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State-Dependent Sampling for Perturbed Time-Delay System

Christophe Fiter, Laurentiu Hetel, Wilfrid PerruquetthdaJean-Pierre Richard

Abstract—In this work we present a state-dependent sam- event-triggered control without resorting to extra hartava
pling control that allows for enlarging the sampling intervals  |n these works, the computations for the next sampling times
of state-feedback control. We consider the case of perturlae are made online, which increases the processor load. Also,

linear time-invariant systems with input-delay and guarartee it IV st ¢ ¢ L functi
their L-stability. The approach is based on a novel class of It generally stays open {0 compute a Lyapunov function

switched Lyapunov-Krasovskii functionals with state-degndent ~ Optimizing the sampling intervals while taking into accoun
matrices. It results in an LMI problem that allows for enlarging  the perturbations and the delays.

the sampling interval according to the system state. Then, a More recently, in [2], we proposed a third dynamic sam-
mapping of the state space is designed offline: it computesrfo pling control approachstate-dependent sampling’'which

each state of the state space a lower-bound estimation of the consists in desianing a map of the maximal allowable sam-
maximum allowable sampling interval, which makes it possite gning P

to reduce the number of actuations during the real-time contol ~ Pling intervals over conic regions of the state-space, kan
of the system. to Linear Matrix Inequalities (LMIs). The advantages are:

- the state-dependent sampling map is desigifélithe (once
|. INTRODUCTION for all), which allows for reducing the number of online

Networked Control Systems are often required to share@mputations compared to self-triggered control;
limited amount of resources, which leads to delays, and tothe Lyapunov function is optimizeso as to enlarge the
fluctuations of the sampling interval. From the control tiyeo lower-bound of the sampling map.
point of view, these phenomena bring up new challenges.However, up to now, only ideal Linear Time-Invariant (LTI)
Several studies already questioned the robustness asp&(tems were considered.

for systems with time-varying sampling ([5], [6], [15], 9] In the present work, we propose a nqyel state-dependent
time-varying delays ([8], [14]), or both time-varying sam-Sampling f';\pproach that guarantg(sttablllw for LTI sys- _
pling and delays ([10], [11]). tems subject to both perturbations and input-delay. This

Recently, intensive research has also been conducted®gProach is based onmew class of Lyapunov-Krasovskii
adapt dynamically the sampling so as to reduce the procesfgpctionals (LKF) with matrices that will switch accordirg
and/or network loads while ensuring the desired control pefl® conic region the sampled-state belongsiiong with the
formances. There are two main approaches in the literatuf@@nefits of the state-dependent sampling approach préyious

"Event-triggered control” ([16], [12]), in which sensors are Mentioned, the advantages are: .
equipped with special intelligence so that information is the proposed LKF takes into account both the perturbations

sent to the controller only when special events oceug.( the delays and the sampling;
crossing a frontier of the state space, or a level of a Lyapung the LKF matrices are computed so as to enlarge the
function). The main drawback is that it requires dedicate§®MPling map over the conic regions of the state-space.

hardware to continuously monitor the plant state and check 1€ Paper is organized as follows: Section Il formulates
the defined stability conditions. the problem; Section Il presents the stability resultsti®a

"Self-triggered control” ([17], [13]), which consists in com- IV provides the _offline algorit_hm that builds the_ state_—
puting at each sampling instant a lower-bound estimation §Pendent sampling map. Section V shows some simulation

the next largest admissible sampling interval, so as to ataul "€sults, and Sec%tlon VI 'sums up the conclusions.
Notations: M* stands for the transpose éff € M, .,
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where z(t) € R" is the state vectorw(t) € R™ is an [1l. MAIN L2-STABILITY RESULTS

exogenous disturbance iy, u(t) € R™ is the control | this section, we providé,-stability conditions for the
input, andz(t) € R"- is the controlled outputd, B, C,  perturbed and delayed systéfor a given maximal state-
D, andE are constant matrices of appropriate dimensionsgependent sampling map (5). They are based aquite

The feedback control law is defined as: general class of LKF (with state-dependent matriagbjch
u(t) = —Kx(sg), Vt € [te, thr1), (2) take into accoundelays perturbationsand sampling

with a constant feedback matrix gal, s, the k" sampling A. Non-delayed case
time (when the k™ input is computed) and; the k In order to simplify the reading, we first consider a
actuation time (when thé™ computed input is received by simplified version of the system (without delay; = t;),
the actuators). _ _ and present the main stability tools, as well as a simplified

The sampling law is defined as version of the proposed LKF,

Skl = Sk = Tk € [T, Tmax(@(sk))]; 3) Voo (t,2(t), ) = xT(t)Px(t)

with a given minimal sampling intervat~ > 0 and a + (skpr —t) [1 3T (s)U,, i(s)ds,
maximal state-dependent sampling mapy: R” — R*. (9)

We set ourself in the same context as in [2]: we assunftefined for allt € [sx,sr+1) and k € N, with matrices
that the state space is covered by a sef obnic regions andl Uy of appr?priate di}mensri]onr?. P?ra;ne&ec;;an bgl
. any elements € {1,---,¢} such thatz(s;) € R, an
R, ={z e R" 2" Wox > 0}, W, € Sy,0 € {1+, q}, 7= <7, < 1 (there exists at least one, according to (3)
o whi . o L @ and (5)).
or Wh'c.h maX|maI_sampI|ng intervalsy > 7~ are d_ef'”ed- . The new aspect of the LKF (9) compared to previ-
With this assumption, the state-dependent sampling map dS < \works on systems with time-varying samplings ([6],

considered to be a function of the form [15], [10]) is the fact thatit involves elements that are
Tmax(z) = max {7f|z € R,},Vz € R™. (5) switching according to the system statadeed, note that
o€{l;ad the matrix termU,, is switching at timess, according
The motivation for studying this class of systems (as wely the region the sampled state(s;) belongs to (since
as methods to design these conic regions) has been giyéig switching lawo, satisfiesz(s,) € R.,). This state-
in [2], where it is shown that such a description may bgjependent switch is possible thanks to the fact that the-func
used for approximating a self-triggered control schemés Thtional v, is continuous at timesy: V,, (s, z(sk), &5, ) =
formulation also proved to be efficient to design the sangplinhmt_}{ Voo, (t,2(t), 40) = 27 () Px(sp).
k

map offline, thus allowing to reduce the number of online This*new type of switched LKF is well adapted to the

computations. o _ _ stability analysis of systems with state-dependent samgpli
The sampling and actuation times are linked by the relatiogt it also provides some advantages regarding the stabilit
sk =ty — h(ty), (6) analysis of systems with (state-independent) time-varyin

sampling, as it will be shown in the Example 2 of the

with a delayh(t) assumed to satisfy: Numerical Examples Section,

Vit >0, h(t) € [h1, he], andh(t) € [e1, es], @) In the following, as in the framework of [6], we denote
for given scalars) < hy < hy ande; < ey < 1. Since V(t) =V, (t,x(t), o), for all t € [sy,sk+1), k € N.
Spr1 — sk > 0, it implies thatty 1 — ¢, > % > 0,

due toe; < 1 and thus the control inputs are received by lrt] or?Fer to gua(rjatntee th%Q'Stabg'_? of ttrrl]etnon—deli%fe?
the actuator in the same order as they are sent. systeml, we need to provide condiions that ensure tia

The closed-loop systerf(1), - -,(7)} is denoted ag’ satisfies the conditions of Lemma 4, in the Appendix.

L R . n
Due to the unknown exogenous disturbances, the systemTO begin with, we can see t_hé_(t IS cor_wtmuous ov_e]R
T will be studied from theL,-stability point of view. (we have shown earlier that it is continuous at tlm;a_$

and differentiable oveR™\{s;, k € N}. To ensure that’

is positive definite, we assume that the matriéesand U,

_ pT _ T
gain L,-stable fromw to Fw with an induced gain less than are such thaP” = 1; h> O_ and Ug E Us =0, forhall o< ,
~ if F is a linear operator front, into £, and there exist {1, t’ﬁ_}' NOW’ a t_(?t IS nz_e_ ed to ensure the system's
positive real constants and¢ such that for allw € £, L,-stability, is to provide conditions to satisfy

[Fw|z, <~lwlle, + €. 8) Vi # s, V() 427 (0)2(t) — v*w" (Huw(t) <0. (10)

) o ) In order to analyse this condition, we study the restriction
The present work aims at designing (offline) a stategs 17 op any intervallsy, sy11), k € N. First, we compute:
dependent sampling map,ax (as defined in (5)) that allows .
to enlarge the sampling intervals (3) while ensuring theefini V() = 22T)Px(t) + (sp+1 — t)a" (6)Uq, &(t)
gain L,-stability of T from w to z, with a gain less than a — [' @7 (5)U,, i (s)ds.

Sk

fixed v > 0. (11)

Definition 1: [17] A linear systemF' is said to be finite-



Then, using the Jensen inequality [8], we compute athen V(t) + 27 (t)z(t) — v*w? (H)w(t) < 0 for all ¢t €
upper-bound of the integral term: [Sky Skt1)-
t Since we know thatz(sy) € R, (i.e. we have
—/ i1 (s)Uy (s)ds < —(t — sp)v? () U, v(t), (12) 2T (sk)¥,,x(sk) > 0), we can use the lossless version of

Sk the S-procedure [1] on each of theobtained inequalities to
with show that, if there are scalats; , > 0 such that the LMIs
1 ! t) — -
V(t) = 7 / :b(s)ds = M’ (13) Zijo T Ei)jJMQT\I/gMg =0, (23)
— Sk — Sk

hold for o = oy, then condition (10) is satisfied. Therefore,

and 'obtaln we have the following property:
V(t) < 2T(6)Px(t) + (ske1 — )3T (1) Us, (1)
—(t = sp)T (U, (). Proposition 1: Consider scalarsy > 0 and 7—, and a
(14)  set of ¢ conic regions covering the state spafe, =
v(t) is well defined by continuity int = s, since when {3 270 2 > 0}, ¥, € S,, 0 € {1,---, ¢}, with maximal
t— sg, v(t) — @(sk). sampling intervals-.
We introduce the augmented state veair) € R*"*"=:  The perturbed non-delayed sampled-data syskeis finite-
T _ [T T T T gain L,-stable fromw to z with a gain less thaw if there
o(t) 27 (), @ (k) V2 (8), wh (), (15) exist matricesP € S, U, € SI, Y, € Msuinyn
and matrices\/; and N; such that and scalarss; ;, > 0 such that (23) is satisfied for all
2(t) = Myo(t), z(sp) = Mad(t), o€ {l,---,q} and(i,j) € {1,2}*.

v(t) = M3p(t), w(t) = Mag(t), (16) B. General delayed case

)=
(( )) éé%l B gg%z);(g]\{‘*)ﬁ(;)(; Nio(t), Now, we consider the more general system with delay, as
! 2 A well as the switched LKF:

Using these notations we can rewrite the inequality (14) as ) ) )
Vo‘k(tv'rtv'rt) - ‘/l(taxtv'rt)+‘/2,0'k(t7'rt7'rt)? (24)

V(1) + 27 (1)2(1) = v2u” (Huw(t) <

o7 (O[NTPM; + MT PN, + (sps1 — O)NF U, Ny defined for allt € [tx, tx+1) andk € N, with
—(t — sp)MTU,, My + NI Ny — ~2M] My)o(t). ) VA(t, @y, i) =0T (t )Pn + [ 2T (s)Qua(s)ds
t—h1
The relation (13) between(t), z(t), and xz(sx) can be + i }Zt) (5)Q2(s)ds
written asH (1)é(t) = 0 with H(t) = (t — sx)Ms — M, + + jf O 27 (5)Qa(s)ds
M,. Therefore, by applying the Finsler's lemma [1] one can + ﬁ noy T (s)(Ry + (h(t) —t 4 s)Ry)i(s)ds

include this relation in (17) and obtain that for any matsice

(t
Y, € Manin. n —l—f_h2 fH_ex (s)R3i(s)dsd

+ f_ ft+0 (s)Ra(s)dsdf

V() + 2 (t)2(t) — y?w” (t)w(t) < (25)
¢ (#)[NL PMy + M{ PNy + (sgy1 — t)N{U,, Ny consisting of classical terms used for delay systems ({4, [
—(t — sp)MTU, Mz + NI Ny — 2 M M, [10]), and an additional term
-‘rng((t—Sk)Mg — M, +J¥2)T n(t) T n(t)
(= 51 Ms — My + Mo)TY16(0). g Veeltod) =ta o (nw) ()
Since (18) is linear in the variableit is possible to reduce +(tpp1 —t) ft (8)Us,7(s)ds
the number of conditions to be checked by applying Lemma +(tkr1 — ) (t — tk)n (tr)Son(tr),
5 (Appendix) with the variable. =t € [s, sg+1]. The two
obtained inequalities are both linear in the variahle; —s;,. ~ With the vectorn(t):
Thus we can use once again Lemma 5 with the variable 2(t)
A= sp41 — sk € [77, 7] to prove that if the 4 inequalities n(t) = (a:(t B h(t))) : (27)
§TEZ-7J-U,C§ < 0 are satisfied for alf € R3" ", with = Zij,on
defined as and the matrice$),,o € {1,--- , ¢} defined as:
Bito =Z + 110Ny Us Ny, (19) o (X XX, .
Sine = B + Tio [~MIU,Ms + Y, My + MIYT], =0 x, x| @9
20 ' a
E, = N{PM,+MIPN; + NN, — 72M4TM4( ) The matricesP, Q1, Q2, @3, R1, R, R3, Ry, Uy, S,,
+Y, (=M + My) + (=M + Mx)TY,T, X,, X1, have appropriate dimensions. Parametgrcan
(21) be any element € {1,---,q} such thatz(sy) € R, and
with 7~ < 7, < 7 (there exists at least one, according to (3)

Toe=T1=7 andTy, =1, (22) and (5)).



Similar to what we had with the previous simple LKF, weand define the matrice¥;c(; ... 7:
note that the term (26) isomposed of matrix termQ,, ,

U,,., and S,, which are switching at times,, according Ny = AMy; — BKM, + EMy5, Ny = %1) ,

to the regionz(sy) belongs to This state-dependent switch N M N 2

is possible thanks to the fact thab,, (tx, 1, ,dr,) = N; = Ml LNy = (M3> Ny = <N2) , (34)
1imHt; Va,on_, (t, 2, &) = 0, which ensures the continuity M7 4 4

of V5. This function with state-dependent matrices is a Ng = Mz ,and N; = CMy — DK My.

natural extension of the works with LKFs on systems with . ) o )
delays ([4], [14]), sampling ([6], [15]), or both ([10]). The use of these matrices is very similar to the one in the
As in the simplified case, we analyse the systems Previous simplified case (see (16)).

stability by checking the conditions of Lemma 4 with In the following Theorem, we provide af,-stability
condition for the syster’. The condition is in the form of

LMis of the size(11n + n,) x (11n + n,,) that depend on
the matrices of the LKF (24), of the description of the conic
regions (4), and of some scalaes, { ¢; j1,0,-) and matrices
(Y1,6, Y26, Y3,5) resulting from the use of the S-procedure
[1] and Finsler's Lemma [1] respectively.

V(t) = V,, (t,24,3¢), for all t € [ty,tx1) andk € N,

(29)
with V;,, defined in (24). In the following, we also define the
time-dependent functioni; and V5, with similar notations

The £, stability analysis is divided into two main steps.
- First, we prove tha¥ is continuous oveR*™ and differ- Theorem 3:Consider scalarsy > 0, hi, ha, €1, es
Egg;il\)/f ;(;;i?:ltefeg’;’tk“)' and provide conditions for its 7, and a set of; conic regions c_overing the state space
. " . Ro = {z, 27V, >0}, ¥, € S, 0 € {1,---,¢q}, with
- Then, we differentiatd”, upper-bound the obtained result {z, v 2 0f o€ a}

d derive the’ bil dit maximal sampling intervals;'.
and derive ther., stability conditions. The perturbed and delayed sampled-data syskeis finite-

We introduce two scalars, to be involved in the nexbain Lo-stable fromw to 2 with a gain less thar if there
lemma: exist matricesP € S5 *, Q1,Q2,Qs, R1, R2, R3, Ry € S;I,
anSa' S S;n, XcraXLa' € M2n,2nn Yl,cr € M7n,2n1
Y206,Y30 € My, and scalarsey,€; ji00 > 0 such
that (32) and (35) are satisfied for alle {1,---,¢} and
(i,7,1,0) € {1,2}4:

As it is shown in the proof of the lemma (provided in the Eijtoo + EijilooMi WMy <0, (35)
Technical Report [3]), these scalars are set to satisfy

leg:leInaX{Ti—Fhl—hQ,ﬁ},

(30)
T270' = min{T:{ +h2 — hl, %} .

with
= = T T
Ty <trsr —te <Too. 31 Eijlloe =Zijo+To [N4 SeNs+ N3 Uy N3
1,0 > Uk+1 k> 120 ( ) +Ngﬂl,aN5 +N5TQ£UN3] , (36)
- Eijl2e = Zijet Tl [;NZSUN4 — N{'U,Ng
Lemma 2: The functionV defined in (29) is continuous +Y1,,Ne + N{ YT, ],

over Rt and differentiable for allt # t,, k € N. If its _ . T . (37)
matrix parameters satisfP € S;*, Q1, Q2, Q3, Ry, Ry,  Tido = N:%PN2 + N3 PN3 +¥f1 Q1M .
Ry, Ra € Si, Uy, Sy € S, Xy X190 € Moy oy, and if +Ms (Qr = Qu)Ms — Mg Qs Mg — N; QN5
there exisy scalars:, > 0 such that, foralb € {1,--- ,¢}: +N% (R1T+ hjRy + haRs + (th — h1))Ry) Ny

—EMr? R1M7 + (1 - ei)MQ (Qg — QQ)MQ

1 T
P 0 0 0 =57 (M1 — M5)" ((1 — e)Re + R3) (M1 — Ms)
<0 0> 1208k — 5 (O \I!U) =0, (32) —(hj — h1)M{y((1 — e2) R2 + R3 4+ R4) Mo

—(ha — hy) M} (Rs + Ra) My .
then V is also positive definite, and there exists a scalar +3_/1-,a(—N2 + Na) + (=N2+ Na) Yy,
8> 0 such thatV/ () > B|=(t)[|3 for all t > 0. +Ya,5((hj — h1)Mio — Ms + My)

+(_(hj — h1)Myo — M5 + MQ)T}_/QTG,
+Y3.5((he — hj) My — My + Mp)

Proof: The proof is available in the Technical Report [3]. iy
+((hg = hj) My — My + Mg)" Yy,

[ |
+NI N7 — 2 ME My,
_ 38

Now that smoothness and positive-definitenes$’ofan Q= (XUJFX(T X o4 x ) E39;
be checked, the second step is the stability analysis. We Lo 2 —Ao t X105 )5
introduce the matrices\;c(,... 113 € My 11ntn, and v Yl,a) M
Mis € My, 11n+n.. lo = 11n+n.,21)

12 w,11n+ny, 0 (40)

Y,
Yag': ad EM NANaq , N € 213 .
(Mf - ML) =1, (33) ; 0 ) 1ntn,.n, @ € {2,3}



dependent matriceS,,, S,, X,, and X; , of the LKF are
Proof: The proof, similar to the one in the non-delayed casesomputed during that step.
is available in the Technical Report [3]. [ ]
Remark 3:0ne can also compute the largest admissible
Remark 1:If w satisfiesz? (t)z(t) — v>w® (t)w(t) > 0, state-independent sampling” (Step 1) by using the LKF
and if the LMIs (35) are strict, the sampled-data syst®m with state-dependent matrices switching on some predefined
is asymptotically stable. regionsRR,. Although it is more complex, this can reduce
the conservatism, as it will be illustrated in Example 2.
IV. A STATE-DEPENDENT SAMPLING MAP
DESIGN Remark 4:Very often, the works are carried with a mini-

In this section, we propose a three-step algorithm (Figuf@al sampling interval— set to0, as in [2], [17], or [6].
1), which allows for computing the LKF matrices so asEnabling a larger minimal sampling makes it possible to
to maximize both the largest admissible state-independéffrease the obtained maximal sampling (or even7™)
sampling intervalr™ = min,c(1.. 7, and the state- With the proposed technique.
dependent sampling maf,a.x described in (5), with respect

to the L»-stability conditions provided in Theorem 3. Keep V. NUMERICAL EXAMPLES

in mind that all steps are made offline. A. Example 1
We consider the system:
STEP 1 3 0 )
()= (. z(t) — Kz(s;) +w(t), and
o Single regionR™ () ( 0 1> () (1) (s%) ©
K= (-1 4), 2(t) = 2(t), fort e [tr,tpt1).
Theorem 3 LMIs + | line search algorithm The state-dependent sampling map (5) will be designed
A in four successive cases: 1) no delay nor perturbatians (

o Compute the largest admissible 0, h = 0, asymptotic stability); 2) pert_grbati_ons on the delay-
state-independent sampling free system # 0, h = 0, Lo-stability with 7 = V10);
o Compute the LKF matrice®, Q1, Qa, Qs, 3) unperturbed system with delayt) € [10~,107"] and
Ri, Rs, R3, Ry, (andU, S, X, X1) h(t) € [-0.2,0.6] (w = 0, h # 0, asymptotic); 4) perturbed
system with the same delaw & 0, h # 0, v = V/10).
We setr~ ~ 0 and use the isotropic partition described

STEP 2 in [2] to design a covering of = 100 conic regions. Then,
we use the algorithm of Section IV to build the mapping
© ¢ conic regionsk,, covering the state space that maximizes the sampling interval for each state. Bezaus
© Use the LKF matrices®, Q1, Q2, @3, the state dimension i, the conic regions are defined from
Ry, Ry, R3, Ry computed in Step 1 the spherical coordinatdg, §) of the stater = pe?, for the
i ) particular valuep = 1 (the unit sphere). Computed offline
Theorem 3 LMIs + | !ine search algorithm in each of the 4 cases, Figure 2 presents the admissible

for each regiorR, sampling interval as a function of the state arfjke [, ).

Respectively to the four presented cases, the longest state
independent sampling interval we found is: ) = 0.535;
2) 0.445; 3) 0.169; 4) 0.145. Note that sincer— ~ 0, the
system/L,-stability (or asymptotic stability) is preserved for
any time-varying sampling less thari. Also, thanks to the
mappings we built, the robustness regarding classical-time

A

o Design the mapping of the largest admissiblg
samplingr,” > 7t for each regioriR,,
o Compute the LKF matrice&,, S,, Xo, X1,0
for each regiork,

STEP 3 varying sampling is extended to all state-dependent sagnpli
intervals under the curves obtained in Figure 2.
Design of the state-dependent sampling map Simulation results are shown in the Technical Report [3].

Tmax(®) = MaX,e7(z) 74 > 77, Ve € R”

B. Example 2

To show the conservatism reduction brought by the LKF
with state-dependent matrices, we consider the unpedurbe

Remark 2:Step 1 may be used as a robust analysigewly_free system from [9]:

of delayed and perturbed sampled-data systems with time-. = (—0.5 0 1
varying sampling. Step 2 leads to a self-triggering aldonit &(t) = 0 35 z(t) = 1 Ka(sy). and
except that all computations are made offline, and the state-K = (—1.02 5.62), z(t) = (t), fort € [sk,sp41).

Fig. 1. Algorithm to design the state-dependent sampling max
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Fig. 2. Example 1: Mapping of the maximal admissible sangslin,~ for
the system with or without perturbations and/or delaysh.

(5]
6]
We setr~ =~ 0. Considering the results given by the step 1
of the algorithm described in Section IV and taking only one
region R™, the longest state-independent sampling interval8]
7% (i.e. admissible no matter the state) obtained is equa[9
to 0.267, whereas we obtain.309 with ¢ = 100 regions
Ro (an improvement ol 6%). This corresponds to a robust
stability bound that can be compared to the ones obtained ]
[6] (77 = 0.259), [7] (++ = 0.204), or [15] (T = 0.198).

VI. CONCLUSION

This work introduced a new class of Lyapunov-Krasovskii
functionals with state-dependent matrices. It allowed fot2!
designing a state-dependent sampling that reduces
number of actuations, while keeping th®&-stability for
perturbed time-delayed linear state feedback systems. T e
proposed method can be seen both as a self-triggered con rol
and as a new time-varying sampling analysis leading to a
state-dependent sampling design. We think it presents tW!
main advantages, since it makes it possible:

- to maximize the minimal sampling interval [16]
+ inf,crn Tmax(z) Of the state-dependent sampling

[11]

T =
map, and to compute the associated Lyapunov-Krasovskit,
function matrices that ensure the systé&gistability;

- to design offine a mapping of the state space with
a maximum allowable sampling time for each region.
Therefore, no additional computation is required online
during the control of the system.

VII. APPENDIX

Lemma 4: (Adapted from [6])[ is Lo-stable fromw to
z with a gain less thany > 0 if there exists a positive
definite continuous functioV : ¢t € Rt — V() € RT,
differentiable for allt # tx, k € N, that satisfies along":

V() + 27 (1)2(t) — v*wT (Hw(t) < 0. (41)

Lemma 5: (Adapted from [1])Considerz € R", two
matricesI'; andT'y in S,, and two scalars\= < A\*. The
following statements are equivalent:

(i) VA e A7, A F), 2T (T + Alg)z < 0,
(II) IT(Fl + /\7F2)117 <0 ande(Fl + /\JrFQ)SC <O0.
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