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Abstract: Many scientific applications are described through workflow structures. Due to
the increasing level of parallelism offered by modern computing infrastructures, workflow applica-
tions now have to be composed not only of sequential programs, but also of parallel ones. Cloud
platforms bring on-demand resource provisioning and pay-as-you-go payment charging. Then the
execution of a workflow corresponds to a certain budget. The current work addresses the problem
of resource allocation for non-deterministic workflows under budget constraints. We present a way
of transforming the initial problem into sub-problems that have been studied before. We propose
two new allocation algorithms that are capable of determining resource allocations under budget
constraints and we present ways of using them to address the problem at hand.
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Allocation sous contraintes de budget de
workflows non-déterministes pour Cloud IaaS

Résumé : De nombreuses applications scientifiques sont décrites sous la
forme de workflows. Du fait de ’accroissement du niveau de parallélisme offert
par les infrastructures de calcul modernes, de telles applications doivent désor-
mais étre composées non seulement de programmes séquentiels mais aussi de
programmes paralléles. Les Clouds offrent le provisionnement de ressources a
la demande ainsi qu’une facturation & l'utilisation. L’exécution d’un workflow
correspond alors & un certain budget. Dans cet article, nous considérons le prob-
léme de l’allocation de ressources & un workflow non déterministe en présence
de contraintes de budget. Nous présentons une fagon de transformer le prob-
léme initial en une série de sous-problémes qui ont été largement étudiés. Nous
proposons deux algorithmes originaux qui peuvent déterminer des allocations
de ressources sous contrainte de budget. Nous détaillons également comment
les utiliser pour résoudre le probléme initial.

Mots-clés :  Allocation de ressources, ordonnancement, PTG, workflow
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1 Introduction

Many scientific applications from various disciplines are structured as workflows.
Informally, a workflow can be seen as the composition of a set of basic operations
that have to be performed on a given input set of data to produce the expected
scientific result. The interest for workflows mainly comes from the need to build
upon legacy codes that would be too costly to rewrite. Combining existing pro-
grams is also a way to lead to new results that would not have been found using
each component alone. For years, such program composition was mainly done
by hand by scientists, that had to run each program one after the other, man-
age the intermediate data, and deal with potentially tricky transitions between
programs. The emergence of Grid Computing and the development of complex
middleware components [6, 7, 9, 11, 12, 15, 17] automated this process.

The evolution of architectures with more parallelism available, the gener-
alization of GPU, and the main memory becoming the new performance bot-
tleneck, motivate a shift in the way scientific workflows are programmed and
executed. A way to cope with these issues is to consider workflows composing
not only sequential programs but also parallel ones. This allows for the simul-
taneous exploitation of both the task- and data-parallelisms exhibited by an
application. It is thus a promising way toward the full exploitation of modern
architectures. Each step of a workflow is then said to be moldable as the number
of resources allocated to an operation is determined at scheduling time. Such
workflows are also called Parallel Task Graphs (PTGs).

In practice, some applications cannot be modeled by classical workflow or
PTG descriptions. Fur such applications the models are augmented with special
semantics that allow for exclusive diverging control flows or repetitive flows.
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4 E. Caron et al.

This leads to a new structure called a non-deterministic workflow. For instance,
we can consider the problem of gene identification by promoter analysis [2, 19]
as described in [12], or the GENIE (Grid ENabled Integrated Earth) project
that aims at simulating the long term evolution of the Earth’s climate [14].

Infrastructure as a Service (IaaS) Clouds raised a lot of interest recently
thanks to an elastic resource allocation and pay-as-you-go billing model. A
Cloud user can adapt the execution environment to the needs of his/her appli-
cation on a virtually infinite supply of resources. While the elasticity provided
by IaaS Clouds gives way to more dynamic application models, it also raises
new issues from a scheduling point of view. An execution now corresponds to a
certain budget, that imposes certain constraints on the scheduling process. In
this work we detail a first step to address this scheduling problem in the case of
non-deterministic workflows. Our main contribution is the design of an original
allocation strategy for non-deterministic workflows under budget constraints.
We target a typical IaaS Cloud and adapt some existing scheduling strategies to
the specifics of such an environment in terms of resource allocation and pricing.

This paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 describes our application and platform models, and gives a precise prob-
lem statement. Section 4 details the proposed algorithm to allocate resources to
non-deterministic workflows on an TaaS Cloud. Finally, Section 6 summarizes
our contribution and presents some future work.

2 Related Work

The problem of scheduling workflows has been widely studied by the afore-
mentioned workflow management systems. Traditional workflows consists in a
deterministic DAG structure whose nodes represent compute tasks and edges
represent precedence and flow constraints between tasks. Some workflow man-
agers support conditional branches and loops [5], but neither of them target
elastic platforms such as IaaS Clouds nor address their implications.

Several algorithms have been proposed to schedule PTGs, i.e., deterministic
workflows made of moldable tasks, on various non-elastic platforms. Most of
them decompose the scheduling in two phases: (i) determine a resource alloca-
tion for each task; and (ii) map the allocated tasks on the compute resources.
Among the existing algorithms, we based the current work on the CPA [16] and
biCPA [8] algorithms. We refer the reader to [8] for details and references on
other scheduling algorithms.

The flexibility provided by elastic resource allocations offers great improve-
ment opportunities as shown by the increasing body of work on resource man-
agement for elastic platforms. In [10], the authors give a proof of concept
for a chemistry-inspired scientific workflow management system. The chemical
programming paradigm is a nature-inspired approach for autonomous service
coordination [18]. Theirs results make this approach encouraging, but still less
performing than traditional workflow management systems. In contrast to the
current work, they do not aim at conditional workflows or budget constraints.
An approach to schedule workflows on elastic platforms under budget constraints
is given in [13], but is limited to workflows without any conditional structure.

Inria
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3 Problem Statement

3.1 Platform and Application Models

An TaaS Cloud can be seen as a virtually infinite set of resources that are
reserved and instantiated by users according to their needs. We consider that
users have access to a catalog that comprises different types of resources, each
corresponding to a unique combination of characteristics. Such a catalog is
inspired by the offers of major providers such as Amazon EC2 [3]. A resource,
or virtual machine instance, vm, can be described by:

e A number of equivalent virtual CPUs, nCPU. The number of virtual
CPUs does not correspond to the number of physical CPUs in the instance,
but allows users to easily compare the relative performance of different
instances;

e A computing speed per virtual CPU, s. This corresponds to the amount
of computing operations a single CPU can process per second.

e A monetary cost per running hour, cost, expressed in a currency-
independent manner. As most providers do, we also consider that each
started hour has to be entirely paid even when not fully used. This cost
is then proportional to the number of full hours the instance runs since it
becomes usable.

In our study, we consider that every virtual CPU in the IaaS Cloud have
the same computing speed. Instances of the same type are then homogeneous,
while the complete catalog is a heterogeneous set of resources. Thus, we do not
include this speed in our formal definition of the catalog C that is

C = {vm; = (nCPU;, cost;)|i > 1}.

We also consider that a virtual CPU can communicate with several other
virtual CPUs simultaneously under the bounded multi-port model. All the con-
current, communication flows share the bandwidth of the communication link
that connects this CPU to the remaining of the IaaS Cloud.

Our workflow model is inspired by previous work [14, 1]. We define a non-
deterministic workflow as a directed graph G = (V, &), where V = {v;]i =
1,...,V}is aset of V vertices and € = {e; ;|(¢,7) € {1,...,V} x{1,...,V}}
is a set of E edges representing precedence and flow constraints between tasks.
Without loss of generality we assume that G has a single entry task and a single
exit task. The vertices in V can be of different types. A Task node represents
a (potentially parallel) computation. Such nodes can have any number of pre-
decessors, i.e., tasks that have to complete before the execution of this task can
start, and any number of successors, i.e., tasks that wait for the completion of
this task to proceed. Traditional deterministic workflows are made of task nodes
only. The relations between a task node and its predecessors and successors can
be represented by control structures, that we respectively denote by AND-join
and AND-split transitions.

Task nodes are moldable and can be executed on any numbers of virtual
resource instances. We denote by Alloc(v) the set of instances allocated to
task v for its execution. The total number of virtual CPUs in this set is then:
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6 E. Caron et al.

p(v) = >, nCPUjlvm; € Alloc(v). It allows us to estimate T'(v, Alloc(v)) the
execution time of task v if it were to be executed on a given allocation. In
practice, this time can be measured via benchmarking for several allocations, or
it can be calculated via a performance model. In this work, we rely on Amdahl’s
law. This model claims that the speedup of a parallel application is limited by
its strictly serial part a. The execution time of a task is given by

(1-a)
p(v)

T(v, Alloc(v)) = (a + ) x T(v,1),

where T'(v, 1) is the time needed to execute task v on a single virtual CPU.
The overall execution time of G, or makespan, is defined as the time between
the beginning of G’s entry task and the completion of G’s exit task. The total
number of CPUs needed to achieve this makespan is p = 31, p(v;).

In our model, we consider that each edge e;; € £ has a weight, which
is the amount of data, in bytes, that task v; must send to task v;. We do
not impose any type of restrictions for inter-task communications. The actual
communication time may be higher than the time needed to transfer the data,
as the source and destination tasks might be mapped to a different number of
virtual resources, which might cause an overhead.

To model the non-deterministic behavior of the considered workflows, we
add the following control nodes to our model. A OR=-split node has a single
predecessor and any number of successors, that represent mutually-exclusive
branches of the workflow. When the workflow execution reaches an OR-split
node, it continues through only one of the successors. The decision of which
successor to run is taken at runtime. Then in the scheduling phase, all the
sub-workflows deriving from an OR-split node have to be considered as equally
potential execution paths. Conversely an OR-join node has any number of
predecessors and a single successor. If any of the parent sub-workflows reaches
this node, the execution continues with the successor.

Finally, our model of non-deterministic workflows can also include Cycle
constructs. This is an edge joining an OR-split node and one OR~join ancestor.
A cycle must contain at least one OR-join node to prevent deadlocks. Figure 1
gives a graphical representation of these control nodes and constructs.

(a) AND-split  (b) AND-join (c) OR-split (d) OR-join

Figure 1: Non-deterministic workflow control nodes and constructs.
Figure 1(e) is a simple representation of the Cycle construct. ps 3 and pa o

are not edges of the workflow, but paths leading from vs to vz and from vy to
vo respectifely. These paths are a weak constraint that ensure the creation of a
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cycle in the graph, in combination with the OR-join and OR-split nodes v, and
vg. However, a Cycle can contain any number of OR-split or OR~join nodes and
even an unbound number of edges leading to other parts of the workflow.

Figure 2: A more complex workflow example.

We give a more complex example of functional workflow in Figure 2, in
which the path deriving from the edge eg 2 comprises a OR-split node (v4). This
implies that the Cycle construct does not determine the number of iterations of
the cycle path by itself, as in a loop construct for instance. Decisions taken at
runtime for vy may make the execution flow exit the cycle before reaching vg.

3.2 Metrics and Problem Statement

We consider the problem of determining allocations for a single non-
deterministic workflow on an IaaS Cloud. It amounts to allocate resource
instances to the tasks of this workflow so as to minimize its makespan while
respecting a given budget constraint. Targeting an IaaS Cloud indeed implies
such a constraint, as using more resources is likely to lead to smaller makespans
but also increases the monetary cost associated to the execution of the work-
flow. An additional issue is to deal with the non-determinism of the considered
workflows. At scheduling time, all the possible execution paths have to be con-
sidered. But at runtime, some sub-workflows will not be executed, due to the
OR-split construct, while others may be executed several times, due to the Cycle
construct. This raises some concerns relative to the respect of the budget con-
straint. Our approach is to decompose the workflow into a set of deterministic
sub-workflows with non-deterministic transitions between them. Then, we fall
back to the well studied problem of determining allocations for multiple Parallel
Task Graphs (PTGs).

In the following we define the makespan as C' = max; C(v;) where C(v;) is
the finish time of task v;. We denote by B the budget allocated to the execution
of the original workflow and by B’ the budget allocated to the i*"* sub-workflow.
These budgets are expressed in a currency-independent manner.

RR n° 7962



8 E. Caron et al.

Finally, Cost’ is the cost of a schedule S° built for the i** sub-workflow on
a dedicated IaaS Cloud. It is defined as the sum of the costs of all the resource
instances used during the schedule. Due to the pricing model, we consider all
started hour as fully paid.

Cost’ = E [Tend; — Tstart; | X cost,
Yom;€S?

where Tyyqr¢; is the time when vm; is launched and T¢,4,=; the time when
this resource instance is stopped.

4 Allocating a Non-Deterministic Workflow

Our algorithm is decomposed in three steps: (i) Split the non-deterministic
workflow into a set of deterministic PTGs; (ii) Divide the budget among the
resulting PTGs and (iii) Determine allocations for each PTG.The following sec-
tions details these steps. We also discuss some runtime issues.

4.1 Splitting the Workflow

Transforming a non-deterministic workflow into a set of PTGs amounts to ex-
tract all the sequences of task nodes without any non-deterministic construct.
A similar approach to decompose a workflow into smaller parts is taken by Dag-
Man [6]. It allows users to split nested workflows by hand and is considered as
part of the workflow definition.

Figure 3 shows how we extract sub-workflows in presence of OR-split and
OR-join nodes. For the sake of simplicity we have omitted edge labels in this
figure. These control nodes define boundaries between sub-workflows and do
not belong to any of them. An OR-split node leads to n + 1 sub-workflows,
one ending with the predecessor of the node and n starting with each of the
successors of the OR-split node. If two OR-split nodes share a common suc-
cessor, we consider the two resulting sub-workflows as different, even though
they have the same structure. Indeed these sub-workflows come from different
non-deterministic transitions and therefore different contexts.

(a) OR-split (b) OR-join

Figure 3: Extracting sub-workflows from OR-split and OR-join nodes.

Splitting a workflow that contains an OR-join node can lead to as many
sub-workflows as there were predecessor sub-workflows of the OR-join node.
The successors of the OR-join node are replicated for all of its predecessors,

Inria



Allocating Non-Deterministic Workflows on a IaaS Cloud 9

including the ones that are part of the same sub-workflow. It is worth noting
that OR-join nodes do not actually lead to the creation of new sub-workflows
since they do not have a non-deterministic nature and therefore they do not lead
to non-deterministic transitions. What they actually do is preserve the number
of sub-workflows that they have from their inwards transitions.

Extracting sub-workflows from a Cycle node is more complex as shown in
Figure 4. Here we extract three sub-workflows. Two of them include an instance
of task v3. One comes as a result of the execution of task vy, while the other
derives from following the cycle branch. Task v is then the predecessor of this
second instance.

Figure 4: Extracting sub-workflows with regard to a Cycle construct.

Figure 5 details how we decompose the complex workflow given in Figure 2.
It is worth noting that a Cycle constructs does not necessarily correspond to a
unique sub-workflow. In this example, the Cycle eg 2 is split into two different
sub-workflows v3 and vs that both belong to the cycle path. This will have an
impact on budget distribution as detailed in the next section.

4.2 Distributing Budget to Sub-Workflows

As we target an [aaS Cloud, we have to decide how much money we can dedi-
cate to each sub-workflow obtained after the split of the original application to
determine its resource allocation. Because of the non-deterministic transitions
between sub-workflows, we first have to estimate the odds to execute each of
them. Moreover, as cycle paths may comprise several sub-workflows, we have
to estimate how many times each sub-workflow could be executed at runtime.
Each sub-workflow, apart from the entry sub-workflow, has one and only one
non-deterministic transition that triggers its execution. This is the transition
from its parent OR-split node to its starting task. We can therefore conclude
that the number of executions of a sub-workflow is described completely by the
number of transitions of the edge connecting its parent OR-split to its start node.
We model this behavior by considering that the number of transitions of each
outwards edge of an OR-split, and therefore the number of executions of a sub-
workflow G is described by a random variable according to a distinct normal
distribution D?. Moreover we use a parameter that express the Confidence
the algorithm has that a given sub-workflow will not be executed more than a
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10 E. Caron et al.

Figure 5: Extracting sub-workflows from a more complex workflow.

certain number of time. This parameter takes its value in the [0, 1) interval.
This way, we aim at guaranteeing that the whole workflow will be able to finish
while respecting the budget constraint. More formally, the expected maximum
number of executions of a G is

nEzec' < CDF~Y(D")(Confidence)

where CDF~1(D?) is the reverse Cumulative Distribution Function (CDF) for
distribution D?. Figures 6(a) and 6(b) illustrate our approach.

Figure 6(a) displays the normal distribution A(10,3) of a random variable.
The distribution median is ;1 = 10 and its variance is 62 = 3. In our context, it
correspond to the probability that the sub-workflow execution modeled by this
random variable is repeated a certain number of times.

0.14 T 1
/\ 09 /
012 |- [\ 4
‘r/ \\‘ 08 Confidence =0.9 )
8 o4l / \ 4 0.7 L — Confidence =0.99
3 / \ o / )
5 / \
g 008 L / \ | g osf // —
3 / \ é 05 / E
£ oo 4 S o4l // |
K / \ /
L 4 03 / 1
g o0 / \ /
\ 02 f / 4
0.02 |- / 1
Y \ o1 b / —
0 L= L L L —— 0 _— L
0 5 10 15 20 0 10 138 169 20
Number of executions Maximum Number of Executions
(a) Normal distribution N(10, 3). (b) CDF of N (10, 3).

Figure 6: Estimation of the maximum number of executions of a sub-workflow,
described by a normal distribution, with a certain confidence.

Figure 6(b) shows the CDF of this distribution. It allows to estimate, for a
given confidence, how many time we will repeat the considered sub-workflow at
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Allocating Non-Deterministic Workflows on a IaaS Cloud 11

most. For instance, with a confidence of 0.9 (or 90%), this sub-workflow is likely
to not be executed more than 13.8 times. With a higher confidence of 0.99 (or
99%), this estimation raises up to 16.9 executions at most.

This estimation of the number of times a sub-workflow could be executed
is not the only metric to consider to distribute the budget as best as possible.
Indeed, it may be more important to give an important share of the budget to a
sub-workflow with many time-consuming tasks that may be executed only once
than to a sub-workflow with a few short tasks that is repeated several times.
To find a good balance, we include the contribution of a sub-workflow with
regard to the whole application in the determination of the budget distribution.
We determine the contribution w? of sub-workflow G as the sum of the average
execution times of its tasks multiplied by the number of times this sub-workflow
could be executed. As the target platform is virtually infinite, we compute the
average execution time of a task over the set of resource instances in the catalog
C. This allows us to take the speedup model into account, while reasoning on
a finite set of possible resource allocations. We denote by w* the sum of the
contribution made by all the sub-workflows.

Algorithm 1 Share_Budget(B, G, Con fidence)
1 w0
2: for all G' = (V!,£%) C G do
32 nExec’ + CDF~Y(D! Confidence)

4wl Z <é| Z T(vj,vmk)> x nExec’
v EV? vmy, €C

5 W = wr W

6: end for

7: for all G C G do

8

9

Bi+ Bx“ x L
w nExec
: end for

Algorithm 1 describes how we distribute the global budget B among the sub-
workflows. Once we have estimated the number of execution of each workflow
and its relative contribution, the budget B* assigned to one iteration of the sub-
workflow G is simply obtained by multiplying the global budget by the ratio
w'/w* and dividing by the estimated number of executions of the workflow
nExec' (line 8).

4.3 Determining PTG allocations

Once the non-deterministic workflow has been split into a set of deterministic
sub-workflows, and that a budget has been assigned to each sub-workflow, our
algorithm has to find an allocation for each of them. In other words, we have
to determine which combination of virtual instances from the resource catalog
leads to the best compromise between the reduction of the makespan and the
monetary cost for each sub-workflow, i.e., a PTG. We base our work upon
the allocation procedures of seminal two-step algorithms, named CPA [16] and
biCPA [8], that were designed to schedule PTGs on homogeneous commodity
clusters. We adapt these procedures to the specifics of IaaS Cloud platforms.
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12 E. Caron et al.

As the biCPA algorithm is an improvement of the original CPA algorithm,
we start by briefly explaining the common principle of their respective allocation
procedures. It starts by allocating one CPU to each task in the PTG. Then it
iterates to allocate one extra CPU to the task that belongs to the critical path
of the application and benefits the most of it. The procedure stops when the
average work T4 becomes greater than the length of the critical path T¢p. The
definition of the average work used by the CPA algorithm was

where W (v;) is the work associated to task v;, i.e., the product of its execu-
tion time by the number of CPUs in its allocation, and P the total number of
CPUs in the target compute cluster. In biCPA, the value of P is iterated over
from 1 to the size of the target compute cluster and its semantics is changed to
represent, the total number of CPUs that any task can have allocated to it.
The definition of the length of the critical path was

Toep = max; BL(v;)

where BL(v;) represents the bottom level of task v; i.e., its distance until the
end of the application. For the current work we keep this definition for T¢p.

On an TaaS Cloud, the size of the target platform is virtually infinite. Then
it is impossible to use such a definition that includes a total number of CPUs.
Instead, we propose to reason in terms of budget and average cost of an alloca-
tion. Moreover, the pricing model implies that each started hour is paid, even
though the application has finished its execution. Then, some spare time may
remain on a virtual resource instance at the end of an execution.

When building an allocation, we don’t know yet in which order the tasks will
be executed. Then we cannot make any strong assumption about reusing spare
time left behind after executing a task. As we aim at building an allocation for
G? that costs less than B?, a conservative option would be to consider that this
spare time is never used. This corresponds to always overestimating the cost of
the execution of a task by rounding its execution time up to the end of the last
started hour. Then we define this cost as

cost(v;) = [T (v, Alloc(v;))] X Z cost;.

vm ;€ Alloc(v;)

This, in turn, leads us to a first adapted version of the definition of T4
Ve
T3 = Z (v;, Alloc(vy)) x cost(v;)),

in which we sum the time-cost area of each task, that is its execution time
multiplied by its overestimated monetary cost. We then average the obtained
value over the allowed budget B’. B’ < B is the maximum budget that any
task can use in order to run. It is different from the maximum budget for the
whole allocation, B?, which we will use as the stop condition for the allocation
algorithm.

Inria



Allocating Non-Deterministic Workflows on a IaaS Cloud 13

Overestimating the costs this way allows us to guarantee that the produced
allocation will not exceed the allowed budget. However, it may have a bad
impact on makespan depending on how much spare time is lost. Consider a
simple example to illustrate this. We want to build an allocation for a chain
of 10 tasks with a budget of 10 units. One hour on a virtual instance costs
1 unit. Unfortunately each task runs for only ten minutes. With the above
formula, each task will be allocated only one virtual instance as the budget
limit is already reached. However, it is likely that, once scheduled, all the tasks
will reuse the same instance for a total running time of 100 minutes and a cost
of two units! A tighter estimation of the cost may have allowed each task to run
for five minutes on two virtual CPUs, leading to a makespan divided by two for
the same cost.

To hinder the effect of this overestimation, we can assume that the spare
time left by each task has one in two chance to be reused by another task. The
risk inherent to such an assumption is that we do not anymore have a strong
guarantee that the resulting allocation will fall short of the allowed budget once
scheduled. Nevertheless, we modify the definition of cost(v;) as follows:

cost(v;) =

[T (vi, Alloc(vi))] + T (vi, Alloc(vi)) S cost;.

2

vm; € Alloc(v;)

The definition of T{"*" remains unchanged. However, in the remaining of
this paper, it relies on this second definition of cost(v;).

Based on this definition, we propose a first allocation procedure detailed
by Algorithm 2. This procedure determine one allocation for each task in the
considered sub-workflow while trying to find a good compromise between the
length of the critical path (hence the completion time) and the average time-cost
area as defined by T3"¢".

Since the purpose of this algorithm is to determine only one allocation, we
cannot simply iterate B’ from 0 to B'. We need to estimate the value of B’
such that the values of 79"¢" and T¢p will reach a tradeoff at the end of the
allocation.

At convergence time, the two values are equal. B’ is the maximum cost
of running any single task at convergence time and B’ is the total cost of the
allocation. As a heuristic to determin B’ we assume that the proportion between
the total work area and the maximum work area is constant. We can therefore
calculate these areas for an initial iteration and determin the value of B’ when
convergence Occurs.

B YWV (T(0, Alloc™ (v,) x cost™ (1))

B Tat x Z‘J‘:ll cost™it(v;)

Alloc™ represents the initial allocation in which we give an instance of the
smallest type to every task.

Each task’s allocation set is initialized with the number of CPUs of the small-
est virtual instance in the catalog. Then, we determine which task belonging to
the critical path would benefit the most from an extra virtual CPU, and increase
the allocation of this task. We iterate this process until we find a compromise
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Algorithm 2 Eager-allocate(G! = (V¢ &%), BY)

1: for all v € V' do

2:  Alloc(v) « {mingm,,cc CPU;}

3: end for

4: Compute B’ ‘

5: while Tep > T4 N leill cost(vj) < B' do
6: for all v; € Critical Path do

7: Determine Alloc’(v;) such that p'(v;) = p(v;) + 1
8 Gain(v;) + Tetlecw)) _ T(vdlloc(v)
9:  end for

10:  Select v such that Gain(v) is maximal

11:  Alloc(v) < Alloc (v)

12:  Update T'{"*" and Tcp
13: end while

between makespan reduction and estimated cost increase. Note that the deter-
mination of Allocd'(v;) (line 7) may mean either adding a new instance with one
virtual CPU to the set of resource instances already composing the allocation,
or switching to another type of instance from the catalog.

Figure 7 shows an evolution of the values of T'{"*" and T p across the allo-
cation process, for a budget limit of 10 units. We have used a resource catalog
inspired by Amazon EC2’s catalog, which can be found in Table 1. There is a
single point of convergence between the two, which represents a good trade-off
between the two values. The allocation process stops if this point is reached or
if the estimated costs of the allocation excedes the budget limit. In the current
example, a trade-off is reached after 57 iterations.

In practice it is only worth continuing the allocation process if the value if
Tcp continues to decrease. We have added a suplimentary stop condition that
is triggered if the value of Top does not decrease more than one second. We
call this the Tep cut-off-

As this first procedure may produce allocations that do not respect the bud-
get constraint, we propose an alternate approach based on a similar principle as
that used by the biCPA algorithm [8]. Instead of just considering the allocation
that is eventually obtained when the trade-off between the length of the critical
path and the average cost is reached, we keep track of intermediate allocations
build as if the allowed budget was smaller. Once all these candidate allocations
are determined, we build a schedule for each of them on a dedicated platform to
obtain a precise estimation of their makespan they achieve and at which cost.
Then it is possible to choose the “best” allocation that leads to the smallest
makespan for the allowed budget.

In this second procedure, we can rely on a tighter definition of the average
time-cost area that does not take spare time into account. Indeed, if some spare
time exists, it will be reused (or not) when the schedule is built. Since we select
the final allocation based on the resulting scheduling, we do not have to consider
spare time in the first step. To some extent, it amounts to underestimate the
cost of the execution of a task. Our second allocation procedure will then rely
on T4"r  defined as
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Figure 7: The evolution of T9"*" and Tcp

V'l
unaer 1
Tynder — 7 * Z (T'(vj, Alloc(v;)) X costynder(v;))
j=1
This definition differs from that of 7°3"¢" by the use of

c08tynder (V) = T'(vj, Alloc(v;)) x Z costy,

vmy € Alloc(vy)

that includes the exact estimation of execution time of v; and of a new
variable B’ instead of the allowed budget B?. This parameter allows us to mimic
the variable size of the cluster used by the biCPA algorithm, and represents the
maximum budget allowed to determine any one task’s allocation. Its value
will grow along with the allocation procedure, starting from the largest cost of
running any task fron the initial allocation and up to B®. The use of B’ has a
direct impact on the computation of the average time-cost aera and will lead
to several intermediate trade-offs and corresponding allocations. We refer the
reader to [8] for the motivations and benefits of this approach.

This second allocation procedure is detailed in Algorithm 3. The first differ-
ence is on lines 5 and 20 where we determine and update the value of B’ to be
the maximum cost of running any one task. The main difference with our first
allocation procedure lies in the outer while loop (lines 6-22). This loop is used
to set the value of T4"%" that will be used in the inner loop (lines 8-16). This
inner loop actually corresponds to an interval of iterations of our first allocation
procedure. Each time Top < Tj;{”d” , the current allocation is stored for each
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Algorithm 3 Deferred-allocate(G* = (V', %), BY)

1: for all v € V' do

2:  Alloc(v) + {minym,,cc CPU;}

3: end for

4: k<0

5: B’ + max,cyi costynder(v)

6: while B’ < B* do ,

7 Ty = b xSV (T (v, Alloc(v))) X costunder(v;))
8  while Tcp > Txnd” do

9: for all v; € Critical Path do

10: Determine Alloc(v;) such that p’(v;) = p(v;) + 1
11: Gain(v;) T(vi,;‘(iff)c(vi)) _ T(Uiﬁl(lvoic)/(vi))

12: end for

13: Select v such that Gain(v) is maximal

14: Alloc(v) + Alloc (v)

15: Update T4{"4°" and Top

16: end while

17 for all v € V' do

18: Store Allocs®(k,v) < Alloc(v)

19:  end for
20: B’ + max,¢cyi coStynder(v)

21: k<« k—+1
22: end while

task (lines 17-19), and the current allowed budget is updated (line 20). At the
end of this procedure, several candidate allocations are associated with each
task in the PTG.

Figure 8 shows an evolution of the values of T4"%" and Tcp across the
allocation process, for a budget limit of 10 units. In contrast to Figure 7, here
we have multiple points of convergence for the two values, each of these points
represents a valid allocation with a good trade-off between the two. Since in this
algorithm we underestimate the cost, there will be a lot more iterations than in
the previous. The ridges in the values of T}{”d” are caused by the difference in
price per CPU of the virtual machines from the catalog. As a virtual machine
has more CPUs, it’s price per hour decreases and so does the value of TZ"d”.

It is worth noting that the value of Tcp becomes more and more flat since
the tasks’ parallelism starts to become saturated. Here too we have used the
Tep cut-off strategy in practice.

In a second step, we have to get an estimation of the makespan and total
cost that can be achieved with each of these allocations. To obtain these per-
formance indicators, we rely on a classical list scheduling function as shown by
Algorithm 4. Tasks are considered by decreasing bottom-level values, i.e., their
distance in terms of execution time to the end of the application. For each
task, we convert an allocation, ¢.e., a resource request, into a mapping. This
amounts to finding out which set of resource instances the task will be executed
on. Two objectives have to be met. First we have to minimize the finish time
of the scheduled task. Second, we have to favor reuse of spare time to reduce
the schedule’s cost.
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Figure 8: The evolution of T’ X"d” and Tcp

To achieve both objectives, we proceed in two steps. First, we estimate the
finish time a task will experience by launching only new instances to satisfy its
resource request. This set of newly started instances is built so that its cost is
minimum, i.e., favor big and cheap instances from the catalog. However, we
don’t make any assumption about spare time reuse for this mapping. Hence, its
cost is computed by rounding up the execution time of the task. This provides
us a baseline both in terms of makespan and cost for the current task. Second,
we consider all the already started instances, i.e., launched by already scheduled
tasks, to see if some spare time can be reused and thus save money. We sort
these instances by decreasing amount of spare time (from the current time) and
then by decreasing size. Then we select instances from this list in a greedy way
until the allocation request is fulfilled, and estimate the finish time of the task
on this allocation, as well as the cost of it. This cost is computed as the product
of the rounded up execution time of the task by the cost of each instance used
minus the cost of the reused spare time.

Now, we have two possible mappings for the current task with different finish
times and costs. Our algorithm selects the candidate that leads to the earliest
finish time for the task. If the two mappings lead to the same finish time, we
select the cheapest option. This is summarized in Algorithm 4.

At the end of a call to Algorithm 4, we have an estimation of the makespan
and total cost of the schedule of G* using a given allocation. This algorithm is
called for each Allocsi(k, ) as determined by Algorithm 3.

Algorithm 5 details the three stages of our second allocation procedure:
(i) Determine a set of candidate allocations for each task (lines 1-3 and Algo-
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Algorithm 4 List-schedule(G' = (V¢, £%), Allocs(x) = Allocs'(j, *))

1: running_ instances < ()

2: for all v € V' in decreasing order of bottom-level values do

3:  mew < cheapest set of new instances that fulfill Allocs(v)
cost(new) = [T (v, Allocs(v))] % Z'Umjénew cost;
finish(new) « finish time of v on new
Sort all vm; € running_ instances by decreasing spare time and size
reuse < first set of instances from running instances that fulfill Allocsv)
cost(reuse) = ([T(v, Allocsv))] — reused spare time) x> cost;;
finish(reuse) « finish time of v on reuse
10:  if finish(reuse) < finish(new) then

vmg Ereuse

R R A

11: map(v) < reuse

12:  else if cost(new) < cost(reuse) then

13: map(v) < new

14:  else

15: map(v) < reuse

16:  end if

17:  running instances  running instances Umap(v)
18: end for

19: cost < vaj EVMs |—Tendj - Tstartﬂ X cost
20: makespan < max(Tend;) — min(Tsiart, ), Yomj, vmy, € running_instances
21: return (makespan, cost)

rithm 3); (ii) Compute the respective makespans and costs achieved by mapping
each allocation on a dedicated IaaS cloud (line 7 and Algorithm 4); and (iii) Se-
lect the allocation that leads to the best makespan while respecting the budget
constraint based on the couples returned by Algorithm 4

4.4 Scheduling and workflow execution

It is worth noting that all the previous steps are all static and are performed
before runtime. Currently we do not address the problem of workflow execu-
tion, as it is not possible to take into consideration the possible state of the
Cloud platform and therefore, the resulting schedule would be based on false
information. However, by using the allocations selected by our approach we can
guarantee that the initial workflow will be run on the Cloud platform given the
inital budget, with a certain confidence.

When constructing a schedule by starting from the chosen allocations one
should take into consideration the following points: a) as a result of non-
determinism, two or more sub-workflows can be ready for scheduling at the
same time, yet it is not trivial to find the best order in which they should be
scheduled; b) if scheduling is performed offline, there is no possible way of know-
ing the state of the platform and therefore it is highly likely that the estimations
used while scheduling would be false.
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Algorithm 5 Find-allocations(G* = (V', &%), BY)
for all v; € V' do
Allocs® < Deferred-allocate(G*, BY)
end for
selected__allocation < )
best _makespan < 400
for all Allocs’(k,*) € Allocs® do
(makespan, cost) < List-schedule(G*, Allocs(k, *))
if (makespan < best_makespan) A (cost < B') then
best _makespan < makespan
selected_allocation < Allocs®(k, *)
end if
: end for

— = =
N = O

5 Experimental evaluation

5.1 Experimental methodology

We use simulations with synthetic PTGs to evaluate our claims. The synthetic
PTGs were generated based on three application models: Fast Fourier Trans-
form (FFT), Strassen matrix multiplication and random workloads that allow
us to explore a wider range of possible applications. For more details related to
the synthetic workloads and their generation we would like to reffer the reader
to [8], section V.

5.2 Platform description

Throughout our experiments we have used Amazon EC2 as our model [aaS
platform. This is visible in the virtual resource catalog that we have used,
inspired by the the available virtual resource instance types of Amazon EC2 [4]
and described in Table 1.

Name #VCPUs | Network performance | Cost / hour
m1.small 1 moderate 0.09
ml.med 2 moderate 0.18
ml.large 4 high 0.36
ml.xlarge 8 high 0.72
m2.xlarge 6.5 moderate 0.506

m2.2xlarge 13 high 1.012
m2.4xlarge 26 high 2.024

cl.med 5 moderate 0.186

cl.xlarge 20 high 0.744
ccl.4xlarge 33.5 10 Gigabit Ethernet 0.186
cc2.8xlarge 88 10 Gigabit Ethernet 0.744

Table 1: Amazon EC2’s virtual resource types

In our catalog we did not consider instances of type t1.micro as it receives
virtual CPUs in bursts, which makes it difficult to quantify. We also did not
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consider GPU cluster instances (cgl.4zlarge) as their GPU resources are difficult
to quantify in virtual CPUs.

Given that the network bandwidth information for the m1, m2 and c1 type
instances is not given, we have considered high network performance as being
10 Gigabit Ethernet and moderate network performance as being 1 Gigabit
Ethernet.

5.3 Comparison of running times

We can consider the running time of the two allocation algorithm on a 16-core
Intel Xeon CPU running at 2.93GHz. For convenience’s sake we have considered
the running time of Eager relative to Deferred for the same PTG and budget.
A plot of the relative running time across all the simulation scenarios for each
type of application can be seen in Figure 9. The first quartile has 25% of the
total values smaller or equal to it, the second quartile (median) has 50% and
the third quartile has 75%. The range between the first and third quartile is
the inter-quartile range (IQR). The whiskers of the plot extend from the ends
of the box to 1.5 times the IQR. For convenience’s sake, outliers are not show.

21
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Sirassen 7]
Random ——1
Equality

1.9
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Relative runtime

07 | i
06 | g
05 - i
04 | g
03 i

0.; l . i

FFT Strassen Random

Figure O: Relative runtime of the two allocation algorithms
( Time to compute Fager )
Time to compute Deferred

Deferred’s outside iteration over the budget limit has a visible influence,
especially for higher values of the maximum budget. Deferred’s running time
is slower than Eager’s by at most an order of magnitude. It is worth noticing
that the behaviour is as expected, Eager is significantly faster than Deferred
for almost all the allocations performed. In the situation of small PTGs, both
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algorithms run considerably fast and in these situations, the resolution of the
internal clock can introduce disturbances, as seen in the case of random PTGs.

5.4 Simulation results

We have varied the budget limit for all the input PTGs from 1 unit to 50 units.
By considering the cost per hour of the cheapest VM type (0.0084 per CPU
per hour) from the catalog in Table 1 gives a testing interval from a mimimum
of 11 CPU hours to a maximum of 5914 CPU hours. This has the double role
of permitting bigger PTG to manifest their influence over time to produce a
more general trend and stressing the algorithms in order to find out their best
operating parameters.

Figures 10, 11, 12 and 13 shows plots of aggregated results of makespan and
cost after task mapping, for all three application types. We have used the same
semantics for quartiles and whiskers as previously explained.

The first observation worth noting is that up to a certain budget value Eager
passes the budget limit. This means that our initial assumption of 50% VM
spare time reuse is an optimistic one. After a certain budget limit, Eager reaches
a point of saturation due to the Teop cut-off strategy. This means that after
a certain budget limit, the same allocation will be produced by Eager and,
consequently, the same task mapping after scheduling.

While the Top cut-off strategy also applies to Deferred, it does not try to
estimate the costs, it always underestimates them while performing allocations.
As a result, the actual costs of the allocations given by Deferred will be a
lot higher than the budget limit and the actual saturation level will also be
higher. As expected, Deferred in combination with Algorithm 5 will always
select an allocation that, after task mapping, is within the budget limit. In
combination with a high saturation level this, yields the behavior that we see in
Figure 11. The only moment when Deferred produced allocations that are not
in the budget limit is when the budget limit is too low to accomodate all the
tasks in the workflow.

To ease the comparison between the two approaches, we can consider the
plots in Figures 14 and 15. It can be seen that, in the beginning, the makespans
produced by Eager allocations are shorter than those produced by Deferred
allocations and from a cost point of view, Eager produces more costly allocations
than Deferred. As the budget increases, the balance shifts slightly in favour of
Eager for cost and Deferred for makespan, yet it is not as unbalanced as in the
beginning.

For small values of the budget i.e., before task parallelism starts to become
saturated, Eager outperforms Deferred in terms of resulting makespan by a
median of as much as 12%, but Deferred never passes the budget limit and
outperforms Eager in terms of budget by a median of as much as 26%. The
situation changes once task parallelism begins to appear and the two algorithms
yield the same makespan with a median difference of 2%, yet Eager outperforms
Deferred in terms of cost by as much as 23%. It it therefore intuitive that for
small applications and small budget values one should use Deferred, but when
the size of the applications increases significantly or the budget limit approaches
task parallelism saturation, using Eager would be the best strategy.
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Figure 10: Makespan using Eager allocation using all workflow applications
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Figure 11: Makespan using Deferred allocation using all workflow applications
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Figure 12: Cost using Eager allocation using all workflow applications
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Figure 13: Cost using Deferred allocation using all workflow applications
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Figure 15: Relative cost ( Df;jf:e 5) for all workflow applications
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6 Conclusion and Future Work

The elastic allocations that Cloud platforms offer has opened the way for more
flexible data models. Notably, parallel task graph applications with a more
complex structure than classic DAG workflows are a good match for the elastic
allocation model. There has been lots of work around the topic of parallel task
graph scheduling on grid or Cloud platforms, yet none of the previous approaches
focus on both elastic allocations and non-DAG workflows.

In the current article we present our research on the topic of scheduling with
budget constraints for non-DAG workflow models that target Cloud platforms.
Our approach is to transform the original problem into a set of smaller sub-
problems that have been studied before and propose a solution for them. Con-
cretely, we split the input non-DAG workflow into DAG sub-workflows. Next
we present two allocation algorithms, Eager and Deferred, built on the specifics
of a typical IaaS Cloud platform and provide an algorithm for selecting the most
interesting of these allocations such that the budget limit is not reached. Eager
is designed to be a fast allocation algorithm and uses a heuristic approach for es-
timating the real cost of the allocation it produces. Deferred, on the other hand,
is slower in running time, but it produces a set of allocations, each with a good
trade-off between the time on the critical path and the total work area (in cost).
It does not try to estimate the real cost of the allocations, but underestimates it
instead and delayes the decision of which allocation to choose until scheduling
time. The two algorithms differ in terms of running time by as much as an order
of magnitude in favour of Eager. Under tight budget constraints, Eager leads
to shorter, yet more expensive schedules and usually passes the budget limit.
In contrast, Deferred always results in schedules that are in the budget limit
and longer as makespan. The conclusion is that for small applications or small
budget limit sizes, Deferred yields the best results and for large applications or
large budget limit sizes Eager outperforms Deferred.

As long term goal we plan on integrating the current work into an existing
Open Source IaaS Cloud platform. A good improvement will be to determine
per application which is the tipping point upto which Deferred should be used
and after which Eager would be the best fit.
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