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Abstract—Lucy-n is a data-flow programming language similar
to Lustre extended with a buffer operator. It is based on the
n-synchronous model which was initially introduced for pro-
gramming multimedia streaming applications. In this article, we
show that Lucy-n is also applicable to model Latency Insensitive
Designs (LID). In order to model latency introduced by wires,
we add a delay operator. Thanks to this new operator, a LID can
be described by a Lucy-n program. Then, the Lucy-n compiler
automatically provides static schedules for computation nodes
and buffer sizes needed in shell wrappers.

I. INTRODUCTION

The theory of Latency Insensitive Design ([1], [2]) was

introduced to cope with the problem of long wires in Systems

on Chips (SoC). Due to the length of wires, data can take

more than a single clock cycle to go from one computation

node (also known as Intellectual-Property or IP) to another.

It raises the issues of activating IPs only when all inputs

are available and storing the inputs awaiting to be processed.

They are treated by encapsulating each computation node in

a process, called a shell wrapper, that is used as a commu-

nication interface. In order to synchronize all the inputs, the

shell wrappers have a buffer on each input wire. To respect the

desired clock period, long wires are split into shorter segments

by inserting relay nodes, called relay stations.

Different dynamic scheduling protocols for the shell wrap-

pers have been proposed [2], [3]. Those protocols use back

pressure mechanisms to inform the producer node that the

consumer node has no more room to keep the inputs waiting to

be processed. When a producer node is not executed, the shell

wrapper has to inform the consumer node through a control

channel that no valid inputs have been sent.

To avoid the communication overhead introduced by these

dynamic protocols, static scheduling methods have been pro-

posed [4], [5], [6], [7], [8]. Schedules are represented as

ultimately periodic binary words indicating the instants where

nodes have to be executed.

The schedules of [4], [5] and [6] fire the execution of

the nodes As-Soon-As-Possible (ASAP). While in [7] a well-

balanced schedule is sought in order to minimize buffer sizes

for a fixed rate. This method is semi-automatic: prefixes of

schedules must be found by hand. The approach of [8] is to

search for schedules that can be shared between several IPs.

The advantage of this method is that it reduces the complexity

of the algorithm which finds the schedules and simplifies the

circuits needed to generate them.

The approaches for finding schedules are either analytic [4],

[7] or based on simulation [6], [8].

This paper presents a novel analytic way to compute static

schedules for Latency Insensitive Designs by encoding LID

models in the n-synchronous language Lucy-n [9], [10]. The

schedules obtained by the Lucy-n compiler are not yet as

good as the ones obtained by previous techniques. However,

the advantage of our technique is to be able to compose

modularly IPs that have already been statically scheduled. This

can be useful for example when IP blocks are provided as

black boxes. These Statically Scheduled IPs (SSIPs) have the

particularity of not reading all their inputs nor writing all their

outputs at each activation.

The paper is organized as follows. Section II presents the

Lucy-n language. Section III explains how to encode LID

models in this language and presents the new delay operator

that is mandatory for the encoding. Section IV defines the

typing of our new operator and presents a way of solving

the typing constraints. Section V discuss the composition

of SSIPs. Section VI presents experimental results. Finally,

section VII concludes.

The Lucy-n compiler, the complete code of the paper

examples and additional materials are available at http://www.

lri.fr/∼mandel/lucy-n/fmcad11.

II. A BRIEF OVERVIEW OF LUCY-N

Lucy-n [10] is a programming language similar to the

synchronous data-flow language Lustre [11] extended with a

build-in buffer operator. The goal of this language is to relax

synchrony constraints by inserting buffers without abandoning

the guaranties given by synchrony, namely, determinism and

execution in bounded time and memory. To this end, the

compiler must compute both static schedules so that executions

can be performed with finite buffer sizes and the buffer sizes

themselves.

We present the language through the example of a cyclic

encoder that takes as input a stream of bits and returns as

output the same stream where after every 50 bits are added 3
redundancy bits. The program is given Figure 1.

The input flow i goes into a redundancy node that

computes three flows of redundancy bits (line 2): bit0, bit1
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let node cyclic_encoding i = o3 where

rec (bit0, bit1, bit2) = redundancy i

and o1 = merge (1ˆ50 0) i (buffer bit0)

and o2 = merge (1ˆ51 0) o1 (buffer bit1)

and o3 = merge (1ˆ52 0) o2 (buffer bit2)

Fig. 1. Graphical and textual representation of a cyclic encoder in Lucy-n.

and bit2 each producing 1 redundancy bit every 50 bits. The

implementation of this node is based on a classical division

circuit [12].

In parallel, the input flow i is merged with the first flow of

redundancy bits bit0, following the condition (1500) (line 3).

It means that periodically 50 bits of i are read as input and

transmitted as output in o1, then 1 bit of bit0 is read and

transmitted. Following the same principle, periodically, 51 bits

of o1 are merged with 1 bit of bit1 to produce o2 (line 4)

and 52 bits of o2 are merged with 1 bit of bit2 to pro-

duce o3 (line 5). The three flows bit0, bit1 and bit2 are

bufferized such that their values are stored until the instant

they are needed.

In synchronous languages, each flow is associated to a clock

indicating the instants where a value is present. Clocks are

infinite binary words where 1 represent the presence of a value

on a flow and 0 the absence of value. Dedicated types, named

clock types, specify this information. For example, the clock

type of the node redundancy is: 1

∀α. α on (1500) → α on (0501)×α on (0501)×α on (0501)

Here, all the input and output types are expressed relative

to a type variable α which represents the activation rhythm

of the node redundancy and thus defines its notion of

instant. The input type α on (1500) means that whatever the

base rhythm α, periodically, the input must be present for

50 instants of α, then absent for 1 instant. Each of the three

outputs of the redundancy node emits a value on the last

instant of every cycle of 51 instants.

Communication between two nodes is synchronous, i.e. it

can be done without a buffer, if the flow is produced on the

wire at the same clock that it is consumed. Equality of clocks is

ensured by equality of types. So, such synchrony is guaranteed

at compile time by a type system, called a clock calculus.

For example, let us consider the typing rule for the merge

operator where H is a typing environment which associates

types to variables:

H ⊢ ce : ct H ⊢ e1 : ct on ce H ⊢ e2 : ct on not ce

H ⊢ merge ce e1 e2 : ct

1In the rest of the article, we use the term type instead of clock type since
data types are not considered here.
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Fig. 2. First example of synchronous circuit and LID of [4].

This rule indicates that in the typing environment H , the

expression merge ce e1 e2 has type ct if: (1) the merging

condition ce has type ct, (2) the expression e1 has type

ct on ce and (3) the expression e2 has type ct on not ce. It

expresses the synchronous semantics of the merge operator:

with respect to a rhythm ct, the presence instants of the flow e2

(i.e. not ce) are the complement of the presence instants of

the flow e1 (i.e. ce), and the output flow of the merge is

present at each instant of the reference rhythm ct.

In the n-synchronous language Lucy-n, the buffer oper-

ator relaxes the synchronous hypothesis by introducing of a

subtyping rule to the clock calculus.

H ⊢ e : ct ct <:<:<: ct′

H ⊢ buffer e : ct′

This typing rule means that if an expression e has type ct and

if clocks represented by ct are adaptable to clocks represented

by ct′, then we can use the results of e on the type ct′ provided

we store them in a buffer. The adaptability relation ensures that

such buffers are bounded. It is denoted w1 <: w2 where w1 is

the clock of writes into the buffer and w2 is the clock of reads,

and it is defined as the conjunction of two conditions. First, no

reads may occur on an empty buffer, i.e. the jth reading in a

buffer must always occur after the jth writing. Second, there

must be a bounded number of values in the buffer, i.e. the

difference between the number of writes and reads since the

beginning of an execution must be bounded. Theses conditions

can be checked at compile time provided clocks are periodic.

The clock calculus automatically infers the type of

the flows. For example, the type inferred for the entire

cyclic_encoding node is: ∀α.α on (15003) → α. 2 From

such types, it is possible to build a static schedule for the

program and to compute the buffer sizes needed. Here, the

compiler finds that the node cyclic_encoding can be

executed without buffering bit0 and with buffers of size one

for bit1 and bit2. For more information about Lucy-n and

its type system refer to [13], [10], [14].

III. LID ENCODING IN LUCY-N

To illustrate the encoding of Latency Insensitive Designs in

Lucy-n, we use the first example given in [4]. We first model

the synchronous circuit of Figure 2(a), and then we model

the variation of Figure 2(b) where a relay station is added to

model a communication latency from B to A.

2This type shows that the input must be absent during the insertion of the
redundancy bits into the output.



A. Encoding of Computation Nodes

In the theory of LID, each computation node or IP reads all

its input and produces all its outputs at each activation. Hence,

IPs are encoded as Lucy-n nodes of clock ∀α. α× · · · ×α →

α × · · · × α. Since we do not have to know the behavior of

the IPs to compute the scheduling of the system, the IPs can

be represented as dummy nodes with the correct clock type.

For example, the IPs of Figure 2 can be modeled as:

let node ip_A x = x

let node ip_B x = x

B. Encoding of Wires

In the synchronous circuits described in [4], data takes one

clock cycle to go from one IP to another. Hence, a wire

cannot be represented as a Lucy-n variable, because variables

in synchronous languages model instantaneous communication

channels. We thus model wires with a new operator, called

delay, that transmits its input to its output with one instant

of delay.3 With this operator, a wire from a source src to a

destination dst is written:

dst = delay src

To put an initial value on a wire as A0 and B0 in the

example of Figure 2(a), we use the merge operator with the

condition 1(0).

dst = merge 1(0) init (delay src)

The condition 1(0) equals 1 at the first instant then 0 forever.

So, at the first instant, the value init is transmitted to the

destination dst. Then, thereafter, the values coming from the

source src are transmitted.

Now, following the encoding of computation nodes and

wires, we can program the example of Figure 2(a):
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let node figure_2a (init_A0, init_B0) =

(out_A, out_B) where

rec out_A = ip_A in_A

and out_B = ip_B in_B

and in_A = merge 1(0) init_B0 (delay out_B)

and in_B = merge 1(0) init_A0 (delay out_A)

In this node, out_A and out_B are the flows of values

computed by the IPs A and B. The definitions of in_A

and in_B describe the wires between A and B. The node

3Even if the pre operator of Lustre introduces a delay, it does not have
exactly the same semantics as the one of delay. If we consider a flow x of
clock (100), the values of x are output by pre x on the clock 000(100)
whereas they are output by delay x on the clock 0(100). The pre operator
outputs a value only when a new input arrives.

figure_2a takes as inputs init_A0 and init_B0, the

initial values on the wires, and returns as outputs out_A and

out_B, the values computed by the two IPs.

The Lucy-n compiler infers the following type for the

node figure_2a:

∀α. α on 1(0) × α on 1(0) → α × α

It means that the initial values need only be present at the

first instant and that the two IPs produce some outputs at each

instant. Since the presence instants of IPs outputs correspond

to their activation instants, output types give the activation

instants of the IPs, i.e. their static schedules. Here, we can

verify that in the case of the synchronous circuits, all the IPs

must be executed at the same instants.

C. Encoding of Shell Wrappers

In latency insensitive designs, each computation node is

enclosed inside a shell wrapper that controls the activation

of the node and bufferizes the inputs until this activation. To

model this behavior, we need only put a buffer in front of

each input and the activation condition will be automatically

computed by the clock calculus. Hence, if we want to put the

ip_A of the previous example in a shell wrapper, we only

have to write:

out_A = ip_A (buffer in_A)

D. Encoding of Relay Stations

A relay station is just a dummy node that splits a wire into

two segments and thus introduces a delay.

let node relay x = x

Now that we have presented the encoding of computation

nodes, wires, shell wrappers and relay stations, we can model

the circuit of Figure 2(b): 4
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let node figure_2b (init_A0, init_B0) =

(out_A, out_B) where

rec out_A = ip_A (buffer in_A)

and out_B = ip_B (buffer in_B)

and out_R = relay in_R

and in_A = delay out_R

and in_B = merge 1(0) init_A0 (delay out_A)

and in_R = merge 1(0) init_B0 (delay out_B)

The type of the node computed by the compiler is equal to

∀α. α on 1(0) × α on 1(0) → α on (01) × α on (01). It

means that the initial values are used only at the first instant

and that the nodes A and B have to be executed every two

instants from the second instant.

4Notice that there is no initial value on the wire between the relay station
and the ip_A (line 6).



IV. TYPING THE DELAY OPERATOR

The typing rule for the delay operator is similar to the

one for buffer. It introduces a constraint between the types

of its input and output:

H ⊢ e : ct ct′ === shiftr ct

H ⊢ delay e : ct′

The constraint ct′ === shiftr ct means that the clocks

represented by ct′ must be the same as the ones represented

by ct delayed by one instant with respect to the activation

rhythm of the node.

During typing, all the subtyping constraints introduced by

the buffers and all the equality constraints introduced by the

delays are collected. For example, the constraints generated

by typing the node figure_2b are:






















αinA
on (1) <:<:<: αoutA

on (1)
αinB

on (1) <:<:<: αoutB
on (1)

αinA
on (1) === shiftr (αR on (1))

αinB
on 0(1) === shiftr (αoutA

on (1))
αR on 0(1) === shiftr (αoutB

on (1))























The collection and resolution of subtyping constraints is

explained in [14]. Here, we extend this technique to cope with

the constraints introduced by delays.

The resolution algorithm has the following structure:

1) Express all the constraints with respect to the same type

variable. This variable represents the reference rhythm

of the node. In our example, we state that αinA
=

α on cinA
, αoutA

= α on coutA
, αinB

= α on cinB
,

αoutB
= α on coutB

and αR = α on cR where cinA
,

coutA
, cinB

, coutB
and cR are unknown infinite binary

words.

2) Since all constraints are now expressed with respect to

the same type variable, simplify them into constraints

over binary words. Here, we get:






















cinA
on (1) <: coutA

on (1)
cinB

on (1) <: coutB
on (1)

cinA
on (1) = 0(1) on cR on (1)

cinB
on 0(1) = 0(1) on coutA

on (1)
cR on 0(1) = 0(1) on coutB

on (1)























and the variables cinA
, coutA

, cinB
, coutB

and cR

become the new unknowns of the system.

3) Translate constraints on words into linear constraints on

integers representing the index of the 1s of the unknown

words of the system.

4) Solve these constraints using standard techniques.

The main difference with the former resolution algorithm

is the presence of the shiftr operator. It does not affect

step 1 of the algorithm. You can notice that at step 2, typing

constraints of the form αx on px === shiftr (αy on px)
have become constraints on words of the form cx on px =
0(1) on cy on py , where the on operator is defined as

follows:

0.w1 on w2

def
= 0.(w1 on w2)

1.w1 on 1.w2

def
= 1.(w1 on w2)

1.w1 on 0.w2

def
= 0.(w1 on w2)

If we consider w1 and w2 as clocks, the intuitive semantics

of this operator is that w1 on w2 is the clock w2 executed on

the rhythm w1. Therefore, 0(1) on w is the clock w executed

from the second instant. It corresponds to the clock w shifted

by one instant.

Thanks to this translation, delays generate constraints that

have the same nature as constraints coming from buffers and

thus, steps 3 and 4 can be done similarly as before.5

V. COMPOSITION OF STATICALLY SCHEDULED IPS

To the best of our knowledge, the only work on the

composition of Statically Scheduled IPs (SSIPs) is [15], where

different composition techniques are proposed depending on

the nature of SSIPs involved.

For SSIPs where the same number of values are con-

sumed and produced on all ports, they propose using dynamic

scheduling protocols like those used in the dynamic scheduling

of LIDs. If it is not the case, they propose encoding the

composition of SSIPs with Synchronous Data-Flow graphs

(SDF) [16]. This encoding is similar to the encoding of Cyclo-

Static SDF graphs [17] into SDF. It raises two problems. First,

the initial phases of the schedules cannot be encoded. Second,

the encoding is an abstraction where some information is lost

and thus correct networks with cycles may be rejected.

In the context of Lucy-n, the composition of SSIPs is clas-

sical node composition. Indeed, in Lucy-n nodes, consumption

and production patterns are arbitrarily complex ultimately

periodic binary words, so SSIPs are Lucy-n nodes. We think

that the main strength of our method is that it treats with IPs

and SSIPs uniformly.

VI. EXPERIMENT

One of the LIDs that we have encoded is shown in Figure 3.

It is the MPEG-2 video encoder from [2] where the relay

stations are at the same places as in [4]. This program is

compiled by the Lucy-n compiler in less than 0.1 seconds

and has the following type:

mpeg :: ∀α.α on (10) → α on 0(10)

The throughput of the solution computed with our algorithm

is 1/2 whereas the one of the solution computed in [4] is 2/3.

Nevertheless, the programmer can give a hint to the compiler

with an option -nbones 2 asking it to seek a solution with

twice as many 1s in the periodic pattern of the schedule. With

this option, the new solution is: 6

mpeg :: ∀α.α on (110) → α on 00(101)

with a throughput of 2/3.

5As <: is antisymmetric, equality constraints can be translated into two
inverse adaptability constraints.

6The compilation line is: lucync -nbones 2 -obj r mpeg.ls.
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Fig. 3. MPEG-2 video encoder as found in [2], [4].

For the moment, only a few small-scale experiments have

been performed, but thanks to our experiments on other Lucy-n

programs [14], we think that it is possible to schedule systems

with hundreds of elements.

VII. CONCLUSION

The contribution of this paper is the introduction of a delay

operator to the language Lucy-n and a demonstration of its

utility for modeling Latency Insensitive Designs. The benefit

of modeling LIDs in Lucy-n is that it gives a new algorithm

to automatically compute static schedules for the designs. The

advantage of this method is that it allows designs that have

already been scheduled to be incorporated in compositions.

We are working to improve the quality of the schedules. We

can already influence the resolution algorithm by choosing the

number of 1s in the sought solution and by giving different

objective functions during step 4 of the typing algorithm, for

instance to privilege buffer sizes or throughput. Nevertheless,

we do not yet have optimality results. Thus, we hope to adapt

the results of the works cited in this article. Note, however,

that our problem is more difficult because the consumption and

production patterns are more complex. But, this is precisely

why we can deal with IPs and SSIPs uniformly.
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