
HAL Id: hal-00721806
https://inria.hal.science/hal-00721806

Submitted on 30 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Multilevel Textual Requirements Traceability
Using Model-Driven Engineering and Information

Retrieval
Nicolas Sannier, Benoit Baudry

To cite this version:
Nicolas Sannier, Benoit Baudry. Toward Multilevel Textual Requirements Traceability Using Model-
Driven Engineering and Information Retrieval. Second International Model-Driven Requirements
Engineering (MoDRE) Workshop, Sep 2012, Chicago, United States. �hal-00721806�

https://inria.hal.science/hal-00721806
https://hal.archives-ouvertes.fr

Toward Multilevel Textual Requirements Traceability Using Model-Driven

Engineering and Information Retrieval

Nicolas Sannier
*, **

 and Benoît Baudry
**

*
 EDF R&D – STEP, 6 Quai Watier BP49

78401 Chatou, France

nicolas.sannier@edf.fr
**

 Inria, Campus Universitaire de Beaulieu,

35042, Rennes Cedex, France

{nicolas.sannier, benoit.baudry}@Inria.fr

Abstract— In complex industrial projects, textual

information remains the main vector of information at the
project level. Consequently, requirements are scattered
throughout multiple documents expressing different levels of
requirements and different kinds of requirements.
Formalizing this information and tracing different
relationships among documents and organizing this
environment present a challenging question.

Domain-specific modeling and traceability modeling are
Model-Driven Engineering (MDE) techniques that could
address various aspects of requirements formalization. Text-
based high level requirements can be formalized as
document concepts can be gathered and represented. Still,
relationships cannot always be determined using sole MDE
approaches and, as a consequence, relationships and
traceability issue remains. Information retrieval (IR)
approaches have already proved to work in an efficient way
on large text corpora for requirements traceability analysis
but do only consider similarity aspects of flatten documents,
losing their organization and hierarchy.

This paper aims to introduce how a combined use of both
MDE and IR can lead to improved requirements
organization and traceability while handling textual
ambiguous requirements documents.

Keywords: textual requirements, modeling, traceability,

information retrieval

I. INTRODUCTION

In complex industrial projects, text remains the main

vector of information. Text in natural language remains the

last common and shared vector when several and

heterogeneous expertise are involving. It also remains the

only stable medium to last all along the project lifecycle.

Traditional Requirements Engineering often considers

requirements at a technical level, within a development-

driven perspective, except for some particular cases

concerning regulatory requirements and legal conformance

issues [2][9][15], and tends to handle requirements into one

unique level of analysis. However, there exists another

fringe of requirements coming from high level documents

such as laws, standards or regulatory texts that express high

level objectives and requirements on the system. Kamsties

[14] highlighted ambiguity in Requirements Engineering.

Breaux et al stated that requirements ambiguity can be either

intentional or unintentional [2]. Another characteristic to

highlight is the implicit or explicit hierarchy of documents

and requirements that depicts a complex organization of

requirements and traceability path. Gotel and Finklestein

defined requirements traceability as the ability to follow the

life of a requirement in both backward and forward

directions [11]. In this particular context, requirements

traceability also means describing the ability to follow this

complex organization.

The research question we want to address is as follows.

How can we efficiently structure a set of textual

requirements documents in a way that is amenable to

automatic analysis?

In the context of complex systems design and

development, Model-Driven Engineering (MDE) has proved

to offer efficient ways to describe such domain specific

structure, as well as being able to represent its organization.

Bringing complex information about such ambiguous

textual requirements cannot be achieved through the sole

use of MDE techniques and requires additional means. Such

means can be the efficient use of Information Retrieval (IR)

methods which may be able to raise valuable information

from textual units contained in a requirements model.

In this paper, we propose an initial view toward a joint

use of metamodeling and IR to assist the organization of

textual information within two tasks: requirements

formalization into a requirements model and analysis of the

textual information contained into this model to retrieve

implicit links between documents.

The rest of the paper is organized as follows. Section II

illustrates the multilevel textual requirements problem using

a concrete industrial example and introduces the approach.

Section III addresses the general MDE perspective on

requirements collections representation. Section IV

addresses concepts of Information Retrieval for traceability

analysis. Section V introduces the combination of both

approaches. Section VI proposes a concrete illustration of

the approach. Sections VII and VIII discuss related work

and conclude the paper.

II. DEALING WITH SAFETY REQUIREMENTS AT DIFFERENT

GRANULARITY LEVELS

In this section we illustrate the challenges to structure
standard and regulation textual documents in the domain of
nuclear safety requirements. However, it should be noted that
the challenges discussed here and the solution proposed in
this paper are independent of the domain.

Software systems designed to perform safety functions
must conform to a large set of regulatory requirements. In
the nuclear energy domain, a licensee must therefore
demonstrate that his system meets all regulatory
requirements of a regulator. These requirements or
recommendations are expressed in multiple documents: legal
documents issued by national authorities; standards, issued
by international organizations; regulatory practices, which
arise from specific questions from regulators and following
discussions. The major issue for licensees who must assess
conformance to all regulatory requirements is the lack of
traceability between all regulations, practices accepted by
one regulator, standards and technical requirements. Some
are explicit and contained in the documents. Most of them
are implicit and must be retrieved. And from one country to
another, when documentation changes, similarity links to
compare two corpora do not exist at all and have to be
determined. Consequently, licensees and regulators rely
more and more on human expertise for assessment,
increasing the amount of scattered tacit or not formalized
knowledge in the process.

To tackle these issues, we propose an approach that is

described in Figure 1. Actual objective is to reach a working

environment where all these requirements and documents

can be automatically captured and form analyzable artifacts

for tools or/and a domain expert. In this environment, we

focus on the organization of the textual information and

expect to perform different analyses such as impact analysis

when one document evolves, find similarities between

documents used in different contexts). Consequently, the

workspace shall be able to perform the classic CRUD

(Create, Read, Update and Delete) functions upon the

different textual artifacts. In addition, we will have to

consider smarter capabilities such as the ones required:

- to tackle the elicitation of explicit or implicit

relationships between different textual

fragments or documents;

- to provide analysis capabilities such as

requirements coverage;

- to manage traceability toward the architecture;

- to manage changes when documentation

changes and address impact analysis;

- to address qualification issues, etc.

Yet, the first issue to tackle is to formalize and organize

all this environment and we propose to address this question

through the use of Model-Driven Engineering.

III. A METAMODEL FOR TYPING AND STRUCTURING

TEXTUAL REQUIREMENTS DOCUMENTS

There are many different examples related to the use of

models in requirements engineering. Behavioral UML

models such as sequence diagrams or activity diagrams can

be used to represent different scenarios [19] where

requirements are pushed, representing functional

interactions. Structural UML models (use case diagrams,

class diagrams) offer a different perspective on different

concepts such as stakeholders, functional requirements

elicitation [24], etc. Yet, we focus on Domain specific

languages (DSLs) and profiling approaches that fit more to

the domain representation question.

A. (Meta)modeling domain knowledge and requirements

Figure 2 proposes a sample from the standard IEC60880.

It illustrates the abstraction level of textual information we

have to handle as well as the different characteristics

highlighted in the previous section.
Chapter 6 of the IEC60880 deals with software

requirements and its section 6.2 deals with software self-
supervision. It contains 6 main text fragments (listed from
6.2.A to 6.2.F).

Fragment 6.2.A is considered as a requirement due to the

presence of the word shall. It also makes a reference to

annex A.2.2 section. The following sentence (“this is
considered to be … software behavior”), as it is not in the

same paragraph, as no shall/should keyword, is then

considered as an information note relating to this

requirement.

Fragment 6.2.C is considered as a recommendation

(missing shall and presence of should).

Fragment 6.2.D is a multiple sentences requirement due

to the double presence of shall. It references IEC61513

standard.
Figure 1 Dealing with multiple requirements documents

Domain specific modeling offers the capability to

manipulate business domain concepts. In this case, a

metamodel for a textual requirements collection can offer

the necessary canvas to understand the text-based business

domain. In order to take into account traceability purposes,

this initial structure is enriched with the necessary concepts

to allow the representation of some traceability information

such as rationales for a requirement or refinement

information.

For instance, we manipulate here, at a coarse grain level,

the different concepts of standard (the document itself),

section (part of the document), requirement, and

recommendation (leaves of part of a document), which are

strong typing properties of different text fragments. We add

an additional concept which is related to specific concerns

clustering (such as “self-supervision”) and that is

encapsulated in the metamodel under the name “Theme”.

In the standard, requirement 6.2.D mentions another

standard IEC61513, illustrates one explicit traceability link

that is available within the text fragments and that has to be

represented.

Figure 3 presents an excerpt of a metamodel that

contains the minimal subset to formalize requirements in a

multiple documents organization. Yet, it is worth noticing

that instead of representing only requirements within a

linear organization, we here represent a corpus of different

kinds of documents, which contains different kinds of

fragments such as structural groups (Section) or typed units

(TypedFragment). This allows us not only to represent

Figure 3 A metamodel for structuring requirements collections

6.2 Self-supervision
6.2.A The software of the computer-based system shall supervise the

hardware during operation within specified time intervals and the

software behaviour (A.2.2).
This is considered to be a primary factor in achieving high overall

system reliability.

6.2.B Those parts of the memory that contain code or invariable data
shall be monitored to detect unintended changes.

6.2.C The self-supervision should be able to detect to the extent

practicable:
- Random failure of hardware components;

- Erroneous behavior of software (e.g. deviations from specified

software processing and operating conditions or data corruption);
- Erroneous data transmission between different processing units.

6.2.D If a failure is detected by the software during plant operation,

the software shall take appropriate and timely response. Those shall
be implemented according to the system reactions required by the

specification and to IEC 61513 system design rules.

This may require giving due consideration to avoiding spurious
actuation.

6.2.E Self-supervision shall not adversely affect the intended system

functions.
6.2.F It should be possible to automatically collect all useful

diagnostic information arising from software self-supervision.

Figure 2 Information sample from an IEC standard

requirements, but to do so in a multi-level environment. For

instance, the entire standard, or a section or requirements

become a searchable artifact and can be handled at each of

the three levels described.

In our context, we have no assumption on the required

granularity of the final typed fragment, whether it is the

sentence or the paragraph, which are syntactic units or more

semantic ones. In the IEC60880 context, we defined a

particular rule built from: Style (6.2.A xxxx); paragraph

organization (first paragraph is the statement, following are

informative); keywords (shall  “Requirement”) to

determine the document structure. Unfortunately, these rules

are most of times specific to the addressed document and

need to be adapted to fit each document. Such rule may not

be true as there exist different granularity in requirements

(for example, from goals to requirements in Goal-Oriented

approaches) but in this particular context, domain experts do

consider one granularity level and provide the rule.

A logical extension of the structural part of the

metamodel is the addition of different relationships (such as

traceability links between different fragments) between the

different documents that one could want to highlight or

forward traceability toward architecture elements, etc. This

extension, under the “Interaction” part of the metamodel, is

domain specific and, in our context, could be such as

dependencies we defined in a previous work [20], where we

defined refinements and interactions: allocation,

justification, qualification links for traceability aspect

around the system lifecycle or (total/partial) equivalence,

conflicts, coverage, requires, reference links to define

relationships between documents. Other examples of

relationships are those defined by Maxell et al. [17] or

dependencies of Zhang et al. [26].

B. Operations on requirements models

Breathing life into domain models, said differently,

bringing operational/analyzing capabilities, is rather explicit

while operating/simulating/computing on classic software

class diagrams or state-chart diagrams. It is more difficult to

imagine while handling ambiguous textual requirements and

wanting to stay at this abstraction level. It is even more

difficult to imagine models operations able to determine

implicit or new traceability links between documents and

that have been defined in the metamodel. Nevertheless,

working on such model may provide interesting metrics

while performing, for instance, coverage analysis.

Benefits provided by an MDE approach are formal

definition of the domain concepts and some analysis

capabilities while handling concrete model artifacts,

providing metrics on models, each element becoming an

analyzable artifact [16]. Yet, these approaches do not

propose an automatic conversion from the original textual

documents to a domain requirements model. To handle this

step, a sole MDE solution seems armless and requires

additional means.

To perform such documents analysis, and more

particularly to retrieve different kinds of relations between

fragments, we propose to combine our modeling approach

with an information retrieval approach.

IV. INFORMATION RETRIEVAL FOR TRACEABILITY

ANALYSIS

A. Basic information retrieval

Information Retrieval Systems aim at establishing a

relation between users' information needs (generally

expressed by natural language queries) and the information

contained in a collection of documents. Basic information

retrieval process consists in two steps: (i) an indexing step

to store, arrange the different provided information in the

document; (ii) a similarity computation between a query and

documents (text, disregarding its environment, size, type)

stored in an index.

There exist different approaches to the general indexing

and searching issue for instance vector space models [12]

(VSM) or probabilistic network models [4] whose extensive

empirical use allowed significant contributions to

requirements traceability. In our context, we focus on VSM

approach supported by the Lucene framework [1]. In such

indexes, each document is free to have its own fields,

different from the others. Queries are related to fields, so it

is necessary to have the same set of searchable fields to

perform uniform analysis over the index.

B. Documents granularity and static text analysis

Though Information Retrieval approaches have proved

to work efficiently for traceability analysis like in [3][5][10]

among others, they remain based on documents, and rather

small research artifacts. For very long documents, the issue

of indexing granularity arises. For a collection of books,

standards, or any kind of structured documents, it is

irrelevant to index each as a sole document. Instead, it is

more relevant to index each chapter or paragraph as

separated documents. Matches are then more likely to be

relevant, and as documents become smaller, relevant traces

are more easily retrieved, but increase the amount of

answers.

Sections are a kind of granularity, but one could treat

individual requirements as documents as well, or sentences

parts of a requirement. If the units get too small, important

information can be missed because terms were distributed

over several indexed documents. On the other hand, if units

are too large, relevant information will be hard to retrieve.

Classic information retrieval models such as VSM

provide relevance ranking related to a specified query, but

do not include the document organization; only flat queries

are supported. Also, they search over static documents, so

retrieved units usually are entire documents (at the chosen

granularity level).

Choosing the right granularity level is generally an issue

in classic IR. In our case, we need to index documents at

their multiple levels of granularity and receive relevant

answers at every granularity levels. It is the case while

considering one very high level requirement being detailed

in a whole section of another document.

C. Logical representation of an index

Figure 4 represents the logical structure of an index. An

index stores “documents” that contain fields. These fields
represent different content of information like metadata

(author, date, etc.) and the text body itself that may also be

split in different fields.

It only represents the logical view of an index. The

implementation of the index usually consists of documents

and fields information statically stored into different

inverted hash tables containing split information for

indexing and searching performance purposes. This allows

very scalable approaches while indexing or searching very

large corpora of thousands to hundreds of thousands

documents while maintaining fast response time. As an

illustration, indexing 8 standards sections, lead to split text

over 622 documents (building the whole index of the 8

standards should represent more than 2000 documents,

which remain small for IR analysis) last less than 5s while

querying the related index last less than 20ms. These

processing times evolve slowly, disregarding the increasing

amount of document we inserted to the index.

This gap between the logical and the concrete

representation of an index is challenging if we want to have

a joint use of both approaches as both requirements model

and index cannot share a common data structure. As a

consequence, synchronization must be maintained between

two different concrete representations to allow using MDE

or IR operations upon a requirements model and an index

that represent the same content.

V. BRIDGING MODELING AND INDEXING

In the previous sections, we described interesting

capabilities of MDE and IR for two tasks, representing and

handling requirements and analysis of high level ambiguous

requirements that we summarize in Table I. Each approach

can achieve in an efficient way one part of the two questions

we want to address:

- How to formalize such requirements collections?

- How to bridge such requirements collections while

handling unconstrained natural language, and in a

more general way, how to provide automatic

analysis capabilities in this context?

Figure 5 Mapping between MDE and IR

Figure 4 Logical view of an IR documents index

In this section, we discuss a joint use of the two

approaches in a unified framework.

A. Binding concepts

Figure 5 illustrates bindings between both domains

described previously. The concepts of Corpus, on the one

hand, and index on the other hand are very similar. Relevant

attributes (not all of them but those as contents or authors)

can be associated with similar document fields.

The biggest difference lays in the concept of document,

which is a specific concept, from a modeling perspective,

that can be refined by defining different kinds of documents

(standards, regulatory texts, guidance, operator’s technical
code, etc) and the IndexDocument, which is the basic

concept of an index and is unique. Bridging the two

approaches will lead to embed into index documents, every

layers of a requirements document: from the unitary level of

one typed fragment (for instance, a requirement but not

only) to the whole document itself.

The second point to notice is the mapping between

elements’ attributes and document fields. Not all attributes

(such as flexibility or dates) are relevant indexing fields as

they represent requirements management properties. But, on

the opposite, all fields of the index shall be bound with an

attribute of one of the different model elements as all

searchable information shall be stored in the model.As

mentioned previously, IndexDocuments can have a free

organization of its fields whereas a homogeneous set of

fields is required across the collection and the model to

perform relevant querying. Yet, it has less impact than the

previous mapping between fragments and IndexDocument

as fields and attributes are similar concepts.

B. Modeling and indexing in a unified framework

We have seen the different bindings available between the

metamodel and the index. However, concrete artifacts of

both approaches: the requirements model on one side and

the different files composing the index on the other side, do

not allow getting from one to another in a straightforward

way and have a direct coupling between a complex textual

requirement model and an index. Consequently, as there is

no transformation available, a joint use of both requires

maintaining a tight synchronization at different steps of the

requirements model’s life instead of a mapping from one

representation to the other.

1) Model and index synchronization

Figure 6 presents now our approach within a joint

modeling and information retrieval framework.

Acquiring the corpus, requires natural language

processing to assist in transforming the different document

elements into the corresponding model with the domain

specific information as well as building the initial index. It

requires document specific rules to define and capture each

concept. Such rules can be the one described while

analyzing the content of Figure 2 for this specific document

(e.g. “a paragraph, containing the keyword “shall”, will be

represented as Requirement”). This leads to initiate a model

conforming to its metamodel, thus ensuring formal

definition of concepts and strong typing information of the

different fragments. This model is always incomplete and

must evolve as non trivial relationships shall be computed

and added, as documentation evolves, as relationships

between two corpora do not exist and have to be retrieved.

Analyzing the model operates on the initial model or/and

the index and may have an impact on one or both of them as

it may modify or create new relationships between elements,

new understandings on some of them. We discuss the

different features described previously and their

consequences in following section within this double MDE

and IR perspective.

2) Model and index operations

In Figure 5, we presented possible bindings and

especially the multiple binding of general model fragments

with the concept of document in an Index (IndexDocument).

We present now some operations on documents from both

perspectives and will illustrate such operations using the

provided sample in Figure 2 (section 6.2 Self-Supervision of

standard IEC60880).

Creating/Add a requirement document in a model

consists in acquiring its organization and contents on the

MDE side and builds the index on the IR side. From the

MDE perspective, it consists in building the composite

structure conforming to the metamodel. Apart from the

corpus and the creation of the mentioned standard, this also

means to create a Section with a unique id, a name and a

title “Self-supervision”. We then must add the 6
TypedFragments of the fragments composition: 4 instances

of Requirement and 2 instances of Recommendation. We

may also consider the second paragraph as additional

information from the first paragraph, which contains the real

text of requirement 6.2.A.

Building the index is much more difficult as it requires

indexing several different documents representing each

layer of the document: the document itself, but also its

sections and the global hierarchy of the documents as well

as every typedFragments in a whole flatten way. The

created documents are as follows: one document for the

whole standard; one document for section 6 Software

requirements; one document for section 6.2 Self-

supervision; 6 documents, one for each of the 6

Requirements/Recommendations contained in the section.

Requirements
Representation

Requirements traceability

Model-driven
Engineering

Metamodel, strong

typing of domain

concepts

M2M traceability,

Traceability links

definition

Information

retrieval

Documents stored in an

index

Traceability links

retrieval

Table I Contribution of MDE and IR for requirements

representation and traceability

This task is performed during the acquisition step and

could be performed in different ways: (i) Building the index

from the text, at the same time and in parallel of the model

creation; (ii) Building in a sequence with the model first,

and then, computing the index while using the model; (iii)

building them in a separate way and have a synchronization

checking step.

Deleting/Removing a requirement document is the

opposite operation. From the MDE perspective, it consists

in removing the appropriate branch of the model and related

enabled relationships.

From the index perspective, it consists in removing all

related documents. For instance removing section 6.2 of the

standard from the index will lead to remove 7 documents.

This last operation may be difficult to achieve without

any link between the different index’s documents that are

concerned by the operation. Although removing a section

may be seen as quite irrelevant, one would drop the entire

document instead of a small part, it makes sense for the next

operation: document edition.

Editing a portion of document consists in changing

some attributes from a modeling perspective.

It has a much bigger impact from an indexing

perspective. IR frameworks (e.g. Lucene) often do not

provide editing functionalities and manage it in a delete / re-

index way. It is usually not very important as documents are

usually considered as independent entities, which is not the

case in our context.

Consequently, this also means to delete and re-index all

concerned documents. It represents a smaller set of

document but require the same linking mechanism between

the different documents of the index.

Reading a portion of document is straightforward from

the IR perspective as it consists in reading the appropriate

document. From a MDE perspective, it is much less simple

as it depends on how fragments’ attributes are constituted.
Information is not stored in only one but several model

elements. Handling a whole group of element requires

visiting the whole hierarchy of this group or requires being

stored entirely at each level, which seems not consistent at

first glance.

For this operation, reading an index seems more suitable

than navigation in the model. Owning an indirect link to a

split document, issued from a manual or automatic slice of a

document and that stores its textual content, could offer

such functionality within the modeling perspective.

Searching the corpus is a basic operation in IR. We

already described it in the paper. What is hardly achievable

using a model is rather straightforward using the index. It

has basically no impact on both the model and the index as

it is a simple reading action.

Results from such queries are the more matching

documents of the index. It can be the most relevant answer,

a top rank selection of answers, etc. Answer sets, named

after candidate links, can be pruned using a threshold

(cutoff) value, which are usually manually or empirically

determined [7][12].

Building traceability links is a particular operation and

consists in retrieving relevant artifacts that matches a

provided query. This kind of activity has been extensively

used as per example in [6][7][12] to cite a few of them.

However, it may have a significant impact on the model as

such analysis could add or modify a substantial amount of

relationships, the latter becoming analyzable artifacts as in

the work of Mäder and Cleland [16]. It can also lead to

enrich element attributes with computed information. It is

yet difficult to analyze the impact on the index as the

modified element attributes may or not be bound to

documents’ fields. If the mentioned attribute is represented

into an index field, the operation will later require re-

indexing the impacted document. Building a traceability

link between a fragment and another one from a document

that has not been indexed yet is another issue and will just

offer a informal link to this virtual document. Up to the

synchronizing mechanism to rebuilt the concrete link when

the document is indexed.

Candidate link resulting from queries can be numerous

and present a right granularity level issue. Generating all

candidate links can lead to generate a huge amount of links,

which is not relevant. Consequently the creation of a link

may not be straightforward and require additional analysis

to create the right relation at the right level. In every case, it

represents valuable information or relationship to provide to

the domain expert, who can eventually confirm or infirm the

link.

Figure 6 Dealing with multiple requirements documents

using MDE and IR in a unified canvas

VI. MODELING AND SEARCHING IN PRACTICE

Figure 7 presents an excerpt from IEEE7-4.3.2-2003

Standard entitled “Criteria for Digital Computers in Safety
Systems of Nuclear Power Generating Stations”.

Figure 8 presents the text contained in Figure 2 and

Figure 7 as a conforming instance of the metamodel

proposed in Figure 3. In this xmi instance, we observe three

documents typed as “Standard”. Section 6.2 of IEC60880

and 5.5.3 of IEEE7-4.3.2 are now organized and

encapsulated into the different concepts we highlighted

previously (Standard containing fragments Section that

contain other fragments “Section” and “Requirement”/
“Recommendation”). This information had been

automatically captured during corpus acquisition (1). It is

worth noticing that IEEE7-4.3.2 and IEC60880 have not

been written following the same format. Thus both

documents required a different set of extraction rules in

order to organize their content.

In 6.2.D, we observe a reference to the IEC61513

standard. This reference is an explicit link but has been

manually added in the model (2). However, using a rule, not

implemented yet, such explicit information can be

capitalized.

Partial equivalence “Peq1” (3) between section 6.2 of

IEC60880 and section 5.5.3 of IEEE7-4.3.2 had been

computed as no explicit link already exists between both

documents. IEC60880 standard is merely used in Europe.

IEEE7-4.3.2 is used by USA. Nevertheless, they share

common concepts on self-supervision / self-diagnostics.

This will allow determining, in the long run, a common set

between two different requirements corpora (for instance,

France and USA) while targeting different qualification

contexts.

We have now a complete example of: (1) automatic

corpus acquisition, which initiate the knowledge model; and

two examples of corpus organization with (2) a computable

(but here manual) determination of an explicit traceability

link that represents one of the explicit relationship between

two documents; and (3) a retrieved relationship between two

documents of two different corpora and that have no links

but are similar. These three operations are finally

represented into the requirements model presented in Figure

8.

VII. RELATED WORK

A. Model-driven high level Requirements formalization

At the general level, there exist many possible modeling

representations, using the aforementioned UML or SysML

diagrams, but also tooled DSMLs as for example goal-

oriented representation with KAOS [22] in Objectiver,

REMM Studio [23] or URML supported in Unicase [13].

Apart from KAOS, which refines its goals in an iterative

way to discover requirements/expectations, the two other

examples consider requirements as independent units and

aim to provide a case tool toward software development.

These approaches consider traceability question, but it

remains a manual filling process whereas we try to provide

some more automated analysis through the use of

information retrieval.

At the requirements document scale, MDE approaches

had been used to target the certification issue. Panesar et al.

[18] and Zoughbi et al. [27] propose MDE approaches and

use UML profiles to represent respectively the DO-178B

and IEC61508 standards. DO-178B is a standard dedicated

to software aspects in the aerospace domain. The

proposition aimed to maintain traceability from

requirements to design to code that we do not address here.

In [18], the authors gather concepts from the standard and

build a conceptual model of the IEC61508 standard. As a

consequence, both propositions remain specific to DO-178B

and IEC61058.

5.5.3 Fault detection and self-diagnostics
Computer systems can experience partial failures that can degrade the capabilities of the computer system, but may not be immediately detectable by the

system. Self-diagnostics are one means that can be used to assist in detecting these failures. Fault detection and self-diagnostics requirements are

addressed in this subclause.
The reliability requirements of the safety system shall be used to establish the need for self-diagnostics. Self diagnostics are not required for systems in

which failures can be detected by alternate means in a timely manner. If self-diagnostics are incorporated into the system requirements, these functions

shall be subject to the same V&V processes as the safety system functions.

If reliability requirements warrant self-diagnostics, then computer programs shall incorporate functions to detect and report computer system faults and

failures in a timely manner. Conversely, self-diagnostic functions shall not adversely affect the ability of the computer system to perform its safety

function, or cause spurious actuations of the safety function. A typical set of self-diagnostic functions includes the following:
— Memory functionality and integrity tests (e.g., PROM checksum and RAM tests)

— Computer system instruction set (e.g., calculation tests)

— Computer peripheral hardware tests (e.g., watchdog timers and keyboards)
— Computer architecture support hardware (e.g., address lines and shared memory interfaces)

— Communication link diagnostics (e.g., CRC checks)

Infrequent communication link failures that do not result in a system failure or a lack of system functionality do not require reporting.
When self-diagnostics are applied, the following self-diagnostic features shall be incorporated into the system design:

a) Self-diagnostics during computer system startup

b) Periodic self-diagnostics while the computer system is operating
c) Self-diagnostic test failure reporting

Figure 7 Information sample from IEEE Standard 7-4.3.2

Both standards allow quantitative approaches and

probabilistic safety analysis that are suitable for a rather

direct link between the necessary properties to verify. The

approach remains however, specific to each of these

standards, specific to one document whereas we work on a

more general level and with several different requirements

documents type.

Mäder and Cleland [16] proposed VTML (Visual

Traceability Modeling Language) on top of an underlying

metamodel (in their case, usual projects concepts) whose

concepts are used to build a traceability querying language,

leveraging the general database query concept. This

approach provides additional operable capabilities on top of

an existing domain model. It does not define its concepts

neither its relations but make them operable and searchable

artifacts.

B. Information retrieval for traceability analysis

Natural language processing (NLP) and information

retrieval approaches have been extensively been used for

Requirements Traceability Analysis. At the system’s scale,
it has been pioneered by Sawyer et al. within the REVERE

project and tool while having initial results in detection of

roles and “shall”/”should” to distinguish between

requirements types [21]. Kiyavitskaya et al. use GaiusT to

extract rights, obligations, on both HIPAA (Health

Insurance Portability and Accountability Act) and

equivalent Italian regulations [15]. It is not based upon a

term-frequency analysis but relies on text decomposition in

a parse tree conforming to a structured grammar and

fragments annotations.

The basic approach described earlier is the base of tools

like RETRO [4] and Poirot [5]. Cleland et al. use NLP and

IR techniques to trace regulatory requirements from HIPAA

in several software applications [6]. In their subsequent

work, they combine NLP with clustering and association

rules to recommend features [8]. They also proposed

advances while trying to replace queries keywords by

relevant relatives to exhibit “hard to retrieve” traces, where
analysts need to go beyond the classic term-matching

process [10]. It is worth noticing that major part of this field

is concerned with functional requirements traceability but

non functional requirements traceability is also getting a

growing interest [4].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach, combining

Model-driven engineering and information retrieval

Figure 8 Instance of 6.2 Self Supervision and relationships

techniques in order to address requirements formalization

and traceability at a high abstraction level, where

requirements are embedded into a complex document

collection and do not express expectations at the same

granularity level. We presented benefits provided by each

approaches to tackle this double question: strong typing and

domain definition on the one hand, efficient analysis on

large unconstrained textual corpora on the other hand. We

discussed a possible binding between their concepts and

promote a tight synchronization between their concrete

representations as there is no transformation from the model

to the index. We discussed possible operations where MDE

and IR appear respectively to be more suitable than the

other and that illustrate potential benefits of this joint

approach. We discuss these operations’ impacts on both

model and index while having to maintain a tight coupling

to work in a unified canvas.

Yet, the work done was made at the model instance level

and requires operating directly on the xmi file that is the

dynamic instance of the metamodel and was not performed

through a more user friendly interface. In future work,

several additional challenges to address go from more

configurable documents parser to smarter IR algorithms to

provide the right information at the good granularity level or

even the capability to handle so many model elements

(thousands of fragments and relationships) in a easy way.

ACKNOWLEDGMENT

This work is partially supported by the EU FP7-ICT-
2009.1.4 Project N° 256980, NESSoS: Network of
Excellence on Engineering Secure Future Internet Software
Services and Systems.

REFERENCES

[1] Apache Lucene, http://lucene.apache.org/

[2] T. D. Breaux, and A. I. Antón, “A Systematic Method for
Acquiring Regulatory Requirements: A Frame-Based
Approach”, In (RHAS-6), Delhi, India, 2007.

[3] X. Chen, and J. Grundy, “Improving automated
documentation to code traceability by combining retrieval
techniques”, In (ASE’11), Lawrence, USA, pp 223-232, 2011.

[4] J. Cleland-Huang, “Toward improved Traceability of non-
functional requirements”, In TEFSE, pp 14-19, 2005.

[5] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E.
Romanova., “Best practices for automated traceability”, In
IEEE Computer, vol. 40(6), pp 27-35, 2007.

[6] J. Cleland-Huang , A. Czauderna, M. Gibiek, and J.
Emenecker, “A machine learning approach for tracing
regulatory codes to product specific requirements”. In (ICSE
2010), Cape Town, South Africa, pp 155-164, 2010.

[7] C. Duan, and J. Cleland-Huang, “Clustering support for
automated tracing”, In (ASE’07), pp 244-253, 2003.

[8] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B.
Mobasher, C. Castro-Herrera, and M. Mirakhorli, “On-
demand feature recommendations derived from mining public
product descriptions”, In (ICSE 2011), Honolulu, USA, pp
181-190, 2011.

[9] S. Ghanavati, D. Amyot, and L. Peyton, “Towards a
Framework for Tracking Legal Compliance in Healthcare”. In
(CAiSE'07), Trondheim, Norway, pp 218-232, 2007.

[10] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards
mining replacement queries for hard-to-retrieve traces”, In
(ASE 2010), Antwerp, Belgium, pp 245-254, 2010.

[11] O. Gotel, and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem”, In (RE'94), Colorado
Springs, USA, pp 94-101, 1994.

[12] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing
candidate link generation for requirements tracing: the study
of methods”, In IEEE TSE, vol. 32(1), pp 4-19, 2006.

[13] J. Helming, M. Koegel, F. Schneider, M. Haeger, C.
Kaminski, B. Bruegge, and B. Berenbach, “Towards a
Unified Requirements Modeling Language”, In 5th
International Workshop on Requirements Engineering
Visualization (REV’10) , Sydney, Australia, 2010.

[14] E. Kamsties. “Understanding Ambiguity in Requirements
Engineering.” In Aybüke Aurum & Claes Wohlin, editors,
Engineering and Managing Software Requirements, chapter
11, pp 245-266. Springer, 2005.

[15] N. Kiyavitskaya, N. Zeni, T. D. Breaux, A. I. Antón, J. R.
Cordy, L. Mich, and J. Mylopoulos, “Automating the
extraction of rights and obligations for regulatory
compliance”, In (ER'08), Barcelona, Spain, pp 154-168, 2008.

[16] P. Mäder, and J. Cleland-Huang, “A Visual Traceability
Modeling Language”, Lecture Notes in Computer Science,
Volume 6394, Model-Driven Engineering Languages and
Systems, pp 226-240, 2010.

[17] J. Maxwell, A. I. Antón, and P. Swire, “A Legal Cross-
References Taxonomy for Identifying Conflicting Software
Requirements”, In (RE'11), Trento, Italy, pp. 197-206, 2011.

[18] R. K. Panesar-Walawege, M. Sabetzadeh, and L. Briand. "A
Model-Driven Engineering Approach to Support the
Verification of Compliance to Safety Standards". In
(ISSRE'11), Hiroshima, Japan, pp 30-39, 2011.

[19] C. Rolland, C. Souveyet, and C. Ben Achour, “Guiding Goal
Modeling Using Scenarios”, IEEE Trans. Softw. Eng 24(12),
pp 1055-1071, 1998.

[20] N. Sannier, B. Baudry, and T. Nguyen,
“Formalizing standards and regulations variability in longlife
projects. A challenge for Model-driven engineering”, In
(MoDRE’2011), Trento, Italy, pp. 64-73, 2011.

[21] P. Sawyer, P. Rayson, and R. Garside. "REVERE: support for
requirements synthesis from documents." Information
Systems Frontiers Journal. Volume 4, issue 3, Kluwer,
Netherlands, pp. 343-353, 2000.

[22] A. Van Lamsweerde, “Requirements engineering: From
System Goals to UML Models to Software Specifications”,
Wiley, 2009.

[23] C. Vicente-Chicote, B. Moros, and J. Ambrosio Toval
Álvarez, “REMM-Studio: an Integrated Model-Driven
Environment for Requirements Specification, Validation and
Formatting”, Journal of Object Technology 6(9), pp 437-454,
2007.

[24] T. Yue, T., L. C. Briand, and Y. Labiche, “A Use Case
Modeling Approach to Facilitate the Transition Towards
Analysis Models: Concepts and Empirical Evaluation”, In
(MODELS '09), Denver, USA, pp 484-498, 2009.

[25] T. Yue, T., L. C. Briand, and Y. Labiche, “ A Systematic
Review "of Transformation Approaches between User
Requirements and Analysis Models”, Requirements
Engineering Journal 16(2), pp 75-99, 2011.

[26] W. Zhang , H. Mei, and H. Zhao, “A Feature-Oriented
Approach to Modeling Requirements Dependencies”, In
(RE’2005), pp 273-284, 2005.

[27] G. Zoughbi, L. Briand, and Y. Labiche, “Modeling safety and
airworthiness (RTCA DO-178B) information: conceptual
model and UML profile”, In Software and System Modeling
10(3), pp 337-367, 2011.

