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Abstract—When modeling requirements, software analysts
have to choose the relevant modeling constructs among all those
available. If they do not choose the right set, their model may
lack some important information or their model may contain
many superfluous details. In previous work, we proposed to
capture the purpose of a model with a set of model operations
such as queries or model transformations. Then, modelers can
analyze the footprints of these operations, that is, the set of
model elements touched during their execution.

In this paper, we report on two controlled experiments
performed with students to evaluate whether footprinting can
help them in creating better models. While our studies did
not demonstrate statistically significant benefits of footprinting,
they reveal the importance of training and tool support for the
analysis of footprints.

Keywords-requirements modeling, model footprinting, con-
trolled experiment

I. INTRODUCTION

With the advent of Model Driven Engineering (MDE),
models play an important role in the development of soft-
ware. Conceptually, a model is an abstract representation of
an original for a given purpose. Ideally, a model exactly rep-
resents its domain, that is, the set of all possible statements
that would be correct about the original and relevant for the
purpose at hand [1].

A model can differ from its domain in two different ways.
In [1], Lindland et al. define validity as the extent to which
a model only contains statements from the domain. A model
with superfluous details may be harder to understand and is
probably more expensive to create than necessary. On the
opposite, a model may lack some relevant details, making it
incomplete. When using an incomplete model, an interpreter
may draw wrong conclusions about the original.

Thus, the value of a model depends heavily on whether
it contains all relevant information and only this informa-
tion. However, creating models that actually represent their
domain is not an easy task. Eliciting information about the
original is not enough; the modeler needs to understand the
purpose of the model as well. Often, little is known about
this purpose and typical modeling assignments only mention
the modeling language to be used. When the language
contains many constructs, as UML does, this indication
offers little help.

Recently, we have invented a technique called footprinting
to detect the presence of superfluous elements in models [2].
In a MDE setting, the purpose of a model can be charac-
terized by the set of model operations (e.g., queries, view
extractions or model transformations) that the model must
enable. A footprint is the set of all model elements that
have been used during the execution of these operations.
When footprints are highlighted, modelers can easily find
the elements that were not used by the set of operations
executed on the model, which gives hints about their possible
irrelevance. However, the benefits of footprinting have not
yet been evaluated empirically.

In this paper, we are interested in the actual effect of foot-
printing on the quality of models. To investigate this effect,
we performed a pair of controlled experiments: one at the
University of Zurich, Switzerland, involving undergraduate
students enrolled in a basic Software Engineering course,
and one at the University of Rennes 1, France, involving
graduate students enrolled in a course on MDE techniques.

The remainder of the paper is structured as follows. In
the next section, we provide background information about
model quality and model footprinting. We describe our
experiments in Section III, while their results are presented
and analyzed in Section IV. Finally, in Section V, we discuss
our findings and we conclude in Section VI.

II. BACKGROUND

A. Model Quality

As models become more and more important for the
development of software, many researchers proposed frame-
works for evaluating and improving the quality of models.
In [1], Lindland et al. proposed the first systematic approach
to identifying quality goals and means to achieve them. In
this framework based on semiotics (the study of symbols),
models are seen as sets of statements. Models are compared
to three other sets of statements: The language is the set
of statements expressible in the modeling language. The
domain is the set of all possible statements that would be
correct and relevant while the audience interpretation is the
set of statements that the model users think a model contains.

Their framework defines three types of model quality.
Syntactic quality is how well a model corresponds to the



language. Semantic quality is how well the model corre-
sponds to the domain. Finally, pragmatic quality is how
well a model corresponds to the audience interpretation. We
chose the framework of Lindland et al. for our work because
it laid the foundation for many other publications. Krogstie
et al. extended this framework with additional constructs
from the semiotics theory [3]. Moody et al. validated the
framework empirically in [4] while España et al. used the
framework to compare two RE methods in [5].

Lindland et al. distinguish two semantic quality goals:
completeness and validity. A model is complete if it contains
all the statements from the domain, while a model is valid
if it only contains statements from the domain (and nothing
else). A statement can be invalid for two reasons: it is
incorrect or it is irrelevant for the purpose at hand. In our
work, we distinguish between the two cases. We use the term
confinement for the extent to which a model only contains
relevant statements [6] while correctness designates the
extent to which a model only contains correct information.

In typical settings, the domain does not exist explicitly.
Semantic quality is then typically assessed subjectively with
reviews. In our experiments, the domain is represented by a
reference model. This has been done previously by España et
al. to compare two RE methods in [5]. Furthermore, we not
only consider the actual quality of models — measured on
the model with respect to the reference model — but also the
quality as it is perceived by the modelers. This perception is
important, because on a typical modeling task, the domain
does not exist explicitly and there is no such thing as a
reference model. Thus, modelers consider their modeling
task complete when their models contain all statements from
what they perceive as the domain.

B. Model Footprinting

To assess the relevance of some model elements, the
modelers must know the purpose of their models. In previous
work [7], we proposed to use goal oriented requirements
engineering methods to capture this purpose. Eventually, this
purpose must be operationalized with some model operations
such as analyses, queries and model transformations. For
example, a class diagram could be used to derive a glossary
of a domain or a state machine could be used to generate the
skeleton of an implementation. The main assumption behind
the idea of footprinting is that the purpose of a model can
be characterized by the set of model operations that will be
performed on this model.

These operations can be performed mentally by humans
or executed by a computer. In both cases, a model must
conform to some structure to support these operations.
This structure is typically expressed with an object-oriented
metamodel. Such a metamodel defines the types and features
— meta-classes, meta-attributes and meta-references — that
can be used in a model. For example, the metamodel of
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Figure 1: Static Footprinting

UML defines meta-classes such as Class and State, and
meta-attributes such as name and isAbstract.

Footprinting consists of finding which elements of a
model are used by a given model operation during its exe-
cution. There are two techniques for footprinting: dynamic
and static footprinting [2]. Dynamic footprinting analyzes
the execution of a set of operations, while static footprinting
estimates the footprint based on a static analysis of the
definition of the operations. In [2], we demonstrated that,
despite some limitations, static footprints are very precise
estimates of dynamic footprints and yet cheap to compute.

In the experiments, we have used static footprinting, as
it can be done without tool support. Static footprinting is
divided into two phases (see Figure 1). First, the source
code of the operations is analyzed. Types and features
are collected along their control flow graph. This analysis
yields a static metamodel footprint, the set of all constructs
relevant for the operations being analyzed. In the second
phase, models are filtered through the static metamodel
footprint: only elements related to constructs in the static
metamodel footprint are kept in the static (model) footprint.
This filtering is very simple and can be done manually. Thus,
as long as the static metamodel footprint is provided, static
footprinting can be done without tool support.

For example, the operation generating a glossary from
a class diagram may be implemented as a model-to-text
transformation. The source code of this operation may
involve classes and generalizations, but probably not ports
or dependencies. In addition, the operation will likely read
the name of a class, but not whether it is abstract. The
static metamodel footprint would then include the following
elements:

• Class

– name

• Generalization



The modelers should only model elements that are in-
stances of the static metamodel footprint. Any other el-
ements will not be used by the operations performed on
the model. They may therefore be irrelevant, decreasing the
confinement of the model. Furthermore, the modeler should
consider all constructs in the static metamodel footprint. If
a relevant meta-class or meta-attribute is omitted from the
model, some information is probably missing, decreasing the
completeness of the model. The filtering step of static foot-
printing validates whether a model only contains elements
related to the static metamodel footprint.

We believe that with the help of footprinting, modelers
produce models that are more confined and more complete
than without footprinting. Indeed, static metamodel foot-
prints make explicit, what kind of details should be modeled
and what kind should not. Besides, we expect footprinting to
make modelers more confident in the completeness and con-
finement of their model. The purpose of these experiments
is to confirm or to refute this belief. In the next section, we
discuss the planning of our experiments.

III. EXPERIMENT PLANNING

The goal of our experiments is to evaluate the effect of
model footprinting on the actual and perceived quality of
models in the context of students modeling the requirements
of a software system. Following the template defined by
Wohlin [8], we present the design of the experiments we
conducted towards this goal. In the next section, we present
the context and the material of the experiments. Then, in
Section III-B, we highlight the variables of our experiments
and formulate our hypotheses. In Section III-C, we lay out
the design of our experiments and we discuss threats to
validity in Section III-D.

A. Context and Material

Our experiments were carried out at two sites: Rennes
and Zurich. In Zurich, the context of our experiment is
a second year (undergraduate level) Software Engineering
(SE) course at the University of Zurich. As a prerequisite
for this SE lecture, participants had to follow a lecture on
modeling1. While this modeling lecture does not aim at
teaching UML per se, many UML diagrams are covered
during the lecture. Students learn the various constructs and
modeling guidelines, and they apply this knowledge on some
practical exercises. In Rennes, the experiment took place
within a Model Driven Engineering (MDE) lecture, which
is visited by two second year classes on the graduate level:
Miage (oriented towards business) and GL (oriented towards
software engineering). The students from Rennes had to visit
a lecture on modeling as prerequisite too2. At both sites,

1This lecture is taught by Prof. Martin Glinz. The description and the
material of the module can be found at http://bit.ly/P8RrNZ (in German)

2This lecture is taught by Dr. Noël Plouzeau. The description of the
module can be found at http://bit.ly/OdIKBU (in French)

the experiment was part of a series of compulsory labs and
exercises. Students were told that they would not be graded
on performance, but that they were expected to solve their
modeling assignments in a professional manner to obtain the
points assigned to the lab.

Alternatively, we could have recruited these students with
some financial incentives. According to Sjøberg et al. [9],
our experiment would have been easier to organize with this
alternative. However, some students could have refused to
participate in our experiment, reducing the number of data
points and introducing a bias towards motivated students.

Participants were not aware that we were attempting to
evaluate the impact of footprinting, but knew that we would
evaluate the quality of their models by comparing them with
a reference model. The experiments were monitored by the
first author on both sites. He was not involved in any of the
courses as an assistant, reducing the bias of the experiment.
During the experiment, students were not allowed to talk to
each other.

The modeling assignments were solved with MagicDraw3,
an UML modeling tool. We chose MagicDraw over other
modeling tools because it fully supports UML class dia-
grams and state machines and it is intuitive to use. Using a
tool makes the modeling task more realistic than pen-and-
paper only [9]. It has the additional advantage that it prevents
participants from making syntactic mistakes. While the tool
is used by the students from Rennes during their curriculum,
students from Zurich never used it before the experiment. To
overcome this issue, we answered all the questions related
to MagicDraw during the experiments. Furthermore, we let
students use comments to specify UML elements when they
did not find out how to specify them properly with the tools.
For example, some students modeled the triggers of state
transitions by attaching comments to the transitions. We took
these comments into account when assessing the quality of
models.

For this experiment, we developed the following material:
a modeling assignment with 2 exercises, the reference mod-
els and the corresponding static metamodel footprints. This
material is included in the appendices. The exercises consist
in creating UML models from case descriptions in plain text.
The exercises were taken from [10]. The description for the
class diagram is the dental clinic case (on page 272) and
the description for the state machine is the shipment case
(on page 275). Students were asked to solve each exercise
within 45 minutes, so that they had enough time to solve
both exercises and fill in the questionnaires during the time
allocated for the labs (2 hours). The textbook also provides
some solutions, which were used to create the reference
models.

To define the static metamodel footprints, we decided not
to define (and later analyze) some operations, but rather

3http://www.nomagic.com/products/magicdraw.html



derive the static metamodel footprint from the reference
model directly. That is, we collected all types and features
present in the reference model. We decided to do so to avoid
a potential threat to validity: defining model operations our-
selves might have introduced some bias in the experiments.
However, this decision leaves the validation of the main
assumption of footprinting — the purpose of a model can
be characterized as a set of operations — out of the scope
of this paper. This will be investigated in future work. The
experiment remains nevertheless valid, as the origin of the
static metamodel footprint is of no importance for modelers.

In total, students answered 4 questionnaires. First, they
had to participate in a pre-experimental survey, introduc-
ing them to the experiment and collecting their modeling
experience. After each modeling exercise, students had to
fill in a questionnaire to report how they perceived the
modeling task, the case description and the quality of their
model. They also had to mention how long they took to per-
form the modeling task. The post-experimental questionnaire
explained briefly the goals of the experiment and invited
students to provide us with feedback about the experiments.

B. Variables and Hypotheses

In our experiments, we investigate the impact of foot-
printing on model quality. We measured 4 quality aspects
characterizing the semantic quality of a model as defined by
Lindland in [1]: completeness (COM), confinement (CON),
correctness (COR) and overall quality (OAQ). Each quality
aspect comes in two flavors: actual and perceived quality.
Actual quality is the semantic quality of a model with respect
to a reference model. We measure this quality by comparing
the model to a reference model. Perceived quality is the
quality of the model as perceived by its modeler. We measure
it with questionnaires. In total, our experiments involve 9
variables: 8 dependent variables and 1 independent variable.

Actual Quality: We quantify actual quality by counting
the number of mistakes in the model with respect to a
reference model. We distinguish three types of mistakes. A
completeness mistake is the absence of some element from
the model. For example, in a class diagrams at the analysis
stage, the absence of multiplicities or a missing attribute are
completeness mistakes. Confinement mistakes are due to the
presence of superfluous but correct elements in the model.
For example, the presence of interfaces or getter operations
are confinement mistakes in an analysis class diagram. All
other mistakes are denoted as correctness mistakes. This
kind of mistakes includes wrong multiplicities or redundant
attributes in a class diagram. ACOM counts the number of
completeness mistakes, ACON counts the number of con-
finement mistakes, ACOR counts the number of correctness
mistakes and AOAQ is the total number of mistakes.

Perceived Quality: Perceived quality is measured with a
questionnaire. More preciseley, students were asked to what

extent they agreed on the following statements using a 5-
level Likert scale:

• My model is a good model. (POAQ)
• My model contains all relevant information. (PCOM)
• My model only contains relevant information. (PCON)
• My model only contains valid information. (PCOR)
Method: All participants used the same modeling lan-

guages (UML class diagrams and UML state machines).
The purpose of the model was stated informally in all
assignments. Still, some participants received additional in-
formation for one of the two diagrams they had to create: the
static metamodel footprint (FP), that is, the set of modeling
constructs relevant for the purpose of the model. This is a
nominal variable: either the static metamodel footprint was
available or not. FP is the only independent variable of our
experiment.

Hypotheses: Based on the goal of the experiment, we
formulate, for each of the dependent variables, the following
null-hypothesis (H0): there is no difference between the
quality of models when the modeler knows (or does not
know) the static metamodel footprint (FP). The alternative
hypothesis (H1) is that footprinting has an impact (positive
or negative) on the quality of models.

In this paper, we use Wilcoxon rank-sum tests to test our
hypotheses. A Wilcoxon rank-sum test is a non-parametric
test to compare the median of two samples. We do not
use the T-test because the data does not respect all its
assumptions: the counts of mistakes (actual quality) follow
Poisson distributions rather than normal distributions and the
Likert-scales (perceived quality) only deliver ordinal values.
If the non-parametric test is not powerful enough, we fit
the counts of mistakes to Poisson distributions and compare
their parameter.

C. Experiment Design

This experiment only involves one factor whose effect is
interesting to us: whether the static metamodel footprint is
given in the task assignment or not. However, a nuisance
factor may impact the quality of models: the ability of
students in modeling. Therefore, we opt for a completely
randomized design in which each participant uses both
methods (with and without static metamodel footprint) [8].
Overall, our design is inspired by those of Briand et al.
when they investigated the benefits of OCL in UML based
development [11].

To minimize learning effects between the modeling tasks,
we considered two different objects: a class diagram and
a state diagram. We keep ordering effects under control
by using four groups instead of two, covering all possible
permutations. These groups are presented in Table I. For ex-
ample, participants in group A first model the class diagram
without the static metamodel footprint. They then proceed
to the state diagram, this time with the static metamodel
footprint.



Table I: Experiment design

Group A Group B Group C Group D
Class Diagram Class Diagram State Machine State Machine
With Footprint Without Footprint With Footprint Without Footprint
State Machine State Machine Class Diagram Class Diagram
Without Footprint With Footprint Without Footprint With Footprint
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2n
dTa
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s

D. Threats to Validity

External Validity: In this experiments, participants are
students, half-way to get their Bachelor’s or Master’s degree.
They may not be representative of software analysts working
in the field. However, these students know UML at this stage
as much as when they will leave the university and enter their
professional career. Besides, footprinting is meant to help
modelers who do not know much about how their models
are used, which is typically the case for novice modelers.

We intentionally kept the modeling tasks small enough so
that the students could achieve them within 45 minutes. This
constraint reduces the (undesired) effect of fatigue on the
results. However, these assignments are not representative
of modeling tasks in an industrial context because of their
small size and the presence of a complete case description
(participants did not have to elicit requirements). Still, if
footprinting has an impact on small models, it will likely
have an impact on larger models, too. Elicitation was kept
out of the experiment, as it is not within the scope of our
investigations.

Internal Validity: Besides the availability of the static
metamodel footprint, other factors can impact the quality of
models, like the ability of participants and ordering effects
(learning and fatigue). We kept ability under control by
having each participant use both methods, while ordering
effects were kept under control by having four groups
solving two different modeling tasks in different order.

We provided footprinting in its most basic form: a
static metamodel footprint in textual form. Alternatively, we
could have provided an example of models containing all
constructs from the static metamodel footprint or a tool
displaying the model footprint. We chose the most basic
form to reduce the bias towards footprinting. Furthermore,
the static metamodel footprint can give some hints about
completeness, while the static (model) footprint cannot.

Construct Validity: The perceived quality (PCOM,
PCON, PCOR and POAQ) is measured using a question-
naire. We phrased our questions so as to avoid bias. Actual
quality (ACOM, ACON, ACOR and AOQ) is measured
by counting the number of mistakes made with respect to
a reference model, that is, the solution of the modeling
assignment. This reference model was written by the first
author based on the correct model provided in [10]. Still,
to mitigate the risk that this domain is biased, the domain
was validated by other authors. The count of mistakes is not
a fully accurate measure of quality, as some mistakes are

more important than others. Still, we did not assign weights
to them to keep the measure as objective as possible.

Students may have acted so as to please our expectancies.
This threat was reduced by (a) not telling the students the
exact hypotheses behind our experiments and (b) having the
experiments supervised by a researcher who is not involved
in the lectures participants were enrolled to (SE for Zurich,
MDE for Rennes). In the next section, we present and
discuss the results obtained during the experiments.

IV. RESULTS ANALYSIS AND INTERPRETATION

In total, 86 students participated to our experiments:
14 Miage and 23 GL students from Rennes and 49 SE
students from Zurich. From them, we gathered 72 complete
datasets including both diagrams and answers to surveys.
The datasets are spread almost equally in each group (19
in group A, 15 in B, 19 in C, 19 in D). Based on the pre-
experimental survey, most students consider themselves as
experienced with modeling and UML in general. However,
the average experience is lower with state machines than
with class diagrams. Most students found that both the
modeling tasks and the case descriptions were clear and
that they had enough time to do the modeling. In average,
participants took 39 minutes for the class diagram and 32
minutes for the state machine. Footprinting had no impact on
the time used for modeling. In the remainder of this section,
we first analyze the impact of footprinting on actual quality
and then its impact on perceived quality.

A. Actual Model Quality

To assess the actual quality of models, we compared the
models to our reference models. We used more than one
reference model, as the information from a textual descrip-
tion may be modeled correctly in different ways. Besides,
we ignored differences in names, as long as the names
were meaningful. Some other deviations may have been
acceptable (e.g., the presence of business operations in a
class diagram), but we marked them all to avoid introducing
some bias in the results. In the class diagrams, we identified
a total of 72 possible mistakes. 31 mistakes are related to
confinement, 17 to completeness and 24 to correctness. For
the state machines, we have listed 52 mistakes. 16 mistakes
are confinement issues, 16 are completeness problems and
20 are correctness mistakes.

The actual quality of models is presented as boxplots in
Figure 2. Figure 2a shows the number of mistakes made
in class diagrams, while Figure 2b displays the number of
mistakes made in the state machines. The results are grouped
by the availability of the static metamodel footprint (the
treatment) and the various quality aspects (completeness,
confinement, correctness and overall quality). The y-axis
represents the number of mistakes made. The higher the
number of mistakes, the lower the actual quality of a model.
In a boxplot, the boxes have lines at the first quartile,
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Figure 2: Actual quality of models

Table II: Median number of mistakes

ACOM ACON ACOR AOAQ
No Footprinting 2.50 3.50 2.00 8.00
Footprinting 2.50 3.00 1.00 7.00
P-Value 0.91 0.41 0.20 0.63
Reject H0? No No No No
No Footprinting 1.00 1.50 2.00 5.00
Footprinting 1.00 2.00 2.00 5.00
P-Value 0.62 0.31 0.84 0.76
Reject H0? No No No No
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median, and third quartile. The notches around the medians
represent their 95% confidence interval, which is useful for
comparing medians.

Table II displays the median number of mistakes made.
For each kind of diagrams and for each quality attribute, we
compare the median number of mistakes made by students
who knew the static metamodel footprint with the median
number of mistakes made by students who did not. For
this comparison, we use a Wilcoxon rank-sum test whose
p-value is displayed in Table II. We cannot reject any null-
hypotheses, as no p-value is above the usual significance
level α = 5%. Thus, we use a parametric model to further
investigate whether footprinting had a statistically significant
impact on the actual model quality.

The numbers of mistakes follow Poisson probability dis-
tribution laws. Table III displays the average number of
mistakes made by students in their models. The average is
an unbiased estimator of the λ parameter of the Poisson
law. Overall, students made 7.86 mistakes in their class
diagrams and 5.13 mistakes in their state machines. Table
III also provides the 95% confidence intervals for λ. The
difference between the quality with and without footprinting
are not statistically significant, as all confidence intervals for
λ overlap.

Interestingly, the results obtained for the class diagram
contradict those obtained for the state machine. For class

Table III: Confidence interval of λ for the counts of mistakes

ACOM ACON ACOR AOAQ
2.53 3.79 1.74 8.06

[2.02 - 3.12] [3.14 - 4.45] [1.32 - 2.24] [7.10 - 9.01]

2.68 3.45 1.55 7.68
[2.16 - 3.21] [2.86 - 4.04] [1.18 - 2.00] [6.80 - 8.57]

2.61 3.61 1.64 7.86
[2.24 - 2.98] [3.17 - 4.05] [1.34 - 1.93] [7.21 - 8.51]

1.68 1.50 1.87 5.05
[1.30 - 2.15] [1.14 - 1.94] [1.46 - 2.36] [4.34 - 5.77]

1.47 1.76 1.97 5.21
[1.09 - 1.94] [1.35 - 2.27] [1.53 - 2.50] [4.44 - 5.97]

1.58 1.63 1.92 5.13
[1.29 - 1.87] [1.33 - 1.92] [1.60 - 2.24] [4.60 - 5.65]
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No Footprinting

Footprinting

No Footprinting

Footprinting

diagrams, footprinting improves all quality aspects except
completeness. Indeed students with footprinting makes fewer
mistakes in total (AOAQ) than without footprinting: fewer
confinement mistakes (ACON), fewer correctness mistakes
(ACOR) but more completeness mistakes (ACOM). In con-
trast, footprinting only improves completeness for state ma-
chines (ACOM), while degrading all other qualities (ACON,
ACOR and AOAQ).

B. Perceived Model Quality

The ratings of perceived quality are plotted as boxplots
in Figure 3. Given the ordinal nature of Likert scales, we
use the median to characterize the perceived model quality
(see Table IV). For class diagrams, footprinting had almost
no impact on the perceived quality of models. For state
machines, footprinting reduces the perceived confinement
(PCON) of models, but improves the perceived correctness
(PCOR) and the perceived overall quality (POAQ). However,
the p-values of the Wilcoxon rank-sum tests are all above
the α = 5% level required to reject a null hypothesis. Thus,
the differences between the medians are not statistically
significant.

In general, the perceived quality is coherent with the
actual quality. To assess this coherence, we group the models
according to their perceived quality and we compute the
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Figure 3: Perceived quality of models

Table IV: Median rating of perceived quality

PCOM PCON PCOR POAQ
No Footprinting 4.00 4.00 4.00 3.00
Footprinting 4.00 4.00 4.00 3.00
P-Value 0.59 0.22 0.38 0.33
Reject H0? No No No No
No Footprinting 3.00 4.00 3.00 2.00
Footprinting 3.00 3.00 4.00 3.00
P-Value 0.73 0.28 0.57 0.23
Reject H0? No No No No
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Table V: Coherence between perceived and actual model
quality

COM CON COR OAQ
1 5.50 (2) 1.50 (2)
2 3.82 (11) 2.67 (3) 2.00 (2) 9.63 (19)
3 2.70 (20) 3.75 (16) 1.65 (20) 8.08 (25)
4 2.18 (34) 3.62 (47) 1.68 (44) 6.46 (28)
5 1.40 (5) 3.67 (6) 1.00 (4)
1 3.40 (5) 1.67 (3) 2.25 (4) 7.00 (8)
2 2.33 (21) 1.00 (3) 1.90 (10) 5.71 (28)
3 1.23 (22) 1.41 (27) 1.75 (24) 4.13 (23)
4 0.88 (24) 1.67 (33) 2.03 (32) 4.25 (12)
5 2.67 (6) 1.50 (2) 7.00 (1)St
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average actual quality for each group. Table V displays
these averages. For example, 19 students assessed the overall
quality of their model with a 2. The average number of mis-
takes for these students is 9.63. In comparison, 28 students
assessed the overall quality of their class diagram with a
4 and made, in a average, 6.46 mistakes. In most cases,
the higher the perceived quality is, the lower the number of
mistakes is, and, thus, the higher the actual quality is. We
observe similar results for models made with and without
static metamodel footprints. Thus, in Table V, we only
show the results for all models, no matter whether the static
metamodel footprint was available for their construction.

V. DISCUSSION

We have hypothesized that footprinting would improve
the quality of models and increase the confidence of the
modelers in the quality of their models. After all, foot-
printing provides additional hints that should have helped
the participants in their modeling tasks. However, our ex-
periments did not demonstrate any statistically significant
effect of footprinting on model quality. Unfortunately, our
post experimental survey did not include any question to
further explain this issue. Thus, more research is needed
to investigate whether this is due to the design of our
experiments. In this section, we propose and discuss possible
explanations, providing some direction for future research.

The modeling assignements may have been too simple
to demonstrate the benefits of footprinting. Indeed, the
case descriptions do not include many irrelevant details
with respect to the given modeling purpose. In the post-
experimental surveys, most participants disagreed that both
case descriptions were too detailed. Thus, the modelers had
no difficulty to figure out what was to be modeled, no matter
whether or not they knew the static metamodel footprint. The
results may have been different if we had used a large case
description with many superfluous details. In such a case,
the static metamodel footprint may help for deciding which
details should be included in the model and which details
should be left out.

Participants may have overlooked the static metamodel
footprint or may not know how to exploit this information.
Indeed, some kinds of mistakes would have been avoided
if the static metamodel footprint had been used properly.
The number of students committing these mistakes supports
this explanation. For example, 30 students forgot to model
the triggers on transitions in the state machines: 18 students
had the static metamodel footprint, 12 had not. For the class
diagrams, 11 students modeled realization relationships,
which are superfluous for the purpose at hand: 8 of them had
the static metamodel footprints, 3 had not. This also suggests



that our measure for actual quality is not responsible for the
results.

Future research should clarify to what extent the form
of footprinting reduces its impact on model quality. We
chose to provide the static metamodel footprint as text,
directly integrated in the modeling task without highlighting
it. Alternatively, we could have extended the modeling tool
to provide the students with some feedback about the model
footprint, displaying warning messages about superfluous
or missing elements. We could also have presented an
example of a model containing all the constructs in the static
metamodel footprint. In these forms, the participants can
more easily use the information provided by footprinting
than in its basic form and they can less easily overlook it.

In our experiments, we did not introduce footprinting and
we did not train participants to use it. Thus, participants
may not be experienced enough in metamodeling or in the
UML metamodel to properly exploit the static metamodel
footprint. While this may be the case for the students in
Zurich, these subjects were taught to the students from
Rennes in the MDE lecture. Yet, there is no significant
difference in the results from both sites. Besides, most
students considered themselves as experienced in modeling,
in UML and in class diagrams during the pre-experimental
survey. Still, footprinting may require some training before
it can actually deliver some benefits to the modelers.

VI. CONCLUSION AND FUTURE WORK

Creating requirement models is not an easy task. In
addition to eliciting information about the original, modelers
need to understand the purpose of their model. Often, this
purpose is kept implicit and the only indication is a modeling
language. In a MDE setting, where the model is often used
to feed some model operations (like queries or transforma-
tions), footprinting can be used to assess and improve the
quality of models. Still, the benefits of footprinting on model
quality were not yet empirically investigated.

To investigate the benefits of footprinting, we conducted a
pair of controlled experiments involving students from two
universities, Rennes and Zurich. Participants had to model a
class diagram and a state machine. Some participants used
footprinting for the class diagram, while others used it for
the state machine. We evaluated both the actual quality of
models — by counting the number of mistakes with respect
to a reference model — and the quality perceived by the
modeler — by using a questionnaire.

Our results are inconclusive: the effect of footprinting
on quality is not statistically significant and the results in
the class diagram contradict those in the state machine.
We believe that these results can be accounted by the
way we presented footprinting to the participants: a static
metamodel footprint in text form. Participants may have
overlooked it or may not have used it properly. We would

have obtained different results if we had trained the partic-
ipants to footprinting or if we had provided them with a
modeling tool displaying feedback on the confinement and
the completeness of their models.

Further research is needed for establishing the impact of
footprinting on model quality. Furthermore, footprinting is
not only meant for creating better models, it can also be used
to better understand model operations. Thus, investigating
the impact of footprinting on the comprehension of an
operation is another direction for demonstrating the benefits
of footprinting empirically. Finally, one could evaluate to
what extent a set of operations is a good characterization of
a model’s purpose.
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APPENDIX A.
DENTAL CLINIC

Instructions

The following section describes a system to manage
patient records in a dental clinic. Your task is to produce
an analysis model of this system with a class diagram based
on the description. Your model will be used to generate the
skeleton of a glossary. We will compare your model to a
reference model: Make sure to include every relevant piece
of information, but not more!

Static Metamodel Footprint

Note: The static metamodel footprint has not been handed
to all participants.

In this model, we are only interested in the following
items:

• Classes
– name of the class

• Attributes
– name of the attribute

• Associations
• Association Ends

– multiplicity of the association end
• Generalizations

Case Description

A clinic with three dentists and several dental hygienists
needed a system to help administer patient records. This
system does not keep any medical records. It only processes
patient administration.

Each patient has a record with his/her name, date of
birth, gender, date of first visit, and date of last visit.
Patient records are grouped together under a household. A
household has attributes such as name of head of household,
address, and telephone number. Each household is also
associated with an insurance carrier record. The insurance
carrier record contains name of insurance company, address,
billing contact person, and telephone number.

In the clinic, each dental staff person also has a record that
tracks who works with a patient (dentist, dental hygienist,
x-ray technician). Because the system focuses on patient
administration records, only minimal information is kept
about each dental staff person, such as name, address, and

-type
-description
-toothInvolved
-copayAmt
-totalCharge
-paidAmt
-deniedAmt

Procedure

-companyName
-address
-contactName
-contactTelephone

InsuranceCompany
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Figure 4: Reference model for the dental clinic domain

telephone number. Information is maintained about each
office visit, such as date, insurance copay amount (amount
paid by the patient), paid code, and amount actually paid.
Each visit is for a single patient, but, of course, a patient
will have many office visits in the system. During each
visit, more than one dental staff person may be involved
in the visit by doing a procedure. For example, the x-ray
technician, dentist, and dental hygienist may all be involved
in a single visit. In fact, some dentists are specialists in such
things as crown work, and even multiple dentists may be
involved with a patient. Detailed information is kept about
procedures performed by a staff person during a visit. This
information includes type of procedure, description, tooth
involved, the copay amount, the total charge, the amount
paid, and the amount insurance denied.

Finally, the system also keeps track of invoices. There are
two types of invoices: invoices to insurance companies and
invoices to heads of household. Both types of invoices are
fairly similar, listing each visit, the procedures involved, the
patient copay amount, and the total due. Obviously, the totals
for the insurance company are different from the patient
amounts owed. Even though an invoice is a report (printed
out), it also maintains some information such as date sent,
total amount, amount already paid, amount due and also the
total received, date received, and total denied. (Insurance
companies do not always pay all they are billed.)

Reference Model

A reference model is given in Figure 4.



APPENDIX B.
SHIPMENT

Instructions

The following section describes the behavior of a ship-
ment by Union Parcel Shipments. Your task is to document
this behavior with a state machine. Your model will be used
to generate an implementation based on the State design
pattern. We will compare your model to a reference model:
Make sure to include every relevant piece of information,
but not more!

Static Metamodel Footprint

Note: The static metamodel footprint has not been handed
to all participants.

In this model, we are only interested in the following
items:

• States
– name of the state

• Transitions
– trigger of the transition (as signal event)

• Signal Events
– name of the event

• Initial States
• Final States

Case Description

A shipment is first recognized after it has been picked up
from a customer. After it is in the system, it is considered
to be active and in transit. Every time it goes through a
checkpoint, such as arrival at an intermediate destination, it
is scanned, and a record is created indicating the time and

place of the checkpoint scan. The status changes when it
is placed on the delivery truck. It is still active, but now it
is also considered to have a status of delivery pending. Of
course, after it is delivered, the status changes again.

From time to time, a shipment has a destination that is
outside the area served by Union. In those cases, Union has
working relationships with other courier services. After a
package is handed off to another courier, it is noted as being
handed over. In those instances, a tracking number for the
new courier is recorded (if it is provided). Union also asks
the new courier to provide a status change notice after the
package has been delivered.

Unfortunately, from time to time a package gets lost.
In that case, it remains in an active state for two weeks
but is also marked as misplaced. If after two weeks the
package has not been found, it is considered lost. At that
point, the customer can initiate lost procedures to recover
any damages.

Reference Model

A reference model is given in Figure 5.
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Figure 5: Reference model for the behavior of a shipment


