
HAL Id: hal-00665866
https://inria.hal.science/hal-00665866

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Searching the boundaries of a modeling space to test
metamodels

Juan Cadavid, Benoit Baudry, Houari Sahraoui

To cite this version:
Juan Cadavid, Benoit Baudry, Houari Sahraoui. Searching the boundaries of a modeling space to test
metamodels. Fifth IEEE International Conference on Software Testing, Verification and Validation,
Apr 2012, Montréal, Canada. �hal-00665866�

https://inria.hal.science/hal-00665866
https://hal.archives-ouvertes.fr

Searching the boundaries of a modeling space to test metamodels

Juan José Cadavid Gómez
INRIA, Centre Rennes

Bretagne Atlantique, Rennes, France
Email: juan.cadavid@inria.fr

Benoit Baudry
INRIA, Centre Rennes

Bretagne Atlantique, Rennes, France
Email: benoit.baudry@inria.fr

Houari Sahraoui
Université de Montréal

Informatique et Recherche Opérationnelle
Montréal, Québec, Canada

Email: sahraouh@iro.umontreal.ca

Abstract—Model-driven software development relies on
metamodels to formally capture modeling spaces. Metamodels
specify concepts and relationships between them in order to
represent either a specific business domain model or the input
and output domains for operations on models (e.g., model
refinement). In all cases, a metamodel is a finite description
of a possibly infinite set of models, i.e. the set of all models
which structure conforms to the description specified in the
metamodel. However, there is currently no systematic method
to test that a metamodel captures all the correct models of
the domain and no more. In this paper, we focus on the
automatic selection of a set of models in the modeling space
captured by a metamodel. The selected set should both cover
as many representative situations as possible and be kept small
as possible for further manual analysis. We use simulated
annealing to select a set of models that satisfies those two
objectives and report on results using two metamodels from
two different domains.

I. INTRODUCTION

A metamodel is a set of concepts within a domain of
knowledge and the possible relationships that may occur
between them. As such, a metamodel defines the structural
properties that must be satisfied by all models in that domain.
For example, the UML metamodel [1] defines the structure
of models that represent software systems, while the SPEM
metamodel [2] defines the structure of process models. More
generally, the construction of a metamodel aims at formally
capitalizing the structure of a domain in order to let all
the stakeholders in that domain exchange models that share
structural constraints. Metamodels also serve as a basis to
build model editors, model analyzers and code generators
for a specific domain.

Although metamodels play a central role for the definition
of a domain and all associated tools, metamodeling is still
a craft, where the craftsmen are the domain experts. They
usually look at existing practices, exchange with stake-
holders who build models in that domain and identify the key
concepts that are necessary to describe abstractions in that
domain. Then, they refine this list of concepts, add attributes
and relationships, and this provides an initial metamodel.
A major issue when designing a metamodel is usually
to set the boundaries correctly, i.e. set all relationships
and multiplicity constraints correctly. However, there is no
systematic technique to test these boundaries correctly.

In this paper we propose an automated technique to
sample the modeling space captured by a metamodel. This
consists in the automatic generation of a set of test models
that conform to the constraints defined by the metamodel
and that globally cover the modeling space. A set of test
models will enable domain experts to confirm possible
desired situations. But more importantly, it will assist them
in identifying undesired situations, pinpointing faults in
the metamodel, leading to corrections to obtain a precise
metamodel. It becomes thus necessary to find an adequate,
manageable set of test models, allowing the experts to test
a metamodel.

An adequate set of test models should cover the modeling
space, showing all relevant cases of possible models, and
should favor diversity to increase the chances of revealing
different findings. The coverage of the modeling space is
based on previous work by Fleurey et al. [3], which proposes
the notion of model fragments to partition the space. We
define a new diversity function for a set of models, which
evaluates whether the models in the set cover different parts
of the space. Both coverage and diversity are formalized and
passed as a fitness function for a simulated annealing search
that aims at automating the selection of an adequate set of
test models.

A series of experiments with two metamodels demons-
trates that (i) our approach can automatically provide the
expert with a diverse set of models that covers the modeling
space; (ii) our choice of parameters for simulated anneal-
ing search represents the best choice in maximizing these
criteria; and (iii) our approach systematically generates a
better set than random search with respect to coverage and
diversity.

The paper is organized as follows. Section II explores
the metamodeling definitions necessary to state our problem,
which is presented in section III. Section IV discusses our
proposed approach and the criteria used to qualify models.
Section V discusses our approach based on the search-based
technique of Simulated Annealing. In section VI we present
our empirical validation study of our approach, section
VII presents related work and section VIII points out our
conclusions and future work.

II. BACKGROUND

In this section, we present the basic definitions to describe
our problem. Then, we illustrate our motivation with exam-
ples.

A. Metamodeling

A metamodel defines the abstract syntax of a modeling
language. In the same way a formal grammar provides pro-
duction rules for a formal language, a metamodel specifies
what kind of constructs are available in a modeling language
and how these constructs can relate to each other. Normally,
modeling languages also provide a concrete syntax to allow
the user visualize models in a friendly way. We present a
simplified definition of metamodel presented in the Meta-
Object Facility (MOF) specification [4].

Definition 1: Metamodel (MM). A metamodel is defined
as the composition of:
• Classes. The core concepts and attributes that define the

domain of the modeling language. Clases may contain
properties, specifying the range of values each one can
take.

• Relationships. Associations between classes that
specify how the concepts can be bound together in this
modeling language. Relationships define multiplicities,
specifying the minimal and maximal number of occur-
rences.

When a model is built with a particular modeling lan-
guage, we say that this model is an instance of the meta-
model of this modeling language. Formally, the relationship
between models and metamodels is given by the instanceOf
predicate [5].

Definition 2: instanceOf(m, MM). A model instance m
of a metamodel MM is such that:
• Every object o in m is the instance of a class C in
MM . It is also said that o is of type C.

• Every link between two objects in m is such that it
exists, in MM , a relationship between the two classes
typing the two objects.

• Every semantic property defined in MM is satisfied in
m. For instance, the multiplicity defined on references
between concepts denotes a range of possible links
between objects of these classes (i.e. concepts).

Example 1: Figure 1 provides a subset of the metamodel
for Feature Diagrams, a modeling language issued from
the field of Feature-Oriented Domain Analysis [6]. It was
created to allow software developers to reason over a large
number of variants for their software systems, composed of
different sets of features. The notation used in the figure is
provided by the MOF standard. A Feature represents a
functional feature of a product. A Feature has a name
and may or may not be optional. It may have zero or
more children Features, as specified in the multiplicity
“0..*” in this relationship in the metamodel, meaning that

Operator

And OrPrimitiveFeature

Feature
name: String
optional: Boolean

operator
0..*

parent
0..1

features
1..*

owningFeature
1

children
0..*

Figure 1. Metamodel for Feature Diagrams.

Gearbox

Manual Automatic

Figure 2. A feature diagram in the modeling language’s concrete syntax.

this feature is the composition of several simpler features
(also known as subfeatures). The parent relationship is the
opposite of the children relationship. A special type of
Feature is PrimitiveFeature, which are elemental
features that cannot be further decomposed and thus have no
subfeatures. Features can also relate to each other through
Operators. An Operator is owned by a Feature
and might have one or more Features as operands, as
specified in the multiplicity “1..*”. The And operator means
that all of its operand Features must be present in a
product, whereas the Or operator means that at least one
of them must be present. Figure 2 shows a feature diagram
drawn with the concrete syntax of the modeling language;
Features are represented as rectangles and the Or op-
erator is represented as a filled circular sector. The model
defines the Gearbox feature which can have as subfeatures
Manual or Automatic transmission. Figure 3 shows the same
model, otherwise represented in the notation of UML object
diagrams, in order to represent in an explicit way how this
model contains object instances of classes in the metamodel
as well as the value of each one of its properties.

B. Motivating metamodel testing

Although MOF is a powerful yet simple language to
define metamodels, their construction can be difficult and
is prone to many possible faults. To illustrate the kind of
errors that can occur in a metamodel, and the way these
errors can be exhibited by test models, we examine once
again the metamodel for Feature Diagrams.

gearbox : Feature
name="Gearbox"
optional=False

name="Manual"
optional=False

manual : Featurechildren

parent

or1 : OrowningFeature
featuresoperator

name="Automatic"
optional=False

automatic : Feature
featureschildren

parent

Figure 3. Object diagram for a Feature Diagram model instance.

Gearbox

Manual

Figure 4. Incomplete feature diagram; the Or operator has only one
operand.

Example 2: Figure 4 shows again the example of a fea-
ture diagram, this time showing only one subfeature for
Gearbox. The feature diagram in this example portrays
the configuration of a product that presents the Gearbox
Feature, which has as a child, the Manual Feature. The
two features are linked by an Or operator. This model satis-
fies the abstract syntax of the metamodel presented in figure
1. However, to the domain expert of feature diagrams, it
reveals an error in the metamodel. The Or operator has only
one operand; the logical disjunction operator implies there
should be at least two operands. The concerned relationship
of the metamodel is the “features” relationship, originating
from the Operator metaclass. It has been defined with a
multiplicity [1..*], effectively allowing the situation of an Or
operator with only one operand to take place. In this case,
we say the metamodel is underconstrained, because it allows
for undesired situations to occur. In order to alleviate this
problem, the expert can correct the metamodel by increasing
the lower bound of the multiplicity range to 2.

Example 3: Let us look again at the feature diagram on
figure 2. It expresses that the feature Gearbox can have
Automatic or Manual transmission. However, this operator
refers to the logical operation of inclusive disjunction, in
which one or more of the operands are required to be
present, therefore indicating that a Gearbox may be both
Automatic and Manual. As this is not the case according
to the domain, a new operator is needed to represent the
disjunctive nature of these features. By providing only the
Or operator, the metamodel is specifying that all models
containing operators to link features specify either the in-

Operator

And XorPrimitiveFeature

Feature
name: String
optional: Boolean

operator
0..*

parent
0..1

features

2..*

owningFeature
1

children
0..*

Or

Figure 5. Metamodel for Feature Diagrams with the corrected multiplicity
and the Xor operator.

clusive disjunction operator Or or the conjunction operator
And. In this form, it is refraining models from expressing
any other operator than these two. We say in this case that
the metamodel is overconstrained. To remedy this problem,
a third operator which accurately captures the relationship
between features, Xor, is added to the metamodel.

Figure 5 shows the metamodel with the two mentioned
corrections.

Our approach aims at providing the expert with a set of
models that will allow him to test the metamodel, by spotting
errors in the generated sets of models. To test a metamodel,
the only testing oracle is the expert, who in his knowledge
of the domain will determine what makes a correct instance
or not. As there is no way to possibly automate this, a small,
manageable and test-adequate set of models will allow him
to test his metamodel, and make adjustments as needed in
order to obtain a precise metamodel.

III. PROBLEM STATEMENT

In what follows, we establish the formal definition for our
problem. A metamodel captures the set of all the possible
valid models for a modeling language. We call this set the
modeling space.

Definition 3: A Modeling Space (MS) is the set of all
possible model instances that conform to a metamodel:

MS(MM) = {m : model|instanceOf(m,MM)}

As illustrated in figure 6, the modeling space captured
by a metamodel might be larger than initially intended by
the domain expert. As shown in the preceding examples,
there are models that satisfy the abstract syntax defined by a
metamodel, yet they are incorrect according to the domain’s
expert and thus do not belong to the intended modeling
space. This gap between the default modeling space captured
by a metamodel and the precise modeling space intended by
the expert, leaves room for incorrect models, thus indicating
faults in the metamodel. Thus, the metamodel must be tested
to find undesirable situations to remove from the captured
modeling space, as well as adding missing desired situations.
In section II, example 2, a detected undesired situation
resulted in a correction that contracted the boundaries of

Metamodel

Modeling
Space

Intended Modeling
Space

Incorrect Models

Figure 6. Default modeling space created by a metamodel and precise
modeling space

the modeling space to include only correct multiplicities. On
the other hand, example 3 showed how the metamodel being
overconstrained resulted in a modification which expanded
the boundaries to contain instances with a new operator.

In an industrial context, a more critical outcome is
visible as experts across different domains design mode-
ling languages with metamodels which tend to be much
larger, defining a significant higher number of classes and
relationships. Therefore, an automated approach aimed at
obtaining data to test such metamodels becomes necessary.
The following section presents our approach to solve this
problem, leveraging search-based techniques to avoid the
combinatorial explosion resulting from the exploration of
the entire modeling space.

IV. CRITERIA FOR THE QUALIFICATION OF TEST
MODELS

In this section we introduce the generalities of our ap-
proach. Then, we present the mechanism to qualify the test
models and the formal definitions to quantify the satisfaction
of the criteria by a set of test models.

A. Approach

In a nutshell, our approach starts from a metamodel MM
and selects a sample from the modeling space captured
by MM . In order to provide a relevant sample to test
the metamodel, such sample must satisfy the following
characteristics:
• Small, to allow the expert to detect faults in the

metamodel with a reduced effort in manual analysis.
• Complete, to cover all possible concepts, relationships

and property values defined in a metamodel.

• Dissimilar, i.e. the models within the sample should
bear little similarity between themselves, in order to
increase diversity.

The goal of making the set of test models small is
parallel to that of making it dissimilar; a smaller set will
contain less similarities between the models than a larger
set. Therefore, our approach focuses in the maximization
of coverage and dissimilarity, and as such it guarantees the
coverage of relevant cases of the modeling space and favors
diversity to increase the chances to reveal different findings.
The idea of defining a function to evaluate for similarity
among test cases in order to increase diversity has been
treated before in other software testing approaches [7]. In
this section we provide formal definitions to measure both
criteria. However, before that we examine the underlying
framework that permits us to measure these criteria in
models, according to the modeling space captured by its
metamodel.

B. Model Fragments to Qualify Test Models

The qualification of model instances according to ad-
equacy criteria is based on the mechanism presented in
[3], which aimed at qualifying test data for model trans-
formations. This approach is based on category partition
testing, which guarantees input domain coverage. It creates a
partition in every field in a metamodel; therefore making the
total set of such partitions the complete set of possible value
settings of the metamodel. This approach defines the notion
of Model Fragments. A model fragment is the specification
of a range of values of the metamodel that a model instance
may cover or not.

Definition 4: A Model Fragment (MF) of a metamodel
MM is a tuple of:
• A class of the metamodel MM .
• The property or relationship of the class for which it

specifies a value or a multiplicity range.
• The range of values for such property.
A model fragment is covered by a model if such model

contains an object with a property in the declared value
ranges of the model fragment. An exhaustive definition can
be found at [3].

Example 4: Model fragments computed for the meta-
model in figure 5.
1: mf(Feature,name,StringRange

(regexp:))
2: mf(Feature,name,StringRange

(regexp: +))
3: mf(Feature,optional,BooleanRange

(boolValue: true))
4: mf(Feature,optional,BooleanRange

(boolValue: false))
5: mf(Feature,operator,IntRange

(lower: 0, upper: 0))

6: mf(Feature,operator,IntRange
(lower: 1, upper: 1))

7: mf(Feature,operator,IntRange
(lower: 2, upper: MAX_INT))

8: mf(Feature,children,IntRange
(lower: 0, upper: 0))

9: mf(Feature,children,IntRange
(lower: 1, upper: 1))

10: mf(Feature,children,IntRange
(lower: 2, upper: MAX_INT))

11: mf(Feature,parent,IntRange
(lower: 0, upper: 0))

12: mf(Feature,parent,IntRange
(lower: 1, upper: 1))

13: mf(Operator,owningFeature,IntRange
(lower: 1, upper: 1))

14: mf(Operator,features,IntRange
(lower: 2, upper: MAX_INT))

It can be seen that the overall set of 14 fragments form the
complete partition of ranges of all properties and relation-
ships defined in the metamodel. For the “name” property of
Feature, there are fragments specifying both the empty
(“”) and non-empty string (“+”). For the “optional” feature,
fragments are generated with both possible values, true and
false. For the relationships, their multiplicity is fragmented
according to the allowed multiplicities as they were specified
in the metamodel. For example, in the case of the “children”
relationship, which has a multiplicity of 0..*, a partition
such as {{0}, {1}, {x|x ≤ 2}} is defined to ensure that the
partition of fragments cover the occurences of this property
with zero, one and more than one objects.
For our purposes we define the covering function, a boolean
function that determines whether a model covers or not a
model fragment.

Definition 5: The function covering(MF,MI) returns
true if:

• If the model instance (MI) contains at least an object
for which the model fragment (MF) provides a range
of values.

• If such object defines a property within the value
or multiplicity range that the model fragment (MF)
specifies.

Example 5: The instance given in figure 2 covers the
fragments 2, 4, 5, 6, 8, 10, 11, 12, 13 and 14 of the Feature
Diagram metamodel.

Finally, we define the total set of model fragments com-
puted for a metamodel as follows.

Definition 6: A Metamodel Fragments Partition
(MFP) is the set of all possible model fragments for a
metamodel, where there is a model fragment for each value
and multiplicity range for each property of each class in
the metamodel.

In order to compute model fragments for any given
metamodel, our approach leverages on Metamodel Coverage
Checker [3], which automatically calculates the MFP for an
input metamodel.

C. Criteria Definitions

For the following definitions, let sm be a set of models
such that sm ⊆ MS(MM). Let CMF (sm) be a function
that returns the set of model fragments covered by a sm;
in other words, every model fragment being covered by at
least one model.

CMF (sm) = {mf ∈MFP |∃mi ∈ sm|
covering(mf,mi)}

1) Metamodel coverage criterion: The portion of mode-
ling space covered by a set of test models is measured by
the number of model fragments the set covers, normalized
by the size of the entire model fragment partition.

coverage(sm) =
|CMF (sm)|
|MFP |

2) Dissimilarity criterion: As a small set will be sus-
tained, different test models showing heterogeneous scenar-
ios will allow to explore different cases and reveal new
findings. We quantify the diversity of the set of test models
by counting the number of fragments which are covered
more than once by the test models in the set. Let IC(mf)
be a function that returns the subset of instances covering a
specific model fragment.

IC(mf) = {mi ∈MS|covering(mf,mi)}

We calculate excess coverings (EC), the sum of the number
of times every model fragment has been covered in excess,
i.e. more than once.

EC =

|CMF |∑
i=1

|IC(mfi)| − 1

In order to normalize this count of excess coverings, we
have defined a metamodel-specific parameter called model
fragment redundancy tolerance (MFRT). This parameter
specifies the number of times we will tolerate a model
fragment to be covered in excess; we have set its value to
one tenth of the size of the model fragments partition, which
allows for a tolerable level of similarity between instances.

MFRT =
|MFP |

10

The dissimilarity of the set of models is thus computed
as follows.

dissimilarity(sm) = max

(
0, 1− EC

MFRT × |CMF (sm)|

)
The following section presents how we have implemented

our approach, while taking these two definitions to evaluate
the adequateness of the set of test models.

V. SOLUTION SEARCH STRATEGY

To achieve finding the best possible set of test models
in a modeling space that best satisfies our criteria, it would
be required to perform a complete combinatorial coverage.
As this is prohibitively expensive computationally, we have
leveraged search-based techniques to build our approach,
being able to explore the search space. In our case, the
search space are all the possible combinations of models
contained in the modeling space. This section explains the
implementation of our approach with our chosen search-
based technique.

Simulated Annealing (SA) is a local search metaheuristic
inspired by the metal annealing process of metallurgy, where
a crystalline solid is heated and then allowed to cool down
according to a cooling schedule until it achieves its most
regular possible crystal configuration, and thus is free of
crystal defects. To succeed in this, the lattice energy state is
minimized, thus obtaining a homogeneous material structure
[8]. An interesting quality of this technique is that the
evaluation of the fitness of the solution occurs only once
per iteration, and therefore it is appropriate for applications
where the fitness function deals with complex structures, as
it is our case. We have chosen this technique for this reason.

It is important to remember nevertheless, that the motiva-
tion for search-based techniques is that applications do not
require strictly finding the global optimum, but a “good”
solution would suffice to achieve the application-specific
goals. For example, in generation and selection of test data
for programs, the goal is to cover more of the uncovered
paths; however an almost perfect solution can satisfy the
needs of testers, as suggested in surveys of search-based
approaches in software engineering such as [9] and [10].

Algorithm 1 shows the Pseudocode of the implemented
Simulated Annealing algorithm. As it is a local search
technique, it works in a single thread of execution while
creating and evaluating only one solution at every iteration.
The basic workflow is as follows. The initial temperature
is set. An initial random solution is taken from the search
space. Its fitness value is calculated. Then, the iterative cycle
of the algorithm begins. This cycle is controlled by the
temperature parameter, which ends once the temperature is
cold enough i.e. the minimal temperature has been reached.
In every iteration, the neighborhood function is invoked to
obtain a new solution, very similar to the current solution.
The fitness value for this new solution is computed, and if it
is higher to that of the current solution, the new solution is
accepted as the new best. If it is not higher, the solution
can still be accepted according to a probability function
(this is the mechanism that prevents the algorithm from
getting trapped in local optima). The current temperature
is decreased according to the cooling schedule, and a new
iteration begins.

Algorithm 1 Simulated Annealing simplified pseudocode.
1: t← INIT TEMPERATURE
2: s← INIT SOLUTION
3: e← measure(s)
4: sbest← s {set best solution to initial solution}
5: while t < MIN TEMPERATURE do
6: for i = 1→ N ITERATIONS do
7: snew ← neighborhood(s) {explore new solution

in the space}
8: enew ← measure(snew) {fitness function}
9: ∆s← e− enew

10: if ∆e < 0 then
11: s← snew {better solution, accepted}
12: e← enew
13: if enew > ebest then
14: sbest← snew {new best solution}
15: ebest← enew
16: end if
17: else
18: random← random()
19: probability ← exp(−∆e

t)
20: if random < probability then
21: s← snew {bad solution accepted}
22: end if
23: end if
24: end for
25: t← coolDown(t)
26: end while
27: return sbest.

A. Neighborhood Function and Modeling Space Generation

In every iteration, the SA algorithm explores the search
space by evaluating a solution very similar to the current one.
In order to find ’nearby’ solutions, the SA algorithm requires
the definition of a neighborhood function. This function,
applied in line 7 of the shown pseudocode, takes as input
the current solution and returns a new solution, which should
be similar enough to cause a slight variation on the fitness
value. Our implementation of this function takes the current
solution as an input (i.e. the current set of models) and
applies randomly one of two possible operations: removes
a random test model from the current set in evaluation or
adds a random test model from the modeling space.

On the other hand, it is also requirement for a neigh-
borhood function to be able to obtain any possible solution
within the search space. We use Alloy [11] to enable the
generation of the modeling space. Alloy is lightweight
formal language to specify object models and its associated
well-formedness rules as basic first-order logic formulas.
Its accompanying tool, Alloy Analyzer, permits to generate
automatically random examples for object models. This
capacity has allowed several Model-Driven Engineering ap-

proaches to take advantage for the automatic generation of
test instances for metamodels [12], [13]. We have created
an Alloy-powered Java program capable of enumerating the
complete modeling space for the input metamodel.

B. Fitness function

Perhaps the most critical aspect of the implementation of
a search-based technique, is the definition of a function that
allows the algorithm to tell a better solution from another
(line 8). In order to balance out the criteria given in section
IV, we have developed two versions of the fitness function.
For a specific set of models sm, its fitness value is calculated
as follows.

1) Weighted fitness function: This version of the fitness
function aims to assign a weight to each one of the two
adequateness criteria. The α value will determine the weight
given to the criteria of metamodel coverage.

score(sm) = α ∗ coverage(sm)
+(1− α) ∗ dissimilarity(sm)

2) Minimal Coverage Multi-category fitness function: It
aims to guarantee a minimal coverage of the metamodel, and
have solutions not meeting such coverage be penalized. This
causes the SA algorithm to reject them. We believe that in
most cases where model instances will be used for testing
in the scenarios exposed in section II, the minimal coverage
should be 90%. Thus the MIN COV ERAGE parameter
is set to 0.9.

score(sm) =
dissimilarity(sm)/2
if coverage(sm) < MIN COV ERAGE
0.5 + dissimilarity(sm)/2
if coverage(sm) ≥MIN COV ERAGE

C. Additional details of implementation

Below are other important implementation decisions.
Numeric parameters: The outcome of search-based

techniques such as simulated annealing is highly sensitive
to the choice of parameters that control its execution. In the
implementation of our approach, we found that the values
of the numeric parameters (initial and final temperature,
cooling factor, number of iterations) determinate the quality
of the resulting solutions, with respect to the defined test-
adequacy criteria in section IV. We analyze this behavior in
our validation experiments.

Initial solution: In our case, the initial random solution
picked by the algorithm to start iterating corresponds to
a random set of models from the modeling space of the
metamodel under test. The size of this set is also random.

Probability function: We use the standardized form for
SA implementations which follow the Metropolis-Hastings
algorithm [14]. The decision to move to a new solution is
not ruled by the fact that the new solution has to be a better
one, but a probability function is provided to allow for bad
solutions to be accepted while the temperature is high.

Implementation in Code: The approach was built in
Java. In order to manage the complexity of models, the
Eclipse Modeling Framework (EMF)[15] was used. The
Metamodel Coverage Checker, also implemented in Java,
analyzes the structure of the metamodel in order to construct
the partition of model fragments. The metamodel is encoded
in Ecore, which is EMF’s dialect of the MOF standard for the
construction of metamodels. Model instances are encoded in
XMI (XML Metadata Interchange).

VI. VALIDATION

The goal of our empirical study is to validate the configu-
ration of parameters and effectiveness of our approach. The
quality focus is the ability of our approach to generate sets of
models that effectively allow the expert to detect faults in the
metamodel by pinpointing the boundaries of the modeling
space described by the metamodel. The perspective to be
confirmed is that our approach, successfully applied to
two metamodels, one of them at the scale of an industrial
application, can be applied to other domains. The research
questions we aim to answer with this empirical study are:
• Does our approach provide automatically sets of test

models for a given metamodel, satisfying the defined
criteria coverage?

• What is the configuration of parameters for our ap-
proach, that yields the best results, judged by the
measure of the test adequacy criteria?

• Is our approach to generation of sets of test models
better than random generation judged by the measure
of the test adequacy criteria? If so, to what extent?

A. Metamodels for Experimental Data

We have taken two metamodels at different scales.
• Statecharts Metamodel. A reduced version of the

statecharts metamodel, containing in total 5 classes, 4
properties and 10 relationships.

• Feature Diagrams Metamodel. The complete version
of the feature diagram metamodel, as it is formally
defined by Perrouin et al. [16]. It contains in total 18
classes, 11 properties and 19 relationships.

B. Parameter configuration

One of the critical aspects of the application of search-
based techniques is finding the right configuration of pa-
rameters. We sampled the set of all parameter values com-
binations (section V) by selecting all pair-wise interactions
between values, resulting on the 15 configurations shown
in table I. Given the importance of metamodel coverage,

Table I
VALIDATION EXPERIMENTS WITH PAIR-WISE CONFIGURATION OF

PARAMETERS

Exp ID Fitness
Function

Number
of Iter.

Initial
Temp.

Final
Temp.

Cooling
Factor

exp01 Weighted 100 10 0,01 0,9
exp02 Weighted 500 50 0,001 0,9
exp03 Weighted 1000 100 0,0001 0,9
exp04 MinCoverage 100 50 0,0001 0,9
exp05 MinCoverage 500 100 0,01 0,9
exp06 MinCoverage 1000 10 0,001 0,9
exp07 Weighted 100 100 0,001 0,9
exp08 Weighted 500 10 0,0001 0,9
exp09 Weighted 1000 50 0,01 0,9
exp10 Weighted 1000 100 0,0001 0,95
exp11 Weighted 100 10 0,01 0,95
exp12 MinCoverage 500 50 0,001 0,95
exp13 MinCoverage 500 50 0,001 0,99
exp14 Weighted 1000 100 0,0001 0,99
exp15 Weighted 100 10 0,01 0,99

coverage coverage coverage coverage

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dissimilarity dissimilarity dissimilarity dissimilarity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

exp04 exp05 exp06 exp14

Figure 7. Coverage and dissimilarity measures for the feature diagrams
metamodel

we have assigned a weight of 70% of the weighted fitness
function. Therefore, the dissimilarity criterion has a weight
of 30%, in order to exclude the cases where boundary
models (e.g. a model with no objects at all) provoke a
high dissimilarity measure but do not increase the overall
metamodel coverage. Thus the weighting parameter α or
the weighted fitness function has been set to 0.7. Throughout
the different configurations, we have realized that this value
balances out properly the coverage of the adequacy criteria.

Each one of these configurations was executed in series
of 3 repetitions each. For reasons of space, we only show
the outcome of experiments 4, 5, 6 and 14. The results
of the remaining experiments are very similar to these.
Figures 7 and 8 show the measures of adequacy criteria
for the feature diagram and statecharts metamodels. In
both cases, the coverage measure approaches 1, while the
dissimilarity measure shows a median of 0.7 for feature
diagrams and 0.8 for statecharts. We observe that of all
explored configurations of parameters, in both metamodels
exp14 shows the best trade-off between dissimilarity and

coverage coverage coverage coverage

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dissimilarity dissimilarity dissimilarity dissimilarity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

exp04 exp05 exp06 exp14

Figure 8. Coverage and dissimilarity measures for the statecharts meta-
model

coverage, which suggest that this particular configuration can
be applied to execute our approach with other metamodels
with equally effective results.

C. Validation against random

To validate the adequacy of the sets of test models
generated by our approach against randomly generated sets,
we compare the measures of the adequacy criteria in both
cases. We use the exp14 configuration of parameter values
for this comparison experiment, since this was the most
effective in the preceding phase of the empirical validation.

For each metamodel, a series of 20 sets of models were
randomly chosen from the modeling space. The size of
these sets were also chosen randomly. On the other hand,
the implementation of our approach was executed in 20
repetitions, to obtain 20 optimized sets of models. We
use the measures of our adequacy criteria (coverage and
dissimilarity), to compare both collections of sets.

Figure 9 shows the comparison of the coverage criteria of
the random sets versus the sets generated by our approach.
As expected, our approach generates sets of test models
that effectively cover almost the totality of the metamodel
elements and value ranges, against an average coverage
provided by randomly generated test sets of 80% for the
statecharts metamodel and 50% for the feature diagrams
metamodel.

As for the criterion of dissimilarity, figure 10 shows
the same comparison. We observe that for the statecharts
metamodel, the solution with our approach is significantly
more dissimilar than the randomly generated solution. As
for the metamodel of feature diagrams, the dissimilarity is
improved but to a lesser extent, a median difference of 0.15.
This is due to the relative large size of the feature diagram
metamodel, which makes it harder to ensure diversity in the
test models while keeping a high coverage. Additionally, the
dissimilarity scores present a high variation measure, as can
be observed by the size of the boxes. This can be due to
the weight of 30% this criterion has been assigned to in the

Optimal Random Optimal Random

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Feature Diagrams
vs.

Statecharts
vs.

Figure 9. Comparison of the coverage criteria measure, optimal solutions
generated by our approach vs. random solutions for both metamodels

Optimal Random Optimal Random

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Feature Diagrams
vs.

Statecharts
vs.

Figure 10. Comparison of the dissimilarity criteria measure, optimal solu-
tions generated by our approach vs. random solutions for both metamodels

implementation of the weighted fitness function.
To this end, we can assert that our approach does improve

the results of randomly generated sets of test models, judged
by the measure of the adequacy criteria.

D. Conclusions

Our approach effectively provides an optimized set of test
models for both metamodels tested. In both cases, a specific
configuration of parameters was found, which guarantees an
almost maximum of coverage, suggesting that the obtained
solutions cover almost 100% of the modeling space captured
by both metamodels. Regarding the dissimilarity measure,
the scores ranged from 0.7 to 0.8, ensuring the diversity of
the solution. The sets of models generated by our approach
excel those generated randomly based on the satisfaction of
our adequacy criteria.

E. Threats to validity

Despite the results showing that the aimed goals have
been attained, as with every empirical validation effort, it
is important to acknowledge possible threats to the validity
of our experiments. Their nature can be internal, external
and of construction.

Construction threats refer to the implementation choices
for our approach, as they were explained in section V. As
stated before, different possible configurations of parameters
for the algorithm were explored, however other details in
the implementation such as the neighborhood function, the
choice of the redundancy tolerance, of minimal coverage
ratio, the fitness functions, the probability function, and
the weight in weighted fitness function could influence the
overall outcome of our approach. Also, our mechanism to
generate the modeling space for a metamodel is assumed
to generate the complete modeling space, however we
cannot prove that Alloy generates exhaustively all possible
instances. This can be relieved by investigating other forms
of generation of the complete modeling space within a
delimited scope.

Internal validation threats lie on the source of the val-
idation data. As we have experimented with 15 possible
configurations of parameters, and chose the best one to
perform validation against random generation, it is possible
that many other configurations can yield different results. As
for the validation against random, other measures beyond the
satisfaction of our test adequacy criteria may show different
outcomes. Internal threats also lie on possible bugs in the
components upon our approach is built, namely Alloy and
Metamodel Coverage Checker.

External threats lie on the statistical significance of our
study. We acknowledge that we have only observed the
behavior of our approach with two metamodels, and thus
we cannot guarantee its performance on other metamodels.

VII. RELATED WORK

Different approaches have approached the model instance
generation problem. In this section we examine some of
them.

1) Precise Metamodeling: The premise of precise meta-
models has been treated as early as 2002 when the Meta-
Modeling Language (MML) [17] was proposed to extract a
subset of the UML 1.3 specification to create static object-
oriented models, which would later become one of the bases
for MOF. Gogolla et al. [18] provide a mechanism and a tool
called USE to validate UML models and OCL specifications
by generation of model instances as object diagrams, called
snapshots, which are generated from a specification of the
desired properties to test in the purpose-specific language
ASSL. Although not expressly built for metamodel testing,
metamodels can also be expressed in UML. Sadilek et al.
[19] discuss the necessity to test metamodels annotated with
well-formedness rules. It portrays a motivation very aligned
to ours in section II. They provide a tool to generate test
models from a metamodel test specification, also in an ad-
hoc language called TSMM (Test Specification Metamodel)
Although both solutions provide checkers that allow the
expert to verify properties on the metamodel and spot errors
in his metamodel, the main drawback for both approaches

is the fact that a specification for model instances must be
prepared beforehand, which is a manual process and thus
it is not entirely automatic and can be expensive in large
scale projects. Our automated approach to generate sets of
test models might complement these works, by providing
the user a qualified set of test data.

2) Grammar-Based Software Testing: Grammar-based
software testing approaches work with the set of production
rules of a grammar as an input. The goal is to achieve
combinatorial coverage by using techniques of stochastic
test-data generation. One such technique, proposed by Lämel
et al. [20], deals with the problem by starting from full
combinatorial coverage and subsequently managing control
mechanisms to avoid combinatorial explosion, while ensur-
ing coverage of the production rules. Another interesting
application is proposed by Sirer et al. [21] with the purpose
of testing the Java virtual machines, where a grammar for the
language is used to generate test cases. The production rules
of such grammar are accompanied by certificates, which act
as the test oracle validating test cases.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an approach to generate sets of test
models in order to assist experts in the testing of metamod-
els. Such approach is bound to assist the construction of
more precise metamodels, which capture a correct modeling
space as intended by the domain expert. Our approach
helps to spot errors in the metamodel definition, which
improves this critical activity within Model-Driven Software
Development activities.

In future work, we aim at building alternate implementa-
tion of our approach. As our problem deals with two distinct
orthogonal objectives, another search-based technique to be
tried out is Pareto Multi-Objective Optimization, among
others.

In some cases, metamodels are accompanied with well-
formedness rules in languages such as OCL, in order to
express constraints of a complexity impossible to express
in MOF. In future work, we aim at performing further
validation taking into account such rules in the generation
of sets of test models. This would allow us to give feedback
to the expert not only about his metamodel, but also the
defined well-formedness rules.

REFERENCES

[1] OMG Unified Modeling Language, v2.3, Std., 2009.

[2] O. SPEM, “Software process engineering metamodel,” OMG
Document Formal/02-11, vol. 14, 2002.

[3] F. Fleurey, B. Baudry, P. Muller, and Y. Traon, “Qualifying
input test data for model transformations,” Software and
Systems Modeling, vol. 8, no. 2, pp. 185–203, 2009.

[4] OMG Meta Object Facility Core, v2.0, Std., 2006.

[5] X. Thirioux, B. Combemale, X. Crégut, and P. Garoche, “A
framework to formalise the mde foundations,” International
Workshop on Towers of Models (TOWERS 2007), 2007.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis feasibility study,” Software
Engineering Institute, Pittsburgh CMU/SEI-90-TR-21, 1990.

[7] A. Arcuri, M. Iqbal, and L. Briand, “Black-box system testing
of real-time embedded systems using random and search-
based testing,” International Conference on Testing Software
and Systems, ICTSS 2010, pp. 95–110, 2010.

[8] F. Glover and G. Kochenberger, Handbook of metaheuristics.
Springer, 2003.

[9] M. Harman, “The current state and future of search based
software engineering,” in 2007 Future of Software Engineer-
ing. IEEE Computer Society, 2007, pp. 342–357.

[10] O. Räihä, “A survey on search-based software design,” Com-
puter Science Review, vol. 4, no. 4, pp. 203–249, 2010.

[11] D. Jackson, “Alloy: a lightweight object modelling notation,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 2, pp. 256–290, 2002.

[12] S. Sen, B. Baudry, and J. Mottu, “Automatic model genera-
tion strategies for model transformation testing,” Theory and
Practice of Model Transformations, pp. 148–164, 2009.

[13] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
“Uml2alloy: A challenging model transformation,” Model
Driven Engineering Languages and Systems, pp. 436–450,
2007.

[14] K. Dowsland, “Simulated annealing,” in Modern heuristic
techniques for combinatorial problems. John Wiley & Sons,
Inc., 1993, pp. 20–69.

[15] F. Budinsky, E. Merks, and D. Steinberg, Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2009.

[16] G. Perrouin, J. Klein, N. Guelfi, and J. Jézéquel, “Reconciling
automation and flexibility in product derivation,” in Software
Product Line Conference, 2008. SPLC’08. 12th International.
IEEE, pp. 339–348.

[17] T. Clark1, A. Evans, and S. Kent, “Engineering modelling
languages: A precise meta-modelling approach,” Fundamen-
tal Approaches to Software Engineering, pp. 242–260, 2002.

[18] M. Gogolla, J. Bohling, and M. Richters, “Validating UML
and OCL models in USE by automatic snapshot generation,”
Software and Systems Modeling, vol. 4, no. 4, 2005.

[19] D. Sadilek and S. Weißleder, “Testing metamodels,” in
Model Driven Architecture–Foundations and Applications.
Springer, 2008, pp. 294–309.

[20] R. Lämmel and W. Schulte, “Controllable combinatorial cov-
erage in grammar-based testing,” Testing of Communicating
Systems, pp. 19–38, 2006.

[21] E. Sirer and B. Bershad, “Using production grammars in
software testing,” in ACM SIGPLAN Notices, vol. 35, no. 1.
ACM, 1999, pp. 1–13.

