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Abstract: One of the services provided by the operating system to the applications is
random number generation. For security reasons, the Linux Random Number Generator
is built upon the combination of a deterministic algorithm known as the cryptographic
post-processing and an unpredictable physical phenomenon called an Entropy Source.
While the various cryptographic post-processing algorithms and their properties are well
described in the literature, the entropy collection process itself is little studied. This
report first presents the different approaches to random number generation, and then
details the architecture of the Linux Random Number Generator. Then, we present the
experiments we performed to monitor entropy transfers. Our results show that the main
source of randomness in the system is the behavior of the hard drive, and that most
random numbers produced by the generator are actually consumed by the kernel itself.
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Entropy transfers in the Linux Random Number Generator
Résumé : La génération de nombres aléatoires est l’un des services offerts par le système
d’exploitation aux applications qu’il exécute. Pour des raisons de sécurité, le générateur de
Linux est construit autour de la combinaison d’un traitement cryptographique déterministe et
d’un mécanisme physique réellement non-déterministe appelé source d’entropie. Si les différents
traitements cryptographiques et leurs propriétés sont abondamment décrits dans la littérature,
le processus de collecte d’entropie lui-même est assez mal connu. Ce rapport, après une présen-
tation des différentes approches de génération de nombres aléatoires, détaille l’architecture du
générateur de Linux, puis les différentes expériences que nous avons menées pour observer les
transferts d’entropie. Nos résultats montrent entre autre, que la plus grande source d’aléa est le
comportement du disque dur, et que la majorité des nombres aléatoires produits dans le système
sont consommés par le noyau lui-même.

Mots-clés : génération de nombres aléatoires, systèmes d’exploitation, entropie
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1 Introduction
On a computer system, access to hardware devices like the processors, main memory, or network
interfaces has to be properly shared between all the users. Not only has the operating system
(OS) to provide software interfaces between these hardware resources and the user programs, but
also the OS should enforce fairness and other desirable properties amongst users. Otherwise,
a malicious user program may try and monopolize a particular resource like the disk drive or
the CPU, which damages system performance and may lead to denial of service. Therefore,
understanding and controlling the behavior of all shared resources is of critical importance to
evaluate resiliency of the system.

One little-studied shared OS resource is the random number generator. Many applications
need random numbers. For example, all security-oriented programs use random numbers to
generate reliable cryptographic keys. Also, random numbers are key to implementing Monte-Carlo
simulations. Because algorithmic generators are too weak to satisfy the randomness needs of
all those applications, a majority of operating systems provide a system-level Random Number
Generator (RNG). The Linux kernel is not an exception and contains such a generator: the Linux
Random Number Generator (LRNG). This component is available both for use by the kernel
itself and by user-space applications. A non-privileged user of a GNU/Linux OS obtains random
numbers by reading the /dev/random or /dev/urandom devices.

The Linux Random Number Generator is not a mere deterministic algorithm producing
numbers. In order to offer “good quality” randomness, the LRNG implements a so-called True
Random Number Generator architecture, which collects so-called entropy from various parts
of the system. These terms will be defined in Section 2. However, a major drawback of this
architecture is that the generator sometimes has to wait for some entropy to arrive, thus yielding
very long response times.

To illustrate this situation, we conducted a little experiment, with a program that repeatedly
requests one byte from the /dev/random device. The results are presented on Fig. 1 below1.
While the shortest request completion time is under 1µs, the longest response time is about 35
seconds. That is a seven order-of-magnitude difference.

The litterature about random number generation techniques, and about the different generator
architectures, is numerous. However, to the best of our knowledge, little has been done on the
entropy collection process itself. In this work, we investigate this subject by studying how Linux
generates, collects, and handles entropy to be used by the LRNG. The report is organized as
follows. Section 2 defines several terms related to random number generation (such as entropy)
and presents the different RNG architectures. Section 3 gives an overview of the Linux Random
Number Generator. Section 4 describes the monitoring system we implemented to understand to
the LRNG and presents the results we obtained. Finally, the Section 6 summarizes our conclusions
and perspectives.

2 Context: random numbers
2.1 Random numbers characterization
There are various ways to define or describe what is called randomness. Two important properties
are often expected for a sequence of numbers to be called “random”, that is uniform distribution,
and statistical independence.

1This test is performed on a Ubuntu 12.04 machine, running the default desktop environment. The processors
is an Intel Core i3 (2.27 GHz x 4), and the machine has 3.7 GB of RAM. The version of the Linux kernel is 3.2.0.
We measure the completion time for each of the 1000 requests.
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Figure 1: Response time of /dev/random for 1000 successive one-byte requests. The average
response time is 264.518 ms with a standard deviation of 1675.535 ms.

Let X1, X2, · · ·Xn be a sequence of random variables defined from the sample space Ω realizing
their values in a measurable state space X . Let ω ∈ Ω be an event of the sample space. Let
xi ∈ X be the i-th realization of Xi such that Xi(ω) = xi (i.e the definition of a random variable).
Let Pr(Xi = xi) be the probability of the random variable Xi realizing the value xi. Equation
1 defines that Xi follows a uniform distribution. Equation 2 defines statistical independence
between two random variables Xi and Xi−1.

Pr(Xi = xi) = 1
card(Ω) (1)

∀i ∈ {2, ..n}, P r(Xi = xi|Xi−1 = xi−1) = Pr(Xi = xi) (2)

However, not all random variables satisfy these two properties. When it is not the case, then
the numbers we get are not “purely random” but may still contain some amount of uncertainty.
This amount is often named entropy and can be described by the following formula.

Let X be a random variable. Let X be the sample space of this random variable. Let x be a
realization of this variable, with x ∈ X . For any i ∈ X , let p(i) = Pr(x = i) be the probability of
x being i. The Shannon entropy of variable X is defined as:

H(X) = −
∑
∀i∈X

p(i) log2 p(i).

In order to use this formula, one has to know the probability distribution function p. If this
function is not known, then the Shannon entropy can only be estimated from several realizations
of the variable. In the literature, this problem of entropy estimation is an open topic [LPR11].

Inria
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2.2 Random Number Generators
A Random Number Generator is a computer program intended to behave like a random vari-
able. Random number generation always attracted attention from both computer science and
mathematics communities. The work of Knuth [Knu97] is seminal in this field. In the literature,
different classes of random number generators have been studied:

• pseudo-random number generators (PRNG);

• cryptographically secure pseudo-random number generators (CSPRNG);

• true random number generators (TRNG).
We choose to give a simple description for each of them. Our descriptions are close to the ones
given by Viega in his book Secure Programming [VM03].

Pseudo-Random Number Generators
A Pseudo-Random Number Generator (PRNG) is a finite state machine. The initial value of the
internal state is often called the seed. Upon each request, a transition function computes the
next internal state, and an output function (sometimes the identity function) produces the actual
number.

A PRNG will deterministically produce a sequence of values depending only on the initial
seed. This sequence will always be periodic, because there are only so many distincts states the
algorithm can visit before rolling over.

Remark If the internal state is stored as a n-bit vector, then the maximum period for the
PRNG is 2n. Indeed, a finite state machine has no other internal memory than its state, so after
at most 2n transitions it will necessarily end up in some already visited state, and from then on
it will perform the same transitions again and again.

Example Linear congruential generators [PM88] are a common class of PRNGs. Let xt be the
internal state of the PRNG at time t. Let a, b and m be arbitrary integer constants. The PRNG
transition function is:

xt+1 = a · xt + b mod m.

Cryptographically Secure Pseudo-Random Number Generators
A Cryptographically Secure Pseudo-Random Number Generator (CSPRNG) is a PRNG that
satisfies cryptographic conditions [R0̈5] in addition to statistical conditions. Two classes of
CSPRNGs can be distinguished depending on their security model: so-called stream ciphers [RB08]
offer empirical security by resisting to the state of the art of cryptanalysis attacks, while provably
secure CSPRNGs have more theoretical security properties derived by reduction to a difficult
problem [BBS86].

As stated by Viega [VM03]:
Cryptographic pseudo-random number generators are still predictable if you somehow
know their internal state. The difference is that, assuming the generator was seeded
with sufficient entropy and assuming the cryptographic algorithms have the security
properties they are expected to have, cryptographic generators do not quickly reveal
significant amounts of their internal state. Such generators are capable of producing
a lot of output before you need to start worrying about attacks.

RR n° 8060
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True Random Number Generators
Opposed to a PRNG, which is implemented entirely in software, a hardware RNG is based on
some unpredictable physical phenomenon called an entropy source [Kel04]. Sampling this source
is the electronic equivalent of rolling a die or flipping a coin. Examples of such generators include
the Bull Mountain RNG implemented in recent Intel CPUs [Int11] which uses thermal noise
within the silicon as an entropy source.

However, this architecture is limited by the speed of the physical phenomenon itself. Naive
hardware RNGs thus typically offer insufficient throughput for most applications. This is why
people generally build so-called True Random Number Generators [BH05] by cascading a hardware
RNG with a PRNG: the slow-but-very-unpredictable hardware RNG is used to periodically refresh
the internal state of the fast-but-deterministic PRNG, in a process called reseeding. In this context,
the hardware RNG is often referred to as a entropy harvester [BIW04].

The resulting behavior is between that of a pure hardware RNG and a PRNG: when sufficient
entropy is harvested from the source, then the PRNG is reseeded often and the output numbers
are really non-deterministic. However, if the TRNG fails to harvest enough entropy from the
source, then it does its best and acts as a pure PRNG.

3 Context: the Linux Random Number Generator
The Random Number Generator implemented by the Linux kernel [MT12, GPR06] is a True
RNG: it contains both a PRNG and entropy harvesting mechanisms. In this section, we present
the architecture of the LRNG as well as entropy transfer mechanisms.

3.1 Output interfaces
The Linux Random Number Generator provides three output interfaces:

• /dev/random
• /dev/urandom
• get_random_bytes()

The get_random_bytes() function is available only from within the kernel. It always return
the requested amount of random data. On the other hand, the two /dev/(u)random devices are
accessible from user-space, even to a non-privileged user. Whereas /dev/random can block the
requesting process, /dev/urandom never blocks.

The Linux source code [MT12] reads that /dev/urandom will return as many bytes as are
requested. If too many many bytes are required, this will result in “random numbers that are
merely cryptographically strong, but they are still acceptable for many applications”. On the
other hand, “/dev/random is suitable for use when very high quality randomness is desired (for
example, for key generation or one-time pads), but it will only return a maximum of the number
of bits of randomness contained in the entropy pool”.

3.2 Entropy pools
The internal state is separated into three arrays of unsigned integers called the entropy pools: the
input pool, the blocking pool, and the non-blocking pool.

The blocking pool, which size is 1024 bits, is related to /dev/random. When bits are requested
to /dev/random, the LRNG reads numbers is this pool. The non-blocking pool, which size is also
1024 bits, is related to /dev/urandom. When bits are requested to /dev/urandom, the LRNG

Inria



Entropy transfers in the Linux Random Number Generator 7

reads numbers is this pool. It is also used by another function named get_random_bytes(). This
function can be called from inside the kernel to request random numbers. The input pool, which
size is 4096 bits, is connected to the blocking pool, the non-blocking pool and the entropy sources.

Every pool is associated with an integer called entropy counter. It is an estimation of the
amount of entropy contained in the pool. The entropy counter of a pool varies over time, as
explained below:

Random numbers request on the blocking pool When n random bits are requested to
/dev/random, the blocking pool entropy counter is decreased by n. If it falls to zero, the read
operation blocks until more entropy is acquired.

Random numbers request on the non-blocking pool When n random bits are requested
to /dev/urandom or get_random_bytes(), the non-blocking pool entropy counter is decreased
by n. However, if it falls to zero, it will not block the request and the device will act as a PRNG.

Entropy transfer When the blocking or the non-blocking pool has to provide n entropy bits
but has an entropy counter lower than n, then entropy is transferred from the input pool to the
demanding pool. The input pool counter is decreased by n while the counter of the demanding
pool is increased by n. If the input pool entropy counter is lower than n, then the transfer is
rejected.

Entropy harvesting As a TRNG, the LRNG uses entropy sources to harvest entropy (see
Section 2). When n entropy bits are gathered from an entropy source, the input pool is refreshed
using those bits and the input pool entropy counter is increased by n.

3.3 Entropy sources
The LRNG depends on the rest of the kernel to provide it with entropy. It exports three functions,
which are intended to be called by various device drivers:

• add_disk_randomness(),

• add_input_randomness(), and

• add_interrupt_randomness().

The add_disk_randomness() function is called by the hard disk driver. It uses the the
seek time of block layer request events as an entropy source. The add_input_randomness()
function is called by the drivers of input peripherals such as the mouse, the keyboard, but also a
joystick or a tablet. For every event, it uses values representing the event (e.g. “KEY” event,
“A” key, key released) as an entropy source. The add_interrupt_randomness() function can
a priori be called in any part of the kernel that generates interrupt. For every interruption, it
uses the inter-interrupt timing as an entropy source. Every interruption is not satisfying: the
inter-interrupt timing of a timer is predictable. We provide a big picture of the LRNG architecture
in figure 2, including the entropy sources, the entropy pools and the output interfaces.

RR n° 8060
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Input Disk I/O IRQ

/dev/random

/dev/urandom

Input Pool

Non-blocking PoolBlocking Pool

get_random_bytes

Figure 2: Global architecture of the the LRNG. Lozenge boxes are entropy sources ; rectangle
boxes are the three entropy pools, together making up the internal state of the generator. Rounded
boxes are the three output interfaces. An arrow between two boxes represents the possibility of
an entropy transfer.
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3.4 Entropy estimation
In Subsection 3.2, we stated that when n entropy bits are gathered from a source, the input pool
entropy counter is increased by n. We now explain how the LRNG computes n, that is, how
it estimates how much uncertainty was conveyed by the event. The LRNG has to do such an
estimation in order to detect regularities and reject non-uncertain sequences.

Let us consider an entropy source that produces events for the LRNG. Let t0, t1, t2, ... be the
jiffies associated with those events. A jiffy is the current value of the kernel timer when an event
happens.

First, the estimator calculates the jiffies differences on three levels:

δi = ti − ti−1,

δ2
i = δi − δi−1,

δ3
i = δ2

i − δ2
i−1.

Then, the estimator takes the minimum of the differences absolute values:

∆i = min(|δi|, |δ2
i |, |δ3

i |).

Finally, it applies the following function [LRSV12]:

Hi =

 0 if ∆i < 2
11 if ∆i ≥ 212

blog2(∆i)c otherwise.

The choice of this particular estimator and of its parameters are not justified in the Linux
source commentaries. It is a crude but cheap entropy estimator. It was chosen for its cost, not
for its accuracy [LRSV12]. Still, it is pretty good at detecting regularities. A retro-engineering
[Pou12] study proposes an interpretation based on Newton polynomial interpolation.

Let us give an example:

Jiffies 1004 1012 1024 1025 1030 1041

1st differences 8 12 1 5 11

2nd differences 4 11 4 6

3rd differences 7 7 2

δ1041 = 1041− 1030 = 11
δ2

1041 = 11− 5 = 6
δ3

1041 = 6− 4 = 2
∆i = min(|11|, |6|, |2|) = 2

H1041 = blog2(2)c = 1

According to the LRNG estimation, the event at time 1041 brings 1 bit of entropy.

RR n° 8060
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3.5 Alternatives to the LRNG

The LRNG is not the only random number generator that can be used on a GNU/Linux operating
system.

Many programming languages like C or Python include a random number generator in their
standard library, but they are generally PRNG, not TRNG.

The Entropy Gathering Daemon [War02] is a user-space TRNG, that is intended to be used
on a Linux system running applications that need random numbers but for some reason are
denied access to /dev/(u)random.

HAVEGE [SS03] is a TRNG that uses the state of volatile hardware components (caches,
branch predictors, long pipelines, instruction level parallelism) as entropy sources.

The kernel module frandom is a kind of add-on to the LRNG. It provides the system with
two new user-space output interfaces: /dev/frandom is 10-50 times faster than /dev/urandom
but may consume some of the LRNG entropy, /dev/erandom is slower but does not consume any
LRNG entropy. Both of them are not meant to be used for cryptographic purposes.

4 Contribution

In the previous part, we studied the architecture of the LRNG, including its components and
algorithms. We know the LRNG principles. Now we would like to investigate the behavior of
the LRNG while in use. Consequently, we implemented a system that monitors the inputs, the
outputs and the internal state of the LRNG, and ran it in several test scenarios.

4.1 Experimental setup

We used virtual machines in order to develop our system, because it is both faster and safer to
test a kernel on a virtual machine rather than on a real computer. We use the QEmu emulator to
host the virtual machines, because it allows us to change the kernel image very easily at each
boot.

However, we used real machines for the actual experiments, in order to avoid any influence
from the emulator on the results.

We chose to implement the monitoring system directly inside the kernel. We could have used
a kernel debugger, but it would have been very difficult to know how it modifies the LRNG
behavior. By using our system, we have both a better knowledge and a better control on what
happens.

The easiest way to log something from within the kernel is to use the printk function. It
works like printf, and writes the output in the operating system log files. We chose not to
use this function, because it could have generated disk events that would have been used as an
entropy source by the LRNG. We want our monitoring system to have as less influence as possible.
Instead of printk, we chose to send packets over network.

To our knowledge, there are two different kernel APIs to send UDP packets, available via
include/linux/net.h and include/linux/netpoll.h. The first one is pretty similar to the
standard userspace socket API. The second one is more low-level and not commonly used. Still,
we chose to use it, because it works even in IRQ contexts, which is required to instrument input
events.

Inria



Entropy transfers in the Linux Random Number Generator 11

4.2 Tested scenarios
We ran three experiments, corresponding to different scenarios:

1. a desktop workstation,

2. a file server,

3. a computing server.

In the desktop scenario, we installed a graphical environment and a web browser on the virtual
machine. Once ready, we rebooted it and started to monitor its LRNG activity. For one hour,
we did some typical desktop tasks, mainly reading articles on the internet and installed a few
programs. Finally, we shut it down properly, in order to include machine booting and halting
activities in the results.

In the file server scenario, we did something similar (one hour, from boot to shutdown). There
were no graphical packages installed on the system, and we ran wget to download a large data
file from a Debian image mirror. Approximately 1.6 GB of data was transferred during the
experiment.

In the computing server scenario, we launched a mathematical C program, which looks for
integers n ∈ N such that 2

√
n− 1 ∈ N and 3

√
n+ 1 ∈ N. For instance, the number 26 is such an

integer (26− 1 = 25 = 52 and 26 + 1 = 27 = 33).

We chose those scenarios because they were likely to stress different entropy sources of the
LRNG. The desktop workstation is likely to generate mouse, keyboard and other input events;
the file server mainly uses the disk and the network; and the computing server has a heavy CPU
load.

4.3 Entropy inputs
In this experiment, we study the origin of the entropy harvested by the LRNG. For that we
measure the proportions of entropy that comes from the three functions:

• add_disk_randomness(),

• add_input_randomness(), and

• add_interrupt_randomness()

We summarize the results in the table below, and then discuss the lessons learned from our
observations. A graphical representation of those results can be found in Fig. 3. The term
“generic input” represents an input event that cannot be associated with a particular device.

Desktop workstation scenario
Input Entropy (bits) Entropy (%)
Total 26727 100
Disk 7520 28.14
Mouse 9121 34.13

Keyboard 9452 35.36
Generic input 634 2.37

IRQ 0 0.00

RR n° 8060
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File server scenario
Input Entropy (bits) Entropy (%)
Total 4773 100
Disk 4773 100.00
Mouse 0 0.00

Keyboard 0 0.00
Generic input 0 0.00

IRQ 0 0.00

Computing server scenario
Input Entropy (bits) Entropy (%)
Total 1377 100
Disk 1377 100.00
Mouse 0 0.00

Keyboard 0 0.00
Generic input 0 0.00

IRQ 0 0.00

28%

34%

2%

35%

disk
mouse
generic_input
keyboard

(a) Desktop workstation scenario

100%
(b) File server scenario

100%
(c) Computing server scenario

Figure 3: Randomness inputs

Inria
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Primary result: The disk is an important entropy provider in every scenario, even in the
desktop workstation scenario.

Secondary result: In our three scenario, we did not observe a single “IRQ event”. We assume
than our experiments did not include any activity likely to generate interrupts that can be used
by the add_interrupt_randomness() function, such as an interaction with a USB-key.

Secondary result: In the server scenarios, the only entropy provider is the disk. In those
scenarios, all the interactions have been performed remotely, without using the machine mouse or
keyboard, so there was no reason to observe any entropy generated but an input device.

Secondary result: The desktop workstation obviously produces far more entropy than the
server scenarios. The amount of collected entropy in this scenario is almost 5 times higher
compared the file server scenario, and more than 15 times higher compared the computing
scenario. As expected, the more user activity there is, the more entropy the system collects.

4.4 Entropy outputs
In this experiment, we measure the quantity of entropy that flows through the three output
interfaces:

• /dev/random,

• /dev/urandom, and

• get_random_bytes()

We summarize the results in the table below, and a graphical representation of those results can
be found in Fig. 4.

Desktop workstation scenario
Input Entropy (bits) Entropy (%)
Total -26096 100

get_random_bytes() -12472 47.79
/dev/random -0 0.00
/dev/urandom -13624 52.21

File server scenario
Input Entropy (bits) Entropy (%)
Total -4685 100

get_random_bytes() -3765 80.36
/dev/random -0 0.00
/dev/urandom -920 19.64

Computing server scenario
Input Entropy (bits) Entropy (%)
Total -1377 100

get_random_bytes() -1377 100.00
/dev/random -0 0.00
/dev/urandom -0 0.00

RR n° 8060
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48%

52%
get_random_bytes()
/dev/urandom

(a) Desktop scenario

80%

20%

(b) File server scenario

100%
(c) Computing server scenario

Figure 4: Randomness outputs

Primary result: No request has ever been made on /dev/random during all the experiments.

Primary result: In our three scenarios, most entropy consumption is caused by requests on
get_random_bytes(). It means the kernel is the first entropy consumer.

Secondary result: The total amount of consumed entropy almost equals the total amount of
produced entropy, in every scenario. This result was to be expected, because 1) obviously the
system cannot consume more entropy than it has collected, and 2) the LRNG does not produce
useless entropy : once the entropy counter for the input pool has reached its maximum value
(4096 bits), the LRNG starts ignoring any incoming events in order to save CPU resources. Thus,
it collects no more entropy.

4.5 Entropy consuming applications
In this experiment, we study the userspace clients requesting data on the /dev/(u)random devices,
in order to find out which applications need random numbers and how much entropy they consume.
Due to major differences between the results in each scenario, we choose to present them one
after another. We summarize the results in the tables below, and graphical representations are
available in figures 5, 6 and 7.

Inria
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4.5.1 Desktop Workstation scenario

Desktop Workstation scenario
Input Entropy (bits) Entropy (%)

[K] load_elf_binary -11896 45.59
[U] svn -6728 25.78
[U] chromium-browse -5512 21.12
[U] php5 -640 2.45
[K] inet_frag_secret_rebuild -320 1.23
[U] gnome-terminal -256 0.98
[U] gconfd-2 -128 0.49
[U] gconftool-2 -128 0.49
[U] gdm3 -128 0.49
[K] nl_pid_hash_rehash -128 0.49
[U] python -104 0.40
[K] rt_cache_invalidate -64 0.25
[K] rt_genid_init -64 0.25

The main entropy consumer is the ELF binary loader, which is part of the kernel (implemented
in fs/binfmt_elf.c). The ELF file format is the default format for executable binaries on
x86 Linux systems. The loader needs random numbers to implement Address Space Layout
Randomization 2. Other important consumers are :

• SVN, because we were using an HTTPS repository ;

• the Chrome browser, mainly for use by various subsystems like TLS, SSL, (the network-
related part of) ffmpeg, and python (for seeding its own “random” module)

We also note that a small but non-negligible part of the entropy is consumed by a process
named “php5”. This process is not part of a web server, but a mere php interpreter invoked
during the start-up phase to run some system script.

The remaining 5% of entropy consumers include both userspace processes related to the
desktop environment and kernel functions related to network.

46%

26%

21%

2%
5%

[K] load_elf_binary
[U] svn
[U] chromium-browse
[U] php5
Others

Figure 5: Randomness consumers - Desktop workstation

2Address Space Layout Randomization (ASLR) is a computer security method which involves randomly arranging
the positions of key data areas, usually including the base of the executable and position of libraries, heap, and
stack, in a process’s address space. cf http://en.wikipedia.org/wiki/Address_space_layout_randomization
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4.5.2 File server scenario
File server scenario

Input Entropy (bits) Entropy (%)
[K] load_elf_binary -3392 72.23
[U] php5 -704 14.99
[K] inet_frag_secret_rebuild -256 5.45
[U] apache2 -80 1.70
[U] smbd -72 1.53
[U] winbindd -64 1.36
[K] reqsk_queue_alloc -64 1.36
[K] br_fdb_init -64 1.36

Once again, the main entropy consumer is the ELF binary loader. The php5 consumer is still
there ; it is the second consumer, but the amount of consumed bytes is equivalent.

The third consumer is a kernel function called inet_frag_secret_rebuild() and located
in the net/ipv4/inet_fragment.c file, which is part of the IPv4 stack. The implementation
uses a hash table to store IP datagram fragments. If the hash function was the always the same,
then it would be practical for an attacker to set up a denial of service attack just by sending
well-known specific datagrams which caused hash collisions happen. That’s why a random seed is
used during the initialization in order to make the hash function unpredictable from the outside.

The fourth consumer is the Apache web server, even if there was no HTTPS request during
the experiment. The server needs random numbers when it starts in order to initialize a seed
used by the SSL protocol.

72%

15%

5%
2%

6%

[K] load_elf_binary
[U] php5
[K] inet_frag_secret_rebuild
[U] apache2
Others

Figure 6: Randomness consumers - File server

4.5.3 Computing server scenario

Computing server scenario
Input Entropy (bits) Entropy (%)

[K] load_elf_binary -1320 95.38
[K] inet_frag_secret_rebuild -64 4.62

In this scenario we find only two consumers, and both are kernel functions. The ELF binary
loader is still the main consumer, eating an overwhelming majority of the entropy. Only 5% are
required by the second consumer, a function of the IPv4 stack which has been presented before.
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95%
5%

load_elf_binary+0xad5
inet_frag_secret_rebuild+0x2c

Figure 7: Randomness consumers - Computing server

4.5.4 Subsection conclusion

In this subsection, we studied how entropy is consumed. For each request on /dev/(u)random,
we identified the corresponding process. For each call to get_random_bytes(), we analyzed
the corresponding kernel function. In this conclusion, we remind the results that seem really
significant.

Primary result: In our three scenarios, the vast majority of entropy is consumed by one kernel
function : the ELF binary loader.

Secondary result: The other consumers vary greatly according to the scenario.

4.6 Entropy counter of the input pool
In this experiment, we measure the evolution over time of the input pool entropy counter. We
present the results on Fig. 8.

The vertical axis represents the input pool level. It goes from 0 (empty pool) to around 4096,
which is the size of the input pool bit field. The level cannot increase over this size : if all the
bits of the bit field are unpredictable, no additional entropy can be stored.

Moreover, we denote that the entropy counter does not fall to zero exactly, and does not cap
to 4096 exactly. The behavior is due to thresholds. When the entropy counter goes over 3584 bits,
the LRNG starts dropping most samples to avoid wasting CPU time and reduce lock contention.
On the other hand, if the entropy counter falls under 64 bits, entropy transfers are blocked until
the input pool level reaches 64 bits, so that the transfer is significant enough.

The horizontal axis represents the time, expressed in CPU cycles. Even if the scenario duration
is always the same (one hour), the number of CPU cycles is different according to the scenario. It
is about 1010 cycles in the server scenario, ten times higher in the computing scenario and again
10 times higher in the desktop workstation scenario. These results are logical regarding the to the
recent CPUs sleep mode. On the one hand, the CPU load is extremely heavy in the computing
scenario. One the other hand, it is very light in the file server scenario, because the computer is
mainly waiting for the network. The desktop workstation scenario stands for an average between
the two precedent cases.

Primary result: The entropy counter varies greatly in the desktop scenario. It can go from its
maximum to its minimum very quickly. The unstable behavior is due the constant user interaction.
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Figure 8: Evolution of the input pool entropy counters over time. The top graph corresponds to
the desktop workstation scenario. The middle graph corresponds to the file server scenario. The
bottom graph corresponds to the computing server scenario.

A long entropy shortage seems to be almost impossible in such a scenario.

Primary result: In the file server scenario, the entropy counter increases continuously and
slowly until the computer halts. We assume that the slow increase is due to the reduced number
of CPU cycles, because the number of jiffies is also reduced and the LRNG estimator is based
on the jiffies differences. If we would have represented the desktop workstation scenario and the
file server scenario on the same X axis, the slopes would have been similar. We assume that a
moderate entropy consumption would not cause any shortage.

Primary result: In the computing scenario, the entropy counter remains extremely low during
all the experiment, because both entropy production and consumption are really basic. The situation
is almost a constant entropy shortage.
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4.7 Proportion of events generating entropy
In this experiment, for each event type, we compare the number of events that actually generate
entropy with the total number of event, in order to find the proportion of “useful” events. We
summarize the results in the table below.

Desktop workstation scenario
Input All events (bits) Events generating entropy (bits) (%)
Disk 26732 3708 13.87
Mouse 13396 2279 17.01

Keyboard 56577 3940 6.96
Generic input 55440 216 0.39

IRQ 0 0 0.00

File server scenario
Input All events (bits) Events generating entropy (bits) (%)
Disk 9083 1686 18.56
Mouse 0 0 0.00

Keyboard 0 0 0.00
Generic input 0 0 0.00

IRQ 0 0 0.00

Computing scenario
Input All events (bits) Events generating entropy (bits) (%)
Disk 2649 715 26.99
Mouse 0 0 0.00

Keyboard 0 0 0.00
Generic input 0 0 0.00

IRQ 0 0 0.00

Secondary result: Only a tiny portion of the generic input events generates entropy, whereas
the other entropy sources are more efficient.

Secondary result: The less disk events there are, the more entropy-efficient the events are.

4.8 Differences between VMs and real machines
Where as the final experiments have been run on physical computers, a huge part of the
development has been led on virtual machines. Consequently, we have noticed the differences
between the results on virtual and physical machines and we present them below.

Secondary result: In every one-hour scenario we played on virtual machines, the number of
cycles elapsed was almost the same. Besides, the number of cycles seems to be a maximum, like
there is no sleep mode on the CPU. This specificity has an unexpected consequence: the slopes on
the input pool level graph tend to be higher, especially for the file server scenario. Surprisingly,
it means that the virtualization would have a rather positive effect on the entropy harvesting
process.

Secondary result: The repartition of entropy inputs and outputs are more or less the same.
Only the disk looks a bit more efficient in the case of a virtual machine.
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5 LRNG customers
Thanks to our experiments, we acquired information about the LRNG “customers”, who use the
LRNG random numbers and thus consume entropy. Mainly, we have got valuable information
about the first of the customers: the kernel itself. However, even if we have some information
about other customers, it is highly specific to our scenarios.

In this last part, we try to cross-check our results with the source code and the documentations
of widely used applications:

• google_authenticator,

• openssl,

• openssh.

The Google authenticator is a enforced authenticator with a two-step verification, available
for GMail or GApps users who feel concerned with security. It uses /dev/urandom to get random
numbers. When someones suggests to switch from /dev/urandom to /dev/random be cause the
latter is supposed to be more secure3, the developers oppose a categorical refusal. One the
one hand, the don’t want to rely on a device that can block indefinitely. One the other hand,
they argue that no practical attack has been shown on /dev/urandom despite its theoretical
weaknesses.

The OpenSSH library only uses /dev/urandom, even when generating keys with ssh-keygen.4.
Once again, the developers don’t want to rely on a blocking device. According to them, it is so
much easier to compromise a key by social engineering rather than by an attack on /dev/urandom,
it would be a useless loss of time to use /dev/random instead.

The OpenSSL library is able to use both devices, but it will always try to use the non-blocking
one. Although no explanation is given in the documentation, we assume that the reasons are
similar to the previous ones.

Primary result: Even if entropy shortage seems to be a common phenomenon according to our
results, the end users never notice them because the LRNG “customers” only use the non-blocking
interfaces: /dev/urandom and get_random_bytes().

6 Conclusions and perspectives
In this work, we studied the randomness resource in the GNU/Linux operating system with a
system-oriented approach. Thanks to a built-in monitoring system, we did several measures
on the random number generator of the Linux kernel in order to understand the underlying
mechanism that transform unpredictable interactions like disk seeks of mouse events into reliable
random numbers, meant to be used by security programs.

Even when entropy is rare, it does not prevent the kernel from running normally. This is due to
the fact that the /dev/random device was never used in our experiments, whereas /dev/urandom
and get_random_bytes() are commonly used and non-blocking. Between the two methods, i.e
/dev/urandom and get_random_bytes(), the latter one is the most often called meaning that
the kernel is consuming a lot of random numbers. Inside the kernel, the most entropy is consumed
by the function used to load the binary files in memory. It needs random numbers in order to

3http://code.google.com/p/google-authenticator/issues/detail?id=107
4https://groups.google.com/forum/?fromgroups#!topic/comp.security.ssh/UG8KDZBAM7g%5B1-25%5D
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randomize the address space of the binaries for security reasons. In all our experiments, the disk
is a significant entropy provider even in the desktop scenario which includes interactions with a
graphical environment.

If we compare our experiments, we observe that the total amount of entropy gathered is
far higher in the desktop scenario than in the other two. From the perspective of the entropy
gathered, a file server produces only a bit more entropy than a computing server. However, the
input pool level for the file server is far higher than in the case of the computing server. Therefore,
a quantitative comparison is not fair. The desktop workstation scenario and the computing
scenario are both likely to have entropy shortage. They are very brief for the desktop workstation
and should not cause any problem. However, the computing scenario is almost always in situation
of entropy shortage.

To our knowledge, no attack on /dev/urandom has been shown in the state of the art. However,
the systematic use of /dev/urandom instead of /dev/random relies on the postulate that “there
will be enough entropy soon”. The supposition is quite true in the desktop workstation scenario;
but according to our experiments, it is absolutely false in the situation of a computing server
scenario, and not certain in a file server scenario. Besides, the overwhelming majority of Linux
systems are servers, not desktop workstations. And on servers, the only entropy provider is the
disk, whereas this device plays a less and less important role in modern systems. In the future, it
might be not acceptable anymore to consider that there will always be enough entropy soon.
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