
HAL Id: hal-00714373
https://inria.hal.science/hal-00714373

Submitted on 4 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Categorical Model of Model Merging and Weaving
Jonathan Marchand, Benoit Combemale, Benoit Baudry

To cite this version:
Jonathan Marchand, Benoit Combemale, Benoit Baudry. A Categorical Model of Model Merging and
Weaving. MiSe 2012 - 4th International Workshop on Modeling in Software Engineering, Jun 2012,
Zurich, Switzerland. �hal-00714373�

https://inria.hal.science/hal-00714373
https://hal.archives-ouvertes.fr


A Categorical Model of Model Merging and Weaving

Jonathan Y. Marchand

ENS Cachan

Rennes, France

jonathan.yves.marchand@irisa.fr

Benoit Combemale

Université de Rennes 1 / IRISA

Rennes, France

benoit.combemale@irisa.fr

Benoit Baudry

INRIA

Rennes, France

benoit.baudry@inria.fr

Abstract—Model driven engineering advocates the separa-
tion of concerns during the design time of a system, which
leads to the creation of several different models, using several
different syntaxes. However, to reason on the overall system,
we need to compose these models. Unfortunately, composition
of models is done in an ad hoc way, preventing comparison,
capitalisation and reuse of the composition operators. In order
to improve comprehension and allow comparison of merging
and weaving operators, we use category theory to propose a
unified framework to formally define merging and weaving of
models. We successfully use this framework to compare them,
both through the way they are transformed in the formalism,
and through several properties, such as completeness or non-
redundancy. Finally, we validate this framework by checking
that it correctly identifies three tools as performing merging
or weaving of models.

I. INTRODUCTION

The Model Driven Engineering (MDE) paradigm pro-

motes separation of concerns to better handle the complexity

of a software system, which leads to the creation several

models However, in order to reason on the overall system,

it is necessary to compose these models, e.g. to check their

consistency or to generate code. As model composition is

a key concern in MDE, a better comprehension of model

composition techniques would greatly improve designers

work. Unfortunately, composition of models is currently

done in an ad hoc way, in the sense that each tool uses

its own formalism and algorithm to perform it, preventing

straightforward easy comparison.

In this article, we focus on merging and weaving opera-

tors. In order to get a better understanding of these two kind

of operators, we propose a unified framework for model

merging and weaving. As the high level of abstraction of

category theory allows to identify different notions under a

common vocabulary, this framework is based on category

theory. More precisely, we use the pushout, a categorical

operator which behaves like a merge when applied in a

proper category [1]. The categorical framework includes a

transformation from classical MDE models to our category

Model of models in which we perform the pushout. This

transformation allows us to pinpoint the difference between

merging and weaving operators. We also give several prop-

erties inspired from [2], [3], that are verified by one or both

approaches, and allow further comparison and comprehen-

sion of the two kind of operators. Finally, we validate our

framework by checking that it correctly identifies three tools

from the literature, UML Package Merge [4], Kompose [5]

and ADORE [6], as using a merging or a weaving operator.

Section II gives a first intuition of the difference between

merging and weaving. Section III gives the notions of

category theory necessary to understand the article and

defines our category of models. Section IV explains how

we formalise the weaving and merging operators using

the pushout in this category, compares them using this

framework and validate the latter using three tools resorting

to one or the other approach. We explore related work in

section V, finally concluding in section VI.

II. INTUITIVE DEFINITION OF WEAVING AND MERGING

OPERATORS

In this section, we give an intuition of the difference

between merging and weaving models that underlies the

formal comparison done in section IV. To do this, we first

clarify the vocabulary used, then split the two operators in

four steps and precise the relevant steps for the comparison

of merging and weaving. Finally we explain the intuitive

difference between the merging and weaving approaches.

A. Vocabulary

In this article, we use vocabulary taken from Aspect

Oriented Programming to deal with the weaving process.

To avoid any ambiguity, we hereby define this vocabulary,

as well as the notion of merging.

Definition 1 (Merging). Merging is the action of combining

two models, such that their common elements are included

only once and the other ones are preserved.

Definition 2 (Weaving). A weaving involves two actors: an

aspect and a base model. The aspect is made of two parts,

a pointcut, which is the pattern to match in the base model,

and an advice, which represents the modification made to

the base model during the weaving. The parts of the base

model that match the pointcut are called joinpoints. During

the weaving, each joinpoint is replaced by the advice.



B. Partition of the Merging and Weaving Processes

Merging and weaving processes can be separated in four

steps. First, there is a pre-processing step, during which the

input models are modified. This step is performed for the

input models to conform to the tool expectation or ease

automatic matching by renaming some elements.

Then, there is a match step. It is usually expressed at the

metamodel level, by associating with two classes the criteria

used to compare instances of these classes. In the rest of this

article, we rely on the notion of mapping, which is instead

expressed at the model level. It is a one-to-one relation, in

which elements to be merged are linked. A mapping is the

result of the application of the match on every elements of

the two compared models.

The third step is the sum, where the models are effectively

merged. It uses the match step in order to identify elements

that should be merged, and copy the other ones.

Finally, the post-processing step performs various opera-

tions on the output model, typically for it to conform to its

metamodel. It can consist in the identification and break of

containment cycles, or deletion of user-defined elements.

In the rest of this article, we focus on the match and sum

steps. Indeed, the pre- and post-processing usually resort to

Turing-complete languages, thus preventing any attempt to

extract general properties for these two steps. Properties on

the overall process of a specific tool can still be extracted

from the match and sum step, and proven to be invariant

w.r.t. the post-processing of this tool.

C. Intuition of the Difference between Weaving and Merging

From Definitions 1 and 2, we can extract an informal

difference between merging and weaving. Merging is sym-

metric, in the sense that the result of the merge does not

depend on the order of the inputs. On the other hand, as

the two inputs of a weaving (the base model and the aspect)

do not play the same role, weaving is asymmetric. More

precisely, in the symmetric merging case, each element is

considered unique and should appear only once in the result,

whereas in the asymmetric weaving case, each element of

the aspect does not represent something unique and should

be duplicated as many times as there are joinpoints. This

intuition is formalised in section IV-B.

III. A CATEGORY OF MODELS

In order to formally compare the merging and weav-

ing approaches, we choose the category theory formalism.

Indeed, the high level of abstraction of this formalism

allows the identification of different notions under a common

vocabulary.

In this section, we first introduce the notions of category

theory necessary to define our framework, then use them

to define the Model category. This category will be used

in section IV to formally define the merging and weaving

operators.

A B

C P

X

	

f

g g′

f ′

i

j

k

!

Figure 1. (P, f ′, g′) is a pushout of f and g.

A. Category Theory

Definition 3 (Category). A category consists of:

• a collection of objects1

• a collection of arrows

with the following properties:

• Each arrow has a source and a target, called respec-

tively domain and codomain. We note f : A → B to

show that the arrow f has for domain the object A

and for codomain the object B.

• There is a composition operator for arrows, such that

for every f : A → B and g : B → C, there exists

g ◦ f : A → C in the category.

• This composition is associative: h◦(g◦f) = (h◦g)◦f .

• To each object A is associated an identity arrow idA :
A → A, which is neutral for the arrow composition,

i.e. ∀f : A → B, idB ◦ f = f = f ◦ idA

Definition 4 (Pushout). A pushout of a pair of arrows f :
A → B and g : A → C is an object P and a pair of arrows

g′ : B → P and f ′ : C → P s.t. g′ ◦ f = f ′ ◦ g and if

i : B → X and j : C → X are such that i ◦ f = j ◦ g then

there is a unique k : P → X s.t. i = k ◦ g′ and j = k ◦ f ′.

This definition is illustrated on Figure 1. The symbol 	

means that the diagram commutes, i.e. that the equalities

of the definition are satisfied, e.g. i = k ◦ g′. The arrow k

is dashed to emphasise that its existence is a consequence

of the rest of the diagram. The exclamation mark “!”

emphasises the uniqueness of the arrow k, in the sense that

it is the only arrow which makes the diagram commute.

B. A Category for Models

We define in this section the Model category, a category

of models. This category will be used in section IV to define

the merge and weaving in terms of a pushout.

In order to define the Model category, we first define

formally the notions of model (which corresponds to the

usual notion of model in MDE) and model morphism (which

can loosely be interpreted as a mapping function between

models).

1We use a different font for the notion of object of a category in order
not to confuse it with the notion of object as element of a model used later



Type

ClassDatatype Property

TypedElement1

type

*

prop

A

B

-name:String

r

s

a. Class diagram notation

A:Class

s:Property

B:Class

r:Property

name:Property String:Datatype

:prop

:type :prop

:type

:prop

:type

b. Object diagram notation

A

B

rs

String
name

c. Graph-based notation

«conforms to»

«conforms to»

«conforms to»

Figure 2. Three representations of a class diagram, and its metamodel.

A model is a set of objects linked through associations.

In order to treat associations as first-class citizens and not as

simple links, we introduce the notion of edge, which links

associations and objects.

Definition 5 (Model). A model is a set O of objects, a set

R of associations and a set E of edges such that

1) E ⊆ O ×R ∪R×O

2) ∀(r, o) ∈ E∩R×O, ∀o′ ∈ O, (r, o′) ∈ E ⇐⇒ o = o′

3) ∀(o, r) ∈ E∩O×R; ∀o′ ∈ O, (o′, r) ∈ E ⇐⇒ o = o′

Given an edge e, we use the notations e(o) and e(r) to

represent the object and association ends of e.

The information on the direction of an association is

stored in its edges: if (o, r) ∈ E, r is an association from

object o, whereas if (r, o) ∈ E, r is an association to o. The

points 2 and 3 state that an association is from at most one

object and to at most one object. For the sake of simplicity,

we may write that x ∈ M instead of x ∈ OM ∪RM ∪ EM

to say that x is an element of the model M .

Figure 2 illustrates a model and its formal representation

according to the previous definition. The upper part of

the figure represents a simplified metamodel of a class

diagram. The lower part shows three different equivalent

notations for a class diagram conforming to the previous

metamodel. Figure 2a depicts the model using the class-

diagram notation. The same model is illustrated in Figure 2b,

using the object diagram notation showing the conformance

to the metamodel. Finally, Figure 2c, proposes the under-

lying graph according to the latter, which corresponds to

the formal representation of the model, as expressed in

Definition 5. Notice that we uniformly consider attributes

as references to their relative datatypes.

We now define model morphisms as three functions on

objects, associations and edges.

Definition 6 (Model morphism). Given two models A =
(OA, RA, EA) and B = (OB , RB , EB), a model morphism

f : A → B is a triple (fO, fR, fE) with fO : OA → OB ,

fR : RA → RB and fE : EA → EB three functions

such that ∀e ∈ EA, fO(e
(o)) = (fE(e))

(o) and fR(e
(r)) =

(fE(e))
(r).

The goal of the latter constraint is to preserve the structure

of models: if an edge is mapped with another edge, then their

ends are mapped accordingly. For the sake of simplicity, we

use morphism instead of model morphism in the rest of this

article.

According to Definition 3, we need composable arrows

and the identity arrows to define the category. We thus for-

mally define model morphism composition and the identity

model morphism.

Definition 7 (Model morphisms composition). The compo-

sition of two model morphisms is done component-wise, i.e.

g ◦ f = (gO ◦ fO, gR ◦ fR, gE ◦ fE).

Proof: We need to check that the composed morphism

satisfies the condition of Definition 6. Let e ∈ EA be an

edge. As f and g are morphisms, we have that fO(e
(o)) =

(fE(e))
(o) and gO((fE(e))

(o)) = (gE(fE(e)))
(o). So gO ◦

fO(e
(o)) = (gE ◦ fE(e))

(o).

The arguments are the same for e(r).



Definition 8 (Identity model morphism). Given a model A,

the identity morphism of A is a model morphism idA :
A → A such that (idA)O,(idA)R and (idA)E are the identity

functions on OA, RA and EA respectively.

Proof: We need to check that idA satisfies the condition

of Definition 6. Let e ∈ EA be an edge. As (idA)O
is the identity function on OA, (idA)O(e

(o)) = e(o). As

(idA)E is the identity function on EA, (idA)E(e) = e. So

((idA)E(e))
(o) = e(o) = (idA)O(e

(o)).
The same arguments hold for e(r).

We now prove that models together with model mor-

phisms form a category.

Definition 9 (Category Model). The category Model has

models as objects and model morphisms as arrows. Com-

position of arrows is the composition of morphisms. Identity

arrows are identity morphisms.

Proof: We have to check if the four properties of

Definition 3 are satisfied.

• Every morphism has obviously a source and a target

• Given two morphisms f : A → B and g : B → C, the

composed morphism g ◦ f : A → C always exists.

• The composition of functions is associative and the

composition of morphisms is done component-wise, so

composition of morphisms is associative:

h ◦ (g ◦ f) = (hO ◦ (gO ◦ fO), hR ◦ (gR ◦ fR),

hE ◦ (gE ◦ fE))

= ((hO ◦ gO) ◦ fO, (hR ◦ gR) ◦ fR,

(hE ◦ gE) ◦ fE)

= (h ◦ g) ◦ f

• The identity functions are neutral for function com-

position and the composition of morphisms is done

component-wise, so the identity morphism is neutral

for morphism composition.

IV. CATEGORICAL MERGE AND WEAVING OPERATORS

In this section, we use the pushout in the previously

defined Model category to formally define merging and

weaving. We begin by formally defining the notion of

mapping in our category. Then we expose how the trans-

formation from models to elements of the category allows

to differentiate merging and weaving, and how the pushout

is used to perform them. We then define several properties

that are used to check the commonalities and differences

between these two approaches. Finally, we check that the

framework correctly classifies three tools from the literature:

UML Package Merge, Kompose and ADORE.

A. Mappings in the Model Category

In order to treat merge in Model, we define a notion of

mapping between elements of the category Model, which

corresponds to the notion of mapping between models

introduced in section II-B.

A mapping is a relation between two models, defined

through three relations on objects, associations and edges. If

two elements a and b are related by a mapping, we call the

couple (a, b) an alignment rule. Note that we only consider

binary mappings. In the symmetric case, n-ary mappings can

be decomposed in a set of binary mappings. The notion of

n-ary mapping in the asymmetric case should need further

investigations.

Definition 10 (Model mapping). Given two models B =
(OB , RB , EB) and C = (OC , RC , EC), a model mapping

map between B and C is a triple (mapO,mapR,mapE)
where mapO ⊆ OB × OC , mapR ⊆ RB × RC , mapE ⊆

EB × EC are three sets of alignment rules on objects,

associations and edges respectively, such that ∀eb, ec ∈

mapE , (e
(o)
b

, e
(o)
c ) ∈ mapO and (e

(r)
b

, e
(r)
c ) ∈ MR.

The latter constraint has the same role than the similar

constraint on model morphisms: to preserve the structure of

models.

B. From MDE Models to a Pushout Configuration

As the pushout is fixed by its definition, the only way

to make a difference between merging and weaving in the

sum process lies in the transformation from the input models

(conform to their metamodel) to a pushout configuration:

two arrows with a common domain. Hence, this transforma-

tion takes as input not only the models to be composed and

the mapping between them, but also the type of composition

(weaving or merging) expected.

1) Symmetric Case: Given B and C two models and map

a mapping between them, we want to merge them w.r.t.

map. To do this, we first transform map in a model A

together with two morphisms f and g, using the following

procedure. For every alignment rule (ob, oc) ∈ mapO, we

add an element oa to OA and define fO(oa) = ob and

gO(oa) = oc. We use the same procedure for mapR and

mapE to define RA, EA, fR, fE , gR and gE . We can prove

that f = (fO, fR, fE) and g = (gO, gR, gE) are model

morphisms, using the structure preserving property of map

which leads to the structure preserving property of f and g.

As an example, consider Figure 3, where two models B

and C and a mapping map between them are pictured. After

the transformation of map into a model A, we obtain the

pushout configuration picture on Figure 4. As f and g are

morphisms with common domain, we can compute their

pushout.

2) Asymmetric Case: If we want to weave an aspect to

several joinpoints, the pointcut of this aspect will have to be

mapped on each joinpoint. By transitivity of the mapping

relation, all the joinpoints will be considered equivalent,

hence they will all be merged during the merge process,

not yielding the expected result. Thus, in order to make an

asymmetric merge, we have to duplicate the aspects so that

each joinpoint can have its own.



a

b

r

b′

c

C

a a′

b

r

e

B

map

Figure 3. Two models B and C and a mapping map between them,
represented in dashed lines

a

b

r

b′

c

C

a a′

b

r

e

B

a

b

a′

r

b′

A
g f

Figure 4. Two models B and C mapped by a third model A and two
morphisms f : A → B and g : A → C

An example of the procedure is depicted on Figure 5. The

upper part of the figure represents the base model B and the

aspect model C. C is made of one advices, which pointcut

is a. The advice is linked to the joinpoint in B using dashed

lines. The lower part represents the result of the translation

to the model category. As the advice a-c has to be weaved

in two joinpoints, it has been duplicated in model C. The

model A has been created from the dashed lines of the upper

part, and represents the pointcuts (duplicated if needed).

C. Merging and Weaving Models using Pushout

Using the procedure described in the two previous sec-

tions, from a mapping map we obtain two arrows f and

g with common codomain A, both in the symmetric and

asymmetric case. If we compute their pushout2 (D, f ′, g′)
in Model, we can check that it yields the expected result in

the two cases.

Every couple of elements (b, c) ∈ B ×C which have the

same antecedent a ∈ A by f and g respectively will have

the same image d ∈ D by f ′ and g′ respectively, thanks to

the commutativity property f ′◦g = g′◦f of the pushout. As

each element a of A has been constructed from an alignment

rule of map, and as its images by f and g are the ends of

this alignment rule, every couple of elements mapped by

map will have the same image in D, which means that they

have been merged. If we take up the previous symmetric

2The pushout exists in Model as long as the mapping is consistent, i.e. if
two references are mapped, the classes they are linked to should be mapped
as well.

a

b a′

B

a c

C

a

a

A

a c

a c

C

a

b a′

B

f

g

translation

Figure 5. Transformation towards a pushout configuration in the case of
an asymmetric merge.

a a′

b

r

b′
A

a

b

r

b′

c
B

a

b

r

e

a′

C

a

b

r

e

c
D

f

g g′

f ′

Figure 6. D is the sum of B and C with respect to A.

example, and do the pushout of f and g, we indeed get the

merge D of B and C w.r.t. map, as pictured on Figure 6.

Nevertheless, this procedure gives only the structural part

of the merging and weaving and does not give the values

of the attributes of the resulting model. Indeed, consider the

attribute name:String of some merged element, it may

be the concatenation of the names of its antecedents, or the

name of one of them, or any other possibility. However, the

pushout is not only D but the triple (D, f ′, g′). Thanks to

the morphisms f ′ and g′, we can trace back the origin of

each element of the resulting model, including the attributes.

Knowing the exact origin of an attribute, we can compute

its expected value, but this operation requires some post-

processing out of the categorical framework, such as the

application of a preference function [7].

D. Composition Operators Properties

In both cases (symmetric and asymmetric), the merging

operators satisfy the following properties, adapted from

Brunet and Chechik [2], [3]:



• Completeness: Ensure that no data is lost along the

merging process: each model element from the input

models should be represented in the merged model.

• Minimality: The merged model contains information

that originates solely from the input models.

• Totality: Given any pair of models and any mapping,

a merged model should always exists.

• Idempotency: Merging a model with itself should

produce a model that is an exact copy of the original

model.

• Validity: The operator merges only (transitively)

matching elements.

Proofs:

• Completeness The pushout operator does not remove

any information, as the merged model contains the

image of all the objects, associations and edges of the

input models. Indeed, as the arrows f ′ and g′ produced

by a pushout are morphisms, made of three functions,

they necessarily provide an image for each element.

• Minimality Every model element in the merged model

has an antecedent by f ′ or g′. This guarantees that no

information is added during the pushout. This property

comes directly from the co-universal property of the

pushout [8].

• Totality Let M1 and M2 be two models and map

be a mapping between M1 and M2. The sum of M1

and M2 w.r.t. map exists as long as map verifies the

following property: if a reference r1 ∈ RM1
is mapped

with a reference r2 ∈ RM2
, then their incoming

and outgoing edges are mapped accordingly. From a

MDE perspective, this condition says that when two

references are mapped together, then their containers

and containees are mapped as well.

• Idempotency In the symmetric case, if you merge a

model with itself using the identity mapping (which

maps each element to itself), the result is the model

itself. In the asymmetric case, consider the identity

mapping as the pointcut, and the model as both the ad-

vice and the receiving model. As the advice is identical

to the pointcut, it means that we weave an empty advice

on the receiving model. Hence, in the asymmetric

merge, the idempotency property is preserved.

• Validity In the two cases, the merged elements are

the elements (transitively) linked by alignment rules.

Indeed, these merged elements are the ones that have

the same antecedents in A by f and g. As A, f and

g are generated from the alignment rules, the operators

merge only matching elements.

The following property, also inspired from [2], [3], is true

for a symmetric merge, but false for an asymmetric one:

• Non-redundancy: Any pair of matched model ele-

ments leads to the creation of a single element in the

merged model.

Indeed, in the asymmetric case, elements of the advice

model may be duplicated during the transformation to a

Model element, hence this latter property does not hold.

Proof for symmetric case: This property is guaranteed

by the construction of A, f and g from the mapping. If

x from B and y from C are linked by the mapping, they

have the same antecedent in A by f and g respectively,

hence they have the same image by f ′ and g′ thanks to the

commutativity property f ′ ◦ g = g′ ◦ f of the pushout.

E. Validation Using Existing Tools

In order to validate our framework, we check if it correctly

classifies three tools from the literature as using a merging

(symmetric) or a weaving (asymmetric) operator. This is

done by checking which of the transformation processes

exposed in section IV-B is adapted to simulate the tool

using the Model category. A fourth tool, TreMer+ [10], is

introduced to show the limits of our approach.

UML Package Merge: Package merge has been intro-

duced in UML2 to improve modularity [4]. It takes as input

two class diagrams, and extends the first with the second

by merging their common classes, and deep copying the

other ones. These common classes are identified by their

names and types. The merge is done recursively, following

the containment links of the models. The output of the

merge replaces the first class diagram, hence the merge is

asymmetric, in the sense that only the receiving model is

modified. However, except for the place where the merged

model is stored, the result does not depend on the order

of the inputs. Moreover its algorithm is symmetric. This

algorithm fits seamlessly in the merging process of our

framework.

Kompose: Kompose3 is a model merging tool [5]

implemented in the Kermeta language [9]. It merges two

homogeneous models (instances of the same metamodel) by

comparing the signatures of their elements. These signatures

can be arbitrarily complex, using the element’s name, type,

field or method names and types, and so on. Elements with

the same signature are merged, while the other ones are

deep copied. Kompose proposes a system of pre- and post-

directives to modify the models before and after the merge.

The two models are called base model and aspect model, as

in Aspect-Oriented Modeling, which suggests an asymmetric

treatment, yet the tool is symmetric [5]. Only the merging

process of our framework simulates correctly Kompose.

ADORE: ADORE4 is a tool for service orchestration

using PROLOG. It allows the merging of partial orches-

trations (fragments) in a main orchestration using a set of

user-defined relationships [6]. The treatment is clearly asym-

metric, as the fragments are not orchestration in themselves

(they do not conform to the metamodel), and must be merged

3http://www.kermeta.org/mdk/kompose
4http://rainbow.i3s.unice.fr/adore/wiki/doku.php



in the main orchestration in order to make sense. As a

fragment might be weaved in several places in the main

orchestration, only the weaving process of our framework is

relevant.

TreMer+: In [10], Nejati et. al. propose an approach,

implemented in TreMer+5, to match and merge statechart di-

agrams while preserving their semantics by ensuring bisim-

ulation. Thus, their operator is not only structural, and does

not fit in our framework. Indeed, preserving bisimulation

may lead to the duplication of states in the two diagrams,

thus not respecting the non-redundancy property [11]. From

our framework point of view, it is as if the merge was

asymmetric (as states are duplicated) in a symmetric manner

(this duplication may occur in both models, hence they play

the same role).

V. RELATED WORK

In [12], Jeanneret et. al. propose a categorisation of model

composition operators based on three criteria: What, Where

and How. The What criteria tells which concepts of the

models will be composed, the Where criteria indicates where

the composed concepts will be inserted, and the How criteria

describes how the composition of the concepts is done. This

qualitative approach shares the same purpose than ours, as

it allows the comparison of different composition operators

and gives a better understanding of them. However, our cat-

egorical framework provides an operational operator, which

can be used to promote re-use and evolution management

in future work.

The use of colimits (a generalisation of pushouts in

category theory) to perform merging has been encouraged

since the 90s by Goguen [13] and already been applied

to merge models, e.g. in the TreMer tool [14], [1]. While

they use a categorical framework to define a new merging

operator, we aim at capitalising the sum process of different

merging approaches. Moreover, these approaches, as well

as the algebraic graph transformation approaches to model

transformation [15], consider models as (possibly attributed)

graphs and do not take into account the specificity of models.

Indeed, they consider associations as simple edges whereas

we consider them as first-class constructs, which allows us

to manipulate them.

VI. CONCLUSION

This paper proposes a formal framework based on cat-

egory theory to unify the common mechanisms of model

merging and model weaving. Using this framework allow

us to compare these two kind operators, bringing a better

comprehension of their commonalities and differences. This

comparison is based on two points: the transformation from

the inputs to a pushout configuration, and the properties

checked by the two approaches. This framework provides

5http://se.cs.toronto.edu/index.php/TReMer+

a clear definition of the two kinds of composition, and

is validated by classifying correctly three tools from the

literature in one or the other category.

We envisage to extend the framework to support more

model composition operators, e.g. intersection and override,

in order to bring a better comprehension of this key concern

in MDE.

ACKNOWLEDGEMENT

This work has been partially supported by VaryMDE,

a collaboration between INRIA and Thales Research and

Technology. The authors warmly thank Robert B. France

for insightful feedback and comments on early versions of

this paper.

REFERENCES

[1] M. Sabetzadeh and S. M. Easterbrook, “An algebraic frame-
work for merging incomplete and inconsistent views,” in RE,
2005, pp. 306–318.

[2] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and
M. Sabetzadeh, “A manifesto for model merging,” in GaMMa,
2006, pp. 5–12.

[3] M. Chechik, S. Nejati, and S. Mehrdad, “A relationship-based
approach to model integration,” Journal of Innovations in
Systems and Software Engineering, 2011.

[4] OMG, “Uml infrastructure specification v2.4,” 2010.
[Online]. Available: http://www.omg.org/spec/UML/2.4/

[5] R. France, F. Fleurey, R. Reddy, B. Baudry, and S. Ghosh,
“Providing support for model composition in metamodels,”
in EDOC, 2007, p. 253.

[6] S. Mosser, M. Blay-Fornarino, and R. France, “Workflow
design using fragment composition,” in TAOSD VII, 2010,
vol. 6210, pp. 200–233.

[7] R. Pottinger and P. Bernstein, “Merging models based on
given correspondences,” in Proceedings of the 29th VLDB-
Volume 29, 2003, p. 873.

[8] B. C. Pierce, Basic category theory for computer scientists,
ser. Foundations of computing. MIT Press, 1991.

[9] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving exe-
cutability into object-oriented meta-languages,” in MODEL-
S/UML, ser. LNCS, vol. 3713, 2005, pp. 264–278.

[10] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave, “Matching and merging of statecharts specifications,”
in ICSE, 2007, pp. 54–64.

[11] ——, “Matching and merging of variant feature specifica-
tions,” IEEE Transactions on Software Engineering, 2011.

[12] C. Jeanneret, R. France, and B. Baudry, “A reference process
for model composition,” in Workshop on Aspect-Oriented
Modeling. ACM, 2008, pp. 1–6.

[13] J. A. Goguen, “A categorical manifesto,” Mathematical Struc-
tures in Computer Science, vol. 1, no. 1, pp. 49–67, 1991.

[14] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik,
“Tremer: A tool for relationship-driven model merging,” in
FM, 2006.

[15] H. Ehrig, U. Prange, and G. Taentzer, “Fundamental theory
for typed attributed graph transformation,” in Graph Trans-
formations, ser. LNCS, 2004, vol. 3256, pp. 161–177.


