N
N

N

HAL

open science

BugMaps: A Tool for the Visual Exploration and
Analysis of Bugs

Andre Hora, Nicolas Anquetil, Stéphane Ducasse, Muhammad Usman Bhatti,

Cesar Couto, Marco Tulio Valente, Julio Martins

» To cite this version:

Andre Hora, Nicolas Anquetil, Stéphane Ducasse, Muhammad Usman Bhatti, Cesar Couto, et al..
BugMaps: A Tool for the Visual Exploration and Analysis of Bugs. Proceedings of the 16th European
Conference on Software Maintenance and Reengineering (CSMR’12) - Tool Demonstration Track, Mar
2012, Szeged, Hungary. hal-00668397

HAL Id: hal-00668397
https://inria.hal.science/hal-00668397
Submitted on 9 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00668397
https://hal.archives-ouvertes.fr

BugMaps: A Tool for the
Visual Exploration and Analysis of Bugs

Andre Hora, Nicolas Anquetil,
Stephane Ducasse, Muhammad Bhatti
RMoD Team
INRIA, Lille, France
{firstName.lastName} @inria.fr

Abstract—To harness the complexity of big legacy software,
software engineering tools need more and more information
on these systems. This information may come from analysis
of the source code, study of execution traces, computing of
metrics, etc. One source of information received less attention
than source code: the bugs on the system. Little is known about
the evolutionary behavior, lifetime, distribution, and stability of
bugs. In this paper, we propose to consider bugs as first class
entities and a useful source of information that can answer such
topics. Such analysis is inherently complex, because bugs are
intangible, invisible, and difficult to be traced. Therefore, our
tool extracts information about bugs from bug tracking systems,
link this information to other software artifacts, and explore
interactive visualizations of bugs that we call bug maps.

I. INTRODUCTION

Currently there are a number of tools for software analy-
sis [1], [2], [3]. Such tools use different types of information
about the structure and history of a system. Basically, these
tools are used to analyze software evolution, manage the
quality of the source code, compute metrics, analyze coding
rules, etc. In a general way, these tools help software engineers
to understand large amounts of data that come from software
repositories.

On the other hand, one source of information has been less
explored by existing software analysis tools: the bugs on the
system. Some tools already analyze such information [4], [5],
[6], but little is known about the evolutionary behavior, life-
time, distribution, and stability of bugs. Moreover, reasoning
about bugs is a task inherently complex, because bugs are
intangible, invisible and difficult to be traced. Particularly,
such analysis is complex because it involves: (i) retrieval
of data from bug-tracking and version control platforms; (ii)
mapping of bugs to defects in software modules; and (iii) data
processing to extract and reason about relevant information.

In this paper, we present the BugMaps tool that provides
mechanisms to automate the process of retrieving and parsing
software repositories data, algorithms to map bugs reported
in bug-tracking platforms to defects in the classes of object-
oriented systems and that provides visualizations for decision
support. More specifically, the tool has the following features:

o The tool automatically extracts a time series with number

of defects at the class level from information available in
bug-tracking and version control platforms.

Cesar Couto
Department of Computing
CEFET-MG, Belo Horizonte, Brazil
cesarfmc@dcc.ufmg.br

Marco Tulio Valente, Julio Martins
Department of Computer Science
UFMG, Belo Horizonte, Brazil
{mtov,jleandro } @dcc.ufmg.br

o The tool integrates models extracted from the source code
with the number of defects time series.

o From this integration, the tool provides a set of inter-
active visualizations that supports software developers
and managers in answering questions such as: (a) What
are the modules involved in bug-fixing? (b) What is the
lifetime of a bug? (c) What is the period that a module
has presented more bugs? (d) What modules are stable or
unstable with respect to bugs? (e) What are the modules
whose number of bugs has increased or decreased over
time? (f) What is the total number of bugs of a module?

The paper is organized as follows. In Section 2 we introduce
BugMaps, using illustrative examples extracted from the bugs
reported for the Eclipse JDT system. In Section 3 we discuss
related work, and in Section 4 we conclude the paper.

II. BUGMAPS

Figure 1 shows the architecture of the BugMaps!, which
includes the following components:

1) Mapping Module. This module receives as input the
log files from version control platforms — CVS or SVN
— and the bug reports from bug-tracking platforms — Jira
or Bugzilla. This module maps bugs to defects in classes
and creates the times series number of defects (i.e., for
each class, a time series that provides the number of
defects in a given time frame).

2) Visualization Module. This module receives as input
the series number of defects, the models extracted from
several versions of the source code and the source
code itself. From this information, this module computes
measures on bugs and provides many interactive visual-
izations.

A. Mapping Module

To create the time series of defects, we implemented
an XML parser that reads the information provided by the
CVS/SVN repositories and extracts the developer’s comments
and the changed classes. Then, another XML parser reads
the bug reports available in the Jira/Bugzilla repositories and
collects the date on which each bug was reported and its

Thttp:/rmod lille.inria.fr/web/pier/software/BugMaps

—Mapping Modul

apping
Commits

and Classes
CVS/SVN Logs Comts = > Chg
Mapping A&
Bugs and
Mapping Classes
Bugs and '
Commits
Jira/Bugzilla Reports o > Bugs
ﬁ\/\suahzaﬂon Modul *

Series Number of

Visualizations. < Defects

oooooooo

oopoooooo

oopoooopo

nopooopo < Models

oo ooopgo

DDD”D.. f
Qﬁ Source Code

Fig. 1. BugMaps architecture

identifier. After that, we linked each bug b to the classes
changed to fix b. More details can be checked in [7].

B. Visualization Module

This module receives as input the series of defects, models
of the source code and the source code itself of the system
under analysis. Models of source code are generated using
Verveine] parser’. Two browsers are then used for analysis,
one to deal with the history of bugs (called history browser,
which receives as input a history model [8]) and other to deal
with a particular snapshot of the system under analysis (called
snapshot browser, which receives as input a snapshot model).
These browsers are implemented in the Moose Platform?.

Figure 2 shows the history browser which is composed
by three panes: visualizations (top left), measures (top right)
and charts (bottom). The charts pane shows the number of
bugs presented in a class/package during its timelife and
the measures pane shows class/package measures, which are
updated according to the selected entity in the visualizations
pane. The visualizations displayed can be swapped using tabs
presented in the top of visualizations pane. The history model
of the source code is a collection of snapshot models, then
from the history browser it is possible to open snapshot
browsers using tabs presented in the top of measures pane.

Figure 3 shows the snapshot browser which is composed
by four panes: visualizations (top left), measures (top right),
source code (bottom left) and charts (bottom right). Measures,
source code and charts panes are also updated according to the
selected entity in the visualizations pane. The visualizations
displayed can be swapped using tabs presented in the top of
visualizations pane.

The next subsections detail the measures and visualizations.

1) Measuring Bugs History: We provide six measures to
summarize the evolution of the bugs in a system. These
measures are instantiation of Evolution of a Version Property, a
generic evolution measure proposed by Girba and Ducasse [8].

Zhttp://www.moosetechnology.org/tools/verveinej
3http://www.moosetechnology.org

x-o BugMaps

| Metric Value
108359375
addedilumberofBugs 28
earliestEvolutionOfNumberOfLine 282720703125
701171875

1580078125

Fig. 2. BugMaps: history browser

NOB per Class | Bug Lifetime

EOEOEEN EUOEO0N EON00N EEO0NN (OO0 @08 E0 SO0
EENEOEN DOEOEDE EENEEDE HEOSEOH EEDES (EEDO EEEE
COOEOE0H SOO0S0H EO0H0E HOSE0E @000 (@00
EEgeses maen EEEEa Il BEDE Eaos

OOOE FO0EE @00 EEO0S U000 Eons @Eoen)
EEEEE [EEEEH NEE DOEEE EOEEE EEOH EDEg
BEED BB EEE EEE | EEED

orgeaclipse:jdt.cors dom ASTConverter

Fig. 3. BugMaps: snapshot browser

The provided measures rely on a basic metric called
ENOB;, which is defined as the difference in the number
of bugs (NOB) between version i and i—1 of the class C:
ENOB;(C) = NOB;(C)— NOB;_;(C), for i>1. This basic
metric is used to build six more advanced ones. We first define
each advanced metric, before giving examples and intuition on
their use.

Evolution of Number of Bugs (ENOB). ENOB; j, is the sum
of the number of bugs added or removed from version j to
version k: ENOB; 1 (C) = Zf:jﬂ |[ENOB;(C)|.

Latest Evolution of Number of Bugs (LENOB). LENOB; ;.
favors the recent changes (closer to the last version of the his-
tory) over the changes further in the past by applying a weight-
ing function: LENOB; ;(C) = Z?:jﬂ |[ENOB;(C)*21=F|.
Earliest Evolution of Number of Bugs (EENOB).
EENOB;. ;. favors the old changes (closer to the first version
of the history) over the changes near the end of the experiment:
EENOB;. ,(C) = Yr ;1 [ENOB;(C) % 201+,

Added Number of Bugs (ANOB). ANOB, ; is the sum
of the number of bugs added in the subsequent ver-
sions: ANOB; . (C) = Y| ENOB;(C) if NOB;(C) —

Removed Number of Bugs (RNOB). RNOB; j is the sum
of the number of bugs removed in the subsequent ver-
sions: RNOB; ;(C) = SF 1 |ENOB;(C)] if NOB;(C) —
NOB;_; (C) < 0.

Bugs Persistence (BP). BP; ; is the number of versions
from version j to version k containing at least one bug:

BP; 1(C) = Y_F 1 if NOB;(C) > 0.

2) Visualization: The visualizations provided by BugMaps
are based on Distribution Map, a generic technique to reason
about the result of software analysis and to help to understand
how a given phenomenon is distributed across a software
system [9]. Using Distribution Map three metrics can be
displayed through height, width and color of the objects. In
our maps, small rectangles represent class histories, bugs, or
classes and containers represent packages or package history.
BugMaps provides five maps based on the history of the
bugs of a system (Figures 4-8) and two maps for a particular
snapshot of a system (Figures 9-10).

We analyzed the Eclipse JDT system according to the
proposed visualizations, which are showed in the next figures.
It was collected 91 versions from 2005-01-01 to 2008-06-14.

=5+

Evolution of NOB. In this map, the height of a class is the
Evolution of Number of Bugs measure and the color is the total
number of bugs in the class lifetime. Therefore, the longer is
the height of a class, the higher is the number of bug changes
performed during its lifetime. In Figure 4, we can see that in
package lookup about half of the classes are involved with bug
changes and about half of the classes are free of bugs, which
means that this package should have a special attention during
the development.

codegen eval env matching select batch index lookup
ooog ooO EEEEEELL ooooo @ Dooooooon)
obooog R Dooooooo) Dooooo) Doooooooo)
ooppo Dooooooo] Dooooo) boooooooo)
bopooooo) oomj DDDDDDDDD
00 I bopoonpo
DDDDDDHI ””H”H HH

Fig. 4. Evolution of NOB

Added x Removed NOB. In this map, the height of a class is
the added number of bugs measure, the width is the removed
number of bugs measure, and the color is the total number of
bugs during its lifetime. Therefore, if a class is similar to a
square, it means that added bugs have also been removed. If
a class has more height than width, it means that bugs have
been more added than fixed. If a class has more width than
height, it means that bugs have been more fixed than added, in
the time period under analysis. This may happen if the period
considered is not at the start of the system life, and there was
bugs already identified but not corrected. In Figure 5, we can
see that most of the classes that changed their number of bugs
are square-shaped, which means that added bugs have also
been fixed during the lifetime of the class.

BoBa nnD

DDDDDDDD

EEEEgNE

Added x removed NOB

Fig. 5.

Earliest x Latest NOB. In this map, the height of a class is
the earliest number of bugs measure, the width is the latest
number of bugs measure, and the color is the total number
of bugs during its lifetime. Therefore, if a class has more
height than width, it means that bugs are closer to the first
version under analysis (old bugs). If a class has more width
than height, it means that bugs are closer to the last version
under analysis (recent bugs). Figure 6 shows that bugs can
be either close to the first (vertical shapes) and last version
(horizontal shapes), which means that the bugs reported for
such classes have been fixed during all the time frame of the
experiment.

codegen eval env matching select batch index lookup
EEEEL E EEEEEELL] moooon O Fooooooon
booog oo uf booooooo booooo] boooooooo
obooog booooooo booooo] Doooooooo
nom bopooooo Dommw Doooooocipo
bopoooog| P===gap
nnnnnnul
Fig. 6. Earliest x latest NOB

Persistence of NOB. In this map, the color of a class
represents the persistence of bugs measure. Green means that
there are bugs in less than 20% of the versions, orange means
that there are bugs in 20% to 80% of the versions, and black
means that there are bugs in 80% or more of the versions.
White means that there are no bugs. In Figure 7, we can see
that in package lookup bugs persistence is a problem, since
there are several black classes, which means that bugs are
persistent during almost classes lifetime.

odege! matching select batch inde:
OooOoag DDD OoOoooogd O O
l e sl

DDDDD mim] Jwimin] Vo
DodooooD =)
DDI

DoODooooD
foooooog
min] |wininis] |

Fig. 7. Persistence of NOB

Bug as entity. This map represents bugs instead of classes.
The color of a bug represents its lifetime, i.e., the number
of days it stayed opened. Blue denotes a bug that was still
opened at the end of the time period considered. White
denotes a bug that was opened for a short time, going to
yellow is a bug that was opened up to 3 months, and going
to red is a bug that was opened for more than 3 months. The
width of a bug representation denotes the bug complexity,
measured as the number of classes changed to fix the bug.
Bugs are sorted according to the date they were created. In
Figure 8, complex bugs (long width) are dispersed in time,

which may mean that the system is not becoming so complex
(bugs are spread all over it). Bugs going to red are also
dispersed in time, which means that the developers are not
spending more and more time solving bugs. There are many
blue (opened) bugs at the end, and a few in the beginning.

0OO0OO0Oo0DQOEe—oa8n 0000000000000 @

[T = = = I - I - I - O | [T = B - N = Y e = Y = Y = Y = T = I = Y = I - I = =

o
=]

C—— 00000000 O8CO00 000000 = =
o

s Y = O = T = O o Y e Y e Y = O = 000000 C 00—

0000 DO0O0D0DODODODEOO0DODODDODDO0DODODOoDDODODOoDC3Ioaooec
m 0000 OO0OSCIO0O0OSOO0SICIOODSDOOOOGODOGOO
= = R = == I = = Y = N = = Y = Y = Y = N = O = Y = N = = = I = O = = = = = I = A = I =

CIJ O0DO0C—— 000000 O0OO0DO0O0O0DO0SO00OdOOCa =
(= N = = = I = N = = Y = T O = O = Y = Y == = N I = I = I = R -

Fig. 8. Bug as entity

The BugMaps tool also provides the following maps for a
particular snapshot of the system (i.e. maps that are not based
on the history of versions):

NOB per Class. In this map, the color of a class represents
the number of bugs in a particular version. Green means
that a class has no bugs. Orange means that a class has
one or two bugs. Red means that a class has three or more
bugs. Therefore, this visualization provides an overview of
the distribution of the bugs in a given snapshot of the system.
Figure 9 provides an overview of the distribution of the bugs
in one of the first versions of the experiment where we can
see a small number of classes with bugs (orange/red).

ast

NOEEE
OoEoEE
mEEEE
oo

[[} o |
(i o o i o [s
(o i o | o o o o o f e
| o o o o o e o |
EEINEDENDEDEDDE
DNINENNDEDEDDE
OOSOCmEE

Fig. 9. NOB per Class

Bug Lifetime. In this map, the color represents the median
lifetime of the bugs affecting a class. Green means that a class
has no bugs or on median it took less than a week to fix its
bugs. Orange means that on median it took between a week
and a month to fix its bugs. Finally, red means that on median
it took more than a month to fix its bugs. We consider the
median because it is common to have bugs that last for years
in the system, which bias the average. In Figure 10, we can
see that there is no default behavior for the lifetime of the
bugs affecting a class. There are classes that on median it
took between one week and one month to fix the bugs and
there are classes that on median it took more than a month.

core dom ast
OO000000000000 fOoO0000000000dod Soooooooododd)
OO0000000000000 DOODO00D0000000000 DOOD0d00Oodoooo
OO0000000000000 DOOCO0D0000000000 SOOD0d00Oodooo
O0000000000000 DOODOD00000000000 SOO0d0O0Ooodoood
OO0000000000000 DOODOD0000000000 SCOO0dO00oodood
OO0DDD00D0DDODOO0ND DOODOD0000000000 SOOD0d0ddoogoooo
OO0DDD00D0DD0D000D DOODOD0000000000 DODOD0NEEEEEED
OOD0DDD00D0DDODODD0ND DOCODD0D0DODOODO0ON NENNNEENEEEEEE
OONEENNENEEEES EEEEEEN EEEEE
EEEEENEEEN

Fig. 10. Bug Lifetime

III. RELATED WORK

Churrasco is a web-based tool for collaborative software
evolution analysis [5]. The tool automatically extracts infor-
mation from a variety of software repositories, including ver-
sioning systems and bug management systems. The ultimate
goal is to provide an extensible tool that can be used to
reason about software evolution under different perspectives,
including the behavior of bugs. In contrast, BugMaps has
a much stronger historical perspective and offers different
metrics. Moreover, BugMaps targets the visual and historical
exploration of a single variable (number of bugs). For this
purpose, it supports a more rich set of visual measures for
reasoning about bugs. Other visualization metaphors have
also been provided for understanding the behavior of bugs,
including system radiography (which provides a high-level
indicator about the parts of the system more impacted by bugs)
and bug watch (which relies on a watch metaphor to provide
several information about a particular bug) [10]. Hatari [6] is
a tool that provides views to browse through the most risky
locations and to analyze the risk history of a particular location
in a system at the level of lines of code. On the other hand,
BugMaps works at the level the of classes and packages.

IV. CONCLUSIONS

In this paper we proposed a tool to support retrieval and
analysis of bugs stored in bug-tracking systems. The tool
extracts time series of defects from such systems and allows
the visualization of different bug measures. Its ultimate goal is
to facilitate the task of understanding the system with respect
to its bugs.

ACKNOWLEDGMENT This research has been supported
by grants from FAPEMIG, Brazil and INRIA, France.

REFERENCES

[1] O. Nierstrasz, S. Ducasse, and T. Girba, “The story of Moose: an
agile reengineering environment,” in European Software Engineering
Conference, 2005, pp. 1-10.

[2] SonarSource, “Sonar platform.” [Online]. Available: sonarsource.org

[3] R. Wettel, “Visual exploration of large-scale evolving software,” in
International Conference on Software Engineering, 2009, pp. 391-394.

[4] M. D’Ambros and M. Lanza, “Bugcrawler: Visualizing evolving soft-
ware systems,” in European Conference on Software Maintenance and
Reengineering, 2007, pp. 333-334.

[5] M. D’Ambros and M. Lanza, “Distributed and collaborative software
evolution analysis with churrasco,” Science of Computer Programming,
vol. 75, no. 4, pp. 276287, 2010.

[6] J. Sliwerski, T. Zimmermann, and A. Zeller, “Hatari: Raising risk
awareness,” in European Software Engineering Conference, 2005, pp.
107-110.

[71 C. Couto, C. Silva, M. T. Valente, R. Bigonha, and N. Anquetil,
“Uncovering causal relationships between software metrics and bugs,”
in European Conference on Software Maintenance and Reengineering,
2012.

[8] T. Girba and S. Ducasse, “Modeling history to analyze software evo-
lution,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 18, pp. 207-236, 2006.

[9] S. Ducasse, T. Girba, and A. Kuhn, “Distribution Map,” in International

Conference on Software Maintenance, 2006, pp. 203 -212.

M. D’Ambros, M. Lanza, and M. Pinzger, “A bug’s life: Visualizing a

bug database,” in International Workshop on Visualizing Software for

Analysis and Understanding, 2007, pp. 113-120.

[10]

