
A Design Pattern to Build Executable DSMLs
and associated V&V tools

Benoît Combemale
Université of Rennes 1, IRISA

benoit.combemale@irisa.fr

Xavier Crégut, Marc Pantel
Université de Toulouse, IRIT

{xavier.cregut, marc.pantel}@enseeiht.fr

Abstract—Model executability is now a key concern in model-
driven engineering, mainly to support early validation and
verification (V&V). Some approaches allow to weave executability
into metamodels, defining executable domain-specific modeling
languages (DSMLs). Model validation can then be achieved by
simulation and graphical animation through direct interpretation
of the conforming models. Other approaches address model
executability by model compilation, allowing to reuse the virtual
machines or V&V tools existing in the target domain. Never-
theless, systematic methods are currently not available to help
the language designer in the definition of such an execution
semantics and related tools. For instance, simulators are mostly
hand-crafted in a tool specific manner for each DSML.

In this paper, we propose to reify the elements commonly used
to support state-based execution in a DSML. We infer a design
pattern (called Executable DSML pattern) providing a general
reusable solution for the expression of the executability concerns
in DSMLs. It favors flexibility and improves reusability in the
definition of semantics-based tools for DSMLs. We illustrate how
this pattern can be applied to ease the development of V&V tools.

I. INTRODUCTION

Model executability is now a key concern in MDE, espe-
cially to support early validation and verification (V&V) in
the development process. Recently, several ways have been
explored to implement the execution semantics of DSML
(Domain Specific Modeling Language). Basically, they map
the abstract syntax, defined by the metamodel, to a semantic
domain [1]. Most proposals translate models into an existing
semantic domain in order to reuse available tools (e.g., simula-
tors or model-checkers). Such a semantics, called translational
semantics, is used for instance by the group pUML in order to
formalize some UML diagrams [2]. Even if more expressive
languages like Maude [3] or FIACRE [4] may be used to
ease the writing of the translation between the DSML high
level concepts and the formal language low level ones, this
approach may require complex transformations to implement
the semantic mapping. Furthermore, execution results are only
obtained in the target domain. Getting back the results in the
source language is difficult and usually requires to extend its
abstract syntax in order to model these results.

Other approaches propose to weave executability into meta-
models using an action language (e.g., Kermeta [5], xOCL [6]
or even JAVA with the EMF API). Similarly, in-place model
transformations, including graph transformations [7], were
widely investigated to give a declarative specification of the

execution semantics. For example, in [8] the authors use
QVT [9] to express rewriting rules that gradually compute
the values of an OCL expression. Kuske et al. [10] have used
graph transformation to define the executable semantics for
some UML diagrams. These approaches allow a more intuitive
definition of executable DSMLs. The semantic domain is an
extension of the abstract syntax, and the semantic mapping is
defined using an action language. Thus, the language designer
has only to deal with concepts of the DSML and not with
another language and an explicit mapping. Nevertheless, such
approaches require to implement for each DSML all the
execution-based tools.

In all cases, the definition of DSMLs is facing today
hard methodological problems for the specification of tool
supported execution semantics. DSMLs are often empirically
defined without any uniformity and underlying best practices
[11]. For example, the information capturing the state of a
model being executed, a key part of the semantic domain,
is often scattered in a tool-specific way, without any explicit
relation to the abstract syntax. Thus, different tools such as
simulators, model checkers or code generators may easily be
inconsistent, and not interoperable as they rely on slightly dif-
ferent semantic domains. In the same way, no methodology to
define an executable DSML provides the flexibility to associate
different semantics to the same DSML, to combine different
models of computation (e.g., multi-modeling), and to easily
weave time and communication models; nor the evolvability
to manage semantics changes. Consequently, semantics-based
tools (e.g., simulators and graphical animators) are most of
the time redefined without any capitalization (e.g., dynamic
execution related information, execution engine, etc.), and
without any guidances to ease this error prone and time
consuming development task.

In this paper we introduce a general, reusable and tool-
supported approach to assist a DSML designer in the definition
of an execution semantics and the related tools. It relies on
capturing the different concerns involved in the definition
of an executable DSML. These concerns are reified, in a
structural design pattern to support executability into DSML:
the Executable DSML pattern. It addresses several common
use cases relying on execution semantics, especially model
V&V. Based on this pattern, generic and generative approaches
are proposed to partially or totally automate the definition of
DSML tools for V&V.



Region

StateMachine

TriggerEvent Transition

trigger
event

stateMachine

region

0..*
1

0..1

1..* region0..*

0..*

0..*

transition

state
State

isComposite

isOrthogonal

isSimple

Fig. 1. Subset of the UML StateMachine Metamodel

This work has been applied in TOPCASED [12], an open-
source MDE toolkit for safety critical application design. V&V
capabilities for MDE are one of its key features. It is therefore
of uttermost importance to ease the development of V&V tools
for the various DSMLs considered in TOPCASED. Especially,
the application of this work led to the development of the
current SYSML/UML model simulator and graphical animator
that handle the Class, State Machine and Activity diagrams.
With the help of our design pattern, we show how a model
execution framework has been defined to offer an independent
Model of Computation (MoC) shared by different DSMLs.
We also present generative tools to automate the definition of
dedicated (i.e., DSML-dependent) graphical model animators.

The remainder of this paper is structured as follows. Sec-
tion II introduces the Executable DSML pattern illustrated with
model animation for validation. Section III details this use of
the pattern and proposes both a reusable MoC-specific model
execution framework, and the associated generative approach
to ease the definition of DSML-specific graphical model
animators. Section IV summarizes related works. Section V
concludes and gives insights on perspective.

II. A METAMODELING PATTERN FOR MODEL EXECUTION

In this section, we follow the common design pattern de-
scription format used in [13]. We rely on the model simulation
and graphical animation of UML State Machine (UML-SM)
diagrams [14] in order to introduce the requirements for model
execution at a conceptual level (further detailed in section III).

A. Motivation

As explained in the introduction, the DSML semantics is
usually enclosed (generally hard-coded) in the execution and
transformation functions hidden in the system development
tools. Our purpose is to make its definition explicit, including
the semantic domain and the mapping as advocated in [1].

The designer of a model that describes a system behavior
usually needs to simulate and animate it to check whether it
behaves as expected. Unfortunately, the metamodel does not
generally describe all the information that has to be managed
at execution time (i.e. the semantic domain). For example,
UML-SM defines the concepts of Region, State, Transition,
Event, etc. but lacks the notions of active states in a region,
or of fireable transitions (cf. Figure 1). Also, no elements are
available to store the sequence of events received by a state
machine. Furthermore, during model animation, the designer

has to simulate the behavior of the system environment
through stimuli. The UML-SM designer will inject UML
events in a state machine that will trigger fireable transitions
and change the current states of the regions. Obviously, the
way the system reacts to the stimuli defines its execution
semantics. This reaction updates the execution related data
according to the current state of the model and the received
stimulus. In the end, the designer may want to replay the same
execution, for example, to check whether defects have been
corrected or not, or to be able to perform non regression tests.
Scenarios are then useful to describe a sequence of stimuli.

We have highlighted that model execution requires the
extension of a DSML metamodel with: i) the definition of
information managed during execution, ii) the definition of
the stimuli that trigger the evolution of the model, iii) the
organization of stimuli as scenarios, iv) the definition of an
execution semantics (or transition function) that describes how
the model state evolves when a stimulus occurs.

An executable DSML (xDSML) is a DSML which defines
the execution of its conforming models for a particular pur-
pose. Therefore, an executable DSML at least includes the
definition of its language abstract syntax, and its execution
semantics (including semantic domain and semantic mapping
related information)

We propose to reify execution related elements to make
them explicit and manageable. We aim to provide flexibility,
evolvability and interoperability in the semantics definition.
Furthermore such elements must ease the development of tools
related to model execution, for example V&V tools.

B. Structure

Figure 2 shows the structure of the proposed Executable
DSML pattern. It is built from four structural parts (detailed in
the next subsection) that are woven together using the «merge»
and «import» predefined package operators of MOF [15].
These parts organize the data related to the DSML and its
execution semantics. A fifth part called Semantics provides the
execution semantics itself relying on the previous four parts
(i.e., the semantic mapping based on the previous reification of
the semantic domain information). As it is a pattern to organize
data at the metamodel level (i.e., a metamodeling pattern, as
motivated in [11]), the structure shows dependencies between
packages that represent parts of a metamodel. This pattern is
architectural like MVC or 3-tiers. It emphasizes the common
structure that a metamodel for an xDSML should use in
order to define the language semantics. In addition to provide
guidelines in language definition, the purpose is to be able to
define generic and generative tools relying on that architecture.

C. Participants

1) Domain Definition MetaModel (DDMM): It is the usual
metamodel used by standardization bodies to define the mod-
eling language. It provides the key concepts of the language
(representing the considered domain) and their relationships.
For instance, the UML metamodel defined by the OMG is a
DDMM (see Figure 1 for a small subset). Usually, the DDMM



Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>>
<<merge>>

<<merge>>

Trace Management
MetaModel

TM3

<<import>>

Semantics 
Mapping

Semantics

Action Language or 
Model Transformation

Metamodeling Language 
(e.g., MOF)

MetaMetaModel 
(M3)

MetaModel 
(M2)

<<conformsTo>>

<<conformsTo>>

<<triggeredBy>>
<<changes>>

Fig. 2. The Executable DSML Pattern

does not contain all the execution-related information. For
instance, the UML DDMM does not formalize the notions of
active state nor event queue. Thus, even if a model describes
the implicit potential behavior of a system, it does not usually
provide explicitly the elements for its execution.

2) State Definition MetaModel (SDMM): During the exe-
cution of a model, additional data is usually mandatory for
expressing the execution itself (a.k.a. dynamic information).
Such data must be manipulated and recorded (in the form of
metaclass instances). For example, each active UML region
must have one active state and a state machine must store
the sequence of received events. These execution related data
make up the SDMM, and are related to the semantic domain:
the data required to express the execution semantics. Thus the
SDMM is built on top of the DDMM. For example, the UML
State Machines SDMM may add a reference from Region to
State (both defined in the DDMM) to record the active state
of one region.

3) Event Definition MetaModel (EDMM): The EDMM of
a given DSML specifies the concrete stimuli (called runtime
events) that drive the execution of a model that conforms
to this DSML. These stimuli are not only concrete system
hardware events, but also more abstract software events like
storage events for reading or writing, communication events
for sending or receiving, clock events as ticks, function events
like computation results given parameters, etc. Concrete stim-
uli define properties of events related to the formal execution
semantics to be supported.

As an illustration, the runtime event we consider for the
UML State Machine stores an UML event (an instance of
Event, see Figure 1) in a state machine queue. When the UML
event in the queue is handled by the state machine, it fires the
transitions that it triggers.

4) Trace Management MetaModel (TM3): The TM3 is
specific to a particular MoC and is reused for all DSMLs
using this MoC. As an example, Figure 3 shows a simplified
TM3 dedicated to discrete-events system modeling [16]. It
defines three main metaclasses called Trace, Scenario and
RuntimeEvent. RuntimeEvent is an abstract metaclass which

Trace Scenario* 1

RuntimeEvent
date: Integer
kind: RuntimeEventKind

cause

0..1 

context Scenario inv :
self.runtimeEvent->forAll(re | re.kind = #exogenous)

* *{ordered} {ordered}

TM3

<<enumeration>>
RuntimeEventKind
endogenous
exogenous

Fig. 3. A simplified TM3 for Discrete-Events Modeling

reifies the concept of stimulus. It is an abstraction for any
kind of semantic related stimulus defined in the EDMM. To
this end, RuntimeEvent is imported in the EDMM, and all the
concrete runtime events must inherits from it. This metaclass
has executability-related features, like (partially ordered) dates
of occurrence (i.e., symbolic representation of the time when
the runtime event occurs). Any RuntimeEvent that triggers
a semantic action involving a state change should have a
reference to its source and target states information in the
SDMM. RuntimeEvent instances fall into two categories,
which are modeled by the RuntimeEventKind enumeration.
Exogenous runtime events are injected by the environment,
while endogenous runtime events are produced internally by
the system in response to another runtime event (cf. cause

in Figure 3). As stated by the OCL constraint in Figure 3, a
scenario is made of exogenous runtime events whereas a trace
corresponds to one possible execution of a scenario and is thus
composed of any kind of runtime events. A more sophisticated
trace management metamodel or a “standard” one (like the
UML Testing Profile [17]) may be integrated in our pattern.

5) Semantics: The last and key participant is the package
Semantics. It abstracts both the semantic mapping [1] (DSML-
specific part) and the interactions with the environment (MoC-
specific part). It describes how the running model (SDMM)
evolves according to the stimuli defined in the EDMM. An
important point in applying the pattern is to define the content
of the package Semantics that depends on the application
context. On the one hand the semantic mapping may be explic-
itly defined as a transition function and thus conforms to an
action language (a.k.a. operational semantics). In this case, the
four previous participants correspond to the semantic domain.
On the other hand, the semantic mapping may be implicitly
defined thanks to a translation to another language (a.k.a.
translational semantics). Consequently SDMM and EDMM do
not correspond to the semantic domain but help in defining the
mapping, and in getting results back.

D. Consequences

According to the Executable DSML pattern, an xDSML
is supported by an executable metamodel MMx structured as
three DSML-specific parts (DDMM, SDMM, and EDMM) and
one MoC-specific part (TM3):

MMx = {DDMM,SDMM,EDMM} ∪ {T M3}



MMx reifies the elements involved in model execution. The
DDMM is the starting point. It is usually standardized and can-
not be changed in order to preserve interoperability. The TM3
is shared by any DSMLs relying on the same MoC. Thus, a
semantics is defined by a triplet (SDMM, EDMM, Semantics).
The SDMM and the EDMM introduce the needed information
to express the execution semantics (i.e. the semantic domain)
whereas the package Semantics implements the semantic
mapping. These three different parts should not be defined
independently in order to reduce the risks of inconsistencies.
Any change in this triplet entails a new semantics. In order to
reduce these risks, we propose through the use of this pattern
to reify the various aspects linked to the definition of the
execution semantics in order to allow systematic specification,
analysis and validation of an executable DSML metamodel.

Applying this pattern produces several consequences, both
for the definition of the semantics, and for the definition of
the execution-related tools.

1) Definition of the Semantics:
The pattern allows a modular implementation of the ex-

ecution semantics (i.e., an implementation that is separated
out, encapsulated, and easily replaceable) with respect to the
core language metamodel. The specification of the DSML
semantics is split in two parts: first, a generic MoC based
on the TM3, and shared with other DSMLs; and then DSML
specific elements based on the SDMM and EDMM. This
strong property provides several benefits described here after.

It favors the evolvability of the semantics during the DSML
lifetime thanks to the separation of concerns involved in the
definition of an execution semantics.

It eases the factorization of commonalities. The pattern
favors the definition of a family of semantics for a single
language as well as the semantics of a family of languages.
For example, semantic variation points (like in UML) lead
to different but similar semantics definitions. In most cases,
SDMM and EDMM are the same and only the package
Semantics has to be adapted.

It provides flexibility in the association of semantics to
a given DSML in order to define several purpose driven
semantics for the same DSML. Obviously, runtime information
(SDMM), concrete runtime events (EDMM) and the package
Semantics are dependent on the user purpose during the
execution of models. For instance, the user may prefer to
carry out more abstract execution with fewer runtime events
and/or runtime information that demonstrates one aspect of
the system under assessment or the user may want to define a
fine-grained semantics that exhibits most aspects of the system.
Each semantics will have its own set of events in the EDMM
and states in the SDMM.

No specific method is enforced to apply the pattern. Never-
theless, we have proposed in [18] a method for the definition of
DSML execution semantics dedicated to verification activities.
It advocates a property driven approach: only runtime infor-
mation and events required to evaluate properties of interest
to the end user are described. In doing so, the EDMM and
SDMM are a minimal mandatory subset of data to express

the semantics relevant for the user, as advocated by the
substitutability principle [19].

The definition of the package Semantics is postponed.
The pattern is mainly an architectural pattern that helps in
structuring information required to make a DSML executable
while ensuring interoperability between tools based on this
DSML. Thus, the semantic mapping and the interaction with
the environment are not described in the pattern (as discussed
in Section II-C). According to the purpose of empowering a
DSML with execution, the content of the package Semantics
may be detailed. For example, Section III shows a MoC-
specific framework for model execution. In most cases, the
architecture of the MMx eases the definition of the package
Semantics. However, for scalability, efficiency, and some time
readability purposes, it might be useful to introduce a new
metamodel not relying on the standard DDMM. For example,
the use of matrices to encode Petri nets instead of graphs
is mandatory to allow the execution of huge models. This is
also true in the case of General Purpose Modeling Languages
(GPML) whose standard metamodel (DDMM) and semantics
can be extremely complex. The introduction of purpose spe-
cific metamodels allows to ease the definition of the semantics
for a subset of the language that the end user wants to assess.

Semantics is discrete event oriented. The EDMM part of
the pattern stresses the use of discrete events to represent
system stimuli. It may not be well-suited for all systems,
like continuous one. Nevertheless, we can notice that when
one wants to observe a continuous system, a discretization
(on events or time) is performed. Thus, the pattern is still
applicable as this is done in PTOLEMY II [20] for example.
Time may be managed continuously as part of the MoC or
discretized as runtime events.

2) Definition of the Execution-Related Tools:
The formalization of pattern elements favors the definition

of generic and generative execution-based tools. Examples are
given in Section III.

Several models of computation (MoCs) may be used to
support symbolic execution semantics. The description of the
EDMM and TM3 might give the impression that the semantics
is restricted to a discrete event MoC. In fact, these parts of
the pattern define the discrete observations and interactions
between the user/environment and the system, but any MoC
can be used, including continuous ones. Our aim is to describe
systems that in the end will be managed by either discrete
software or human end users. Both can only handle a finite dis-
crete history of the system. The MMx architecture is strongly
based on the user point of view: observation of the interaction
between the model and its environment (depicted by the model
state) at some key points in time represented by the runtime
events. However, the package Semantics can implement any
MoC or abstract the translation to an existing one.

Cosimulation and models at runtime can be integrated. The
package Semantics can also be implemented as a wrapper over,
either real physical systems in which sensors and actuators
are mapped to MMx directly or through software layers, or
existing softwares and execution engines. Several DSMLs can



Semantics

RuntimeEvent
(from TM3)

Driver Agenda1 1 *
{ordered}

Concrete Interpreter

<<interface>>
Interpreter

run(re : RuntimeEvent) : RuntimeEvent[*] 

1
*

MoC-specific 
execution 
framework

DSML-specific
execution 
framework

ExecutionEngine

Concrete 
RuntimeEvent
(from EDMM)

Concrete 
RuntimeEvent
(from EDMM)

...

Fig. 4. The TOPCASED Model Execution Framework

also be integrated through shared data in their MMx and
synchronization/cooperation in their packages Semantics.

It favors interoperability between the various semantics-
related tools for a given DSML. Different kinds of tools
may be based on the same executable DSML. The separation
between MMx and the package Semantics makes possible to
share data between tools (i.e., a counter example provided by a
verification tool can be analyzed using a graphical animator).
However, this relies only on structural similarities and thus
requires to assess the compatibility of both packages Semantics
(i.e., by checking the bisimilarity of the transition relations).

III. APPLICATION TO GRAPHICAL MODEL ANIMATION

A. A MoC-specific Framework for Model Execution

The TOPCASED project addresses the domains of aero-
nautics, aerospace and more generally transportation systems.
Dynamic behaviors and real-time features prevails in the
design of such systems. During the design of their software
parts, discrete (synchronous or asynchronous) modeling [21] is
the most adequate way to represent them. Thus, in this context,
only the discrete event MoC is used for the model execution
of any DSMLs.

We have applied the Executable DSML pattern for model
execution and developed a framework (cf. Figure 4) included
in the TOPCASED toolkit. The execution engine is the core
of the framework. It implements a model execution engine
for a discrete event based MoC. It is independent of any
DSMLs (top of Figure 4) as it only depends on the TM3
(RuntimeEvent) and the Interpreter interface from the pack-
age Semantics which abstracts the transition function that will
be provided by DSML-specific packages Semantics. Its run

method updates the dynamic information of the model defined
in the SDMM according to one runtime event (instance of the
events defined in EDMM) and returns the list of generated
endogenous runtime events. For a particular DSML, one has
to provide both the implementation of the Interpreter and
the concrete runtime events in EDMM (bottom of Figure 4).

Besides the interpreter, the execution engine is composed
of two main components which implement the discrete events
MoC: Agenda and Driver. The agenda (Agenda) stores the
runtime events (RuntimeEvent) corresponding to one partic-
ular execution. These events are ordered according to their
occurring date. The agenda provides the API required by the
driver to handle the events (e.g., retrieving the next event and
adding a new event).

Palette

Editor

Outline

Tree View

Ecore

fireable

transition

current state

Eclipse

Topcased UML State Machines Graphical Animator

Explorer

Execution Engine

Control Panel

Graphical Concrete Syntax

with decorations from SDMM

Scenario Builder

as dialog boxes

when right clicking

Fig. 5. The Initially Generated UML State Machine TOPCASED Animator

The driver (Driver) controls the execution. It contains a
step method, which gets the next runtime event from the
agenda and asks the interpreter (Interpreter) to handle it.
The generated endogenous runtime events are then added to
the agenda. The driver provides an API that allows both batch
and interactive execution.

For each execution semantics of a given DSML, a Concrete

Interpreter must implement Interpreter (cf. Figure 4). For
the TOPCASED animators, the run method was initially hand-
coded using JAVA and the EMF API. Then, it was implemented
using SMARTQVT, an open source implementation of the
OMG QVT specification [9] that generates JAVA code relying
on the EMF API. SMARTQVT mainly eases the navigation
on model elements. Any other techniques for semantics im-
plementation may be considered (cf. Introduction).

B. A Generative Approach for Model Animation

Figure 5 shows the components of the TOPCASED Eclipse-
based animators for UML-SM. The main view displays the
graphical syntax which is reused from the DSML editor.
This one is decorated with dynamic information (coming
from the SDMM): active states are highlighted with a green
background, fireable transitions are in red with an icon. Other
decorations like gauges or progress bars could be used. This
visualization has been chosen because it allows the user to
view dynamic information directly on the domain model he
has built. Nevertheless, other specific visualization tools could
be developed. The Eclipse Explorer, the outline of the diagram
and the tree view of the underlying model are on the left
side. The bottom view is the Control Panel that manages the
execution (start/stop the animation, move forth/back in the
trace, etc.). During interactive animation, the user may inject
an instance of a runtime event by clicking on the concerned
graphical element. A dialog box prompts the user for the
UML event name. It is part of the Scenario Builder of which
the purpose is to manage a scenario before the animation
starts (based on the requirements, a test case generator, or
a counter-example provided by a model-checker), or during
the animation in an interactive fashion.



All parts of the Executable DSML pattern are used to derive
the animators’ components. Some implementation insights are
given hereafter (see [22] for further details). The graphical
editor is built from the DDMM. It is generated from a
TOPCASED configuration file that maps graphical elements
to the metamodel elements. The animator’s view (i.e., the
visualization of dynamic information) is based on the SDMM.
It is implemented using the decorators provided by GMF
and relies on the EMF notifications to update the graphical
representation when the running model is changing. The
Scenario Builder relies on the EDMM (and thus on the TM3).
It mainly consists in defining a concrete syntax for the runtime
events defined in the EDMM of a given DSML to provide the
way of building scenarios. The underlying tooling can be built
using existing tools (e.g., GMF, TMF). In interactive mode, the
dialog boxes are generated from the runtime event attributes.
The TM3 is used by the execution engine that stores all the
events in the agenda as a trace. It is also used by the control
panel to go back and forth in that trace.

IV. RELATED WORK

A language semantics is usually defined operationally or by
translation (cf. Section I). Both may be considered with the
Executable DSML pattern and correspond to the technology
used to implement the semantic mapping in the package
Semantics. The objective of the Executable DSML pattern is
twofold: it provides a methodological framework to ease the
use of such approaches as well as an architectural framework
to be supported by generative and generic tools.

Such an engineering of semantics for DSMLs is at the heart
of some previous work. Sadilek et al. have followed a similar
purpose to ours in the EPROVIDE project: provide execu-
tion power to DSMLs and ease the development of related
tools [23]. Their framework enables the implementation of a
DSML semantics using various technologies (including JAVA,
PROLOG, ASM, QVT). They have prototyped its use for
PetriNet and SDL DSMLs. In such a context, the Executable
DSML pattern assists the DSML designer in structuring the
dynamic information and provides a more abstract basis to
build graphical model animators without explicitly relying
on APIs. In [24] the authors propose a reification of the
dynamic information according to the execution semantics
specified thanks to UML Activity Diagrams. The Executable
DSML pattern complements this approach by reifying runtime
events to assist the implementation of both operational and
translational semantics, and to be used by V&V tools.

V. CONCLUSION AND PERSPECTIVES

The Executable DSML pattern provides a methodological
framework to ease and assist the definition of language se-
mantics because it enforces a clear separation of concerns
in metamodels for the recurring and general problem of
model execution. The Executable DSML pattern favors also
the definition of generic and generative technologies to ease
the development of semantics-based tools for DSML such as
model animators.

Similarly to object-oriented modeling (OOM), this paper
emphasizes the need for design patterns in metamodeling to
capitalize experiences for recurring problems. Moreover, in the
same way that design patterns in OOM standardize the way
designs are developed, design patterns in metamodeling should
help the implementation of generative approaches.

The Executable DSML pattern claims an engineering of
semantics in MDE. The overall objective is to provide a
flexible and general framework for model execution, supported
by generic and generative tools to ease the development
of DSML-specific tools. We are currently experimenting the
pattern to improve the specification and proof of correctness
of semantic preserving model transformations.

REFERENCES

[1] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of "Semantics"?” Computer, vol. 37, no. 10, pp. 64–72, 2004.

[2] T. Clark, A. Evans, and S. Kent, “The Metamodelling Language Cal-
culus: Foundation Semantics for UML,” in FASE ’01, ser. LNCS, vol.
2029. Springer, 2001, pp. 17–31.

[3] J. R. Romero, J. E. Rivera, F. Duran, and A. Vallecillo, “Formal and
Tool Support for Model Driven Engineering with Maude,” JOT, vol. 6,
no. 9, pp. 187–207, 2007.

[4] B. Berthomieu, J.-P. Bodeveix, M. Filali, P. Farail, P. Gaufillet, H. Gar-
avel, and F. Lang, “FIACRE: an Intermediate Language for Model
Verification in the TOPCASED Environment,” in ERTS’08, Jan. 2008.

[5] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving Executability
into Object-Oriented Meta-Languages,” in MoDELS’05, ser. LNCS, vol.
3713. Springer, 2005, pp. 264–278.

[6] T. Clark, P. Sammut, and J. Willans, “SUPERLANGUAGES – Devel-
oping Languages and Applications with XMF,” 2008, CETEVA.

[7] G. Rozenberg, Ed., Handbook of graph grammars and computing by
graph transformation: volume I. foundations. World Scientific, 1997.

[8] S. Markovic and T. Baar, “Semantics of OCL specified with QVT,”
Software and System Modeling, vol. 7, no. 4, pp. 399–422, 2008.

[9] MOF 2.0 Query/ View/ Transformation (QVT), OMG, 2008.
[10] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski, “An Integrated

Semantics for UML Class, Object and State Diagrams Based on Graph
Transformation,” in IFM’02, ser. LNCS, vol. 2335. Springer, 2002.

[11] H. Cho and J. Gray, “Design patterns for metamodels,” in SPLASH ’11
Workshops. ACM, 2011, pp. 25–32.

[12] P. Farail, P. Gaufillet, A. Canals, C. L. Camus, D. Sciamma, P. Michel,
X. Crégut, and M. Pantel, “The TOPCASED project: a Toolkit in OPen
source for Critical Aeronautic SystEms Design,” in Embedded Real Time
Software (ERTS’06), Toulouse, 25-27 January 2006.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[14] Unified Modeling Language (UML) 2.1.2, OMG, 2007.
[15] Meta Object Facility (MOF) 2.0 Core, OMG, 2006.
[16] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and

Simulation, Second Edition, 2nd ed. Academic Press, Jan. 2000.
[17] UML Testing Profile 1.0, OMG, 2005.
[18] B. Combemale, X. Crégut, P.-L. Garoche, X. Thirioux, and F. Vernadat,

“A Property-Driven Approach to Formal Verification of Process Mod-
els,” in Enterprise Information Systems. Springer, 2008, pp. 286–300.

[19] M. Minsky, “Matter, mind, and models,” Semantic Information Process-
ing, pp. 425–432, 1968.

[20] E. A. Lee, “Overview of the Ptolemy project,” University of California
at Berkeley, Technical Memorandum UCB/ERL no M03/25, 2003.

[21] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. Mc
Graw Hill, 2000.

[22] X. Crégut, B. Combemale, M. Pantel, R. Faudoux, and J. Pavei, “Gen-
erative technologies for model animation in the TopCased platform,” in
ECMFA, ser. LNCS. Springer, 2010, pp. 90–103.

[23] D. A. Sadilek and G. Wachsmuth, “Using grammarware languages to
define operational semantics of modelled languages,” in TOOLS’09, ser.
LNBIP, vol. 33. Springer, 2009, pp. 348–356.

[24] M. Scheidgen and J. Fischer, “Human comprehensible and machine
processable specifications of operational semantics,” in ECMDA-FA, ser.
LNCS, vol. 4530. Springer, 2007.


