentiating Ad

ϕ
Ψ(w)
t0

w̃,

the momentum conservation property directly implies the equation

∂t
(

at|w̃
)

= −
(

at|DΨ(wt) w̃ −Dw̃ Ψ(wt)
)

(11)

or, equivalently,
∂tat + ad∗Ψ(wt)at = 0

with
(

ad∗Ψ(wt)at|w̃
)

=
(

at|DΨ(wt) w̃ − Dw̃ Ψ(wt)
)

. Both equations imply the
system (6) and extend the EPDiff equations for LDDMM. We denote them KB-
EPDiff.

4.3 KB-EPDiff for Landmarks: An Example

To give a concrete application of the KB-EPDiff equations, we redo the cal-
culation for LDDMM landmark matching with scalars kernels to arrive at the
corresponding system for LDDKBM. The initial momentum a0,r will in this case

be supported at the N landmarks xi, i = 1 . . . , N , i.e. a0,r =
∑N

i=1 a0,r,i ⊗ δxi

with vectors a0,r,i ∈ R
d. We let xt,i denote the trajectory of the ith landmark

so that xt,i = ϕ
Ψ(w)
0t (x0,i).

Letting at,r,i = (Dϕ
Ψ(w)
t0 )Ta0,r,i, we get from (10)

(

at,r|w̃
)

=

(

Ad∗

ϕ
Ψ(w)
t0

(

N
∑

i=1

a0,r,i ⊗ δx0,i

)

∣

∣

∣
w̃

)

=

(

N
∑

i=1

a0,r,i ⊗ δx0,i

∣

∣

∣
Ad

ϕ
Ψ(w)
t0

(w̃)

)

=

N
∑

i=1

aT0,r,i(Dϕ
Ψ(w)
t0 w̃) ◦ ϕ

Ψ(w)
0t (x0,i) =

(

N
∑

i=1

at,r,i ⊗ δxt,i

∣

∣

∣
w̃

)

.
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Since d
dt
(Dxt,i

ϕ
Ψ(w)
t0 )T = −Dxt,i

Ψ(wt)
T (Dx0,iϕ

Ψ(w)
t0 )T , the derivative of the mo-

mentum satisfies

d

dt
at,r,i =

d

dt

(

(Dϕ
Ψ(w)
t0 )T a0,r,i

)

= −Dxt,i
Ψ(wt)

T at,r,i .

We therefore have the trajectory of the landmarks and momentum evolution
completely described by the system

Ψ(wt) =

∫

IW

∑N

l=1 Kr(·, xt,l)at,r,ldr

d
dt
at,r,i = −

(
∫

IW

∑N
l=1 D1

(

Ks(xt,i, xt,l)at,s,l
)T

ds

)

at,r,i

xt,i = ϕ
Ψ(w)
0t (x0,i) .

(12)

Note that the system is finite if IW is finite.

5 Experiments

We perform two experiments showing the progressing deformation as we move
along the critical path of the LDDKBM energy functional specified by the KB-
EPDiff equations and showing the different deformation across scale. The first
experiment is performed on landmarks from images of hands and the second on
a simpler and artificial example to better visualize the scale differences.

5.1 Hand Outlines

We first consider the hand outlines shown in Figure 1 and Figure 2. Using the
landmarks (red dots) on the moving hand image, we wish to compute the LDD-
KBM match against the landmarks on the fixed image (black dots). The match
is computed with three scales of 8, 4, and 2 units of the grid overlayed the figures.
After optimizing for the optimal registration, we show in Figure 1 the progres-
sion of the deformation as we move along the critical path. The final deformation
occurs rightmost for t = 1. The initially square grid is seen to progressively de-
form as time increases and the outline is moved to match the outline of the fixed
image.

Figure 2 shows the results of computing the same match with standard LD-
DMM with each of the three scales as well as the final match from LDDKBM
repeated for comparison. For LDDMM with the largest scale, the match is poor
and the sharp bend of the thumb is especially badly modelled. The situation im-
proves for the middle scale though the bend of the thumb is still not sufficiently
sharp and the match is bad for the middle fingers. For the smallest scales, the
thumb is correctly matched but now the smaller scale is not able to model the
even movement of the index finger. The LDDKBM method is by including all
scales able to correctly register all the critical areas, and, at the same time, it
gives the best match of the landmarks.
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(a) LDDMM σ = 8 (b) LDDMM σ = 4 (c) LDDMM σ = 2

(d) Moving hand (top), fixed (e) LDDKBM
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Fig. 2. Matching the hands of Figure 1 and shown in (d) for three scales of LDDMM
and LDDKBM. The red landmarks of the moving hand are matched against the black
landmarks of the fixed hand with the green crossed points showing the result of the
match. The outline of the moving hand (red line) is transported to the black outline and
should be compared with the outline of the fixed image (black dashed). The LDDKBM
method is able to correctly match all the critical areas on which LDDMM fails, see
text.

5.2 KB-EPDiff Across Scales

To show how LDDKBM decouples deformation across scale, we extend the exper-
iment presented in [6] where four points (red) are matched to four points (black)
with results (green crossed) using LDDKBM with three scales. In Figure 3, the
result of the registration is visible in the top right subfigure and the evolution of
the critical path generated by the KB-EPDiff equations is shown with time in-
creasing across columns. For the lower rows, the deformation at each scale is here
shown independently. We see how most of the transport occurs at the largest
scale with the middle scale participating to some degree and starting the accel-
eration of the two points having to move the farthest. The lowest scale perform
almost no horizontal movement but takes care of the fine adjustment allowing
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4
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0
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t = 0.25 t = 0.50 t = 0.75 t = 1.00 
Very Rigid

Very Non−Rigid

fine scale adjustment

furthest moving points bulk of transport
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Fig. 3. LDDKBM match of four landmarks (red) to four landmarks (black) with results
(green, crossed) for Gaussian kernels of three scales. Top row: critical path determined
by KB-EPDiff equations, row 2-4: individual contribution of each of the three scales
(scale σ in grid units). The columns shows four time points of the critical path with
the rightmost being the final deformation. Initially square grids are shown deformed by
the diffeomorphism, and the grids are colored with the trace of Cauchy-Green strain
tensor indicative of the mean stretch (log-scale for each row individually). The largest
scales contribute to most of the transport movement with smooth deformations while
the smallest scale performs fine adjustment of the trajectories to obtain a good match.

the LDDKBM method to achieve an arguably superior registration compared to
the corresponding LDDMM registrations which can be found in [6].

6 Conclusion

We have detailed the mathematical foundation behind the LDDKBM frame-
work for registration which extends LDDMM to include deformation at multiple
scales. This includes deriving the KB-EPDiff equations describing the evolution
of critical paths in the framework, and the resulting differential systems give
insight into the geometry behind the framework in addition to being essential
for algorithms for computing the improved registrations. We have provided ex-
amples showing the evolution governed by the KB-EPDiff equations and how
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the deformation differ across scales as well as showing the superior registration
quality of the LDDKBM method on real images.

A further understanding of the structures behind LDDKBM may allow im-
proved discretization and computational schemes to be developed. Therefore,
we expect to look more into the geometry behind the vector bundle construc-
tion of LDDKBM and relate the energy to geometric notions generalizing e.g.
Riemannian metrics to vector bundles on manifolds.
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