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Abstract. In this paper we explore test generation for Recursive Tiles Systems
(RTS) in the framework of the classical ioco testing theory. The RTS model al-
lows the description of reactive systems with recursion, and is very similar to
other models like Pushdown Automata, Hyperedge Replacement Grammars or
Recursive State Machines. We first present an off-line test generation algorithm
for Weighted RTS, a determinizable sub-class of RTS, and second, an on-line test
generation algorithm for the full RTS model. Both algorithms use test purposes
to guide test selection through targeted behaviours.

1 Introduction and motivation

Conformance testing is the problem of checking by test experiments that a black-box
implementation behaves correctly with respect to its specification. It is well known that
testing is the most used validation technique to assess the quality of software systems,
and represents the largest part in the cost of software development. Automatising is thus
required in order to improve the cost and quality of the testing process. In particular,
it is undoubtedly interesting to automate the test generation phase from specifications
of the system. Formal model-based testing aims at resolving this problem by the for-
mal description of testing artefacts (specifications, possible implementations, test cases)
by mathematical models, formal definitions of conformance, the execution of tests and
their verdicts, and the proof of some essential properties of test cases relating verdicts
produced by test executions on implementations and conformance of these implemen-
tations with respect to their specifications. The ioco conformance theory introduced
in [13] is a well established framework for the formal modelling of conformance test-
ing for Input/Output Transition Systems (IOLTSs). Test generation algorithms and tools
have been designed for this model [9,12] and for more general models whose semantics
can be expressed in the form of infinite state IOLTSs [10,8].

In this paper, we are interested in test generation for reactive recursive programs,
like the one in Fig 1. There already exist several ways to define recursive behaviours:
pushdown automata (PDA), recursive state machines [1], regulars graphs, defined by
functional (or deterministic) hyperedge replacement grammars (HR-grammars), [7,3].
Each of these models has its merits and flaws: PDA are classical, and well under-
stood; recursive state machines are equally expressive and more visual as a model;
HR-grammars are a visual model which characterizes the same languages but enables
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static void main(String [] args){
try{

// Block 1 (input)
int k =in.readInt();
comp(k);
// Block 2 (output)
System.out.println("Done");

}
catch (Exception e){

// Block 3 (output)
System.out.println(e.getMessage());

}
}
void comp (int x){

// Block 4 (input)
int res =1;
boolean cont=in.readBoolean();
if (cont){

if (x==0)throw new Exception("An error occurred");
// Block 5 (internal)
res=x*comp(x-1);
// Block 6 (output)
System.out.println("Some text");
return res;

}
else {

// Block 7 (output)
system.out.println("You stopped");
return res;

}
} Fig. 1. A recursive program

to model systems having states of infinite degree. Furthermore, recent results define
classes of such systems which may be determinized [5], which is of interest for test gen-
eration. The HR-grammars, on the other hand, are very technical to define. Here we try
to get the best of both worlds: we use HR-grammars presented as tiling systems, called
RTS (RTS). Such systems are mostly finite sets of finite LTS with frontiers, crossing the
frontier corresponds to entering a new copy of one of the finite LTS. The semantics of
an RTS is then an infinite state LTS. Hopefully for such models (co)-reachability which
is essential for test generation using test purposes is decidable. Also determinization is
possible for the class of Weighted RTS, which permits to design off-line test generation
algorithms for this sub-class. For the whole class of RTS however determinization is im-
possible, but on-line test generation is still possible as subset construction is performed
along finite executions.

To the best of our knowledge test generation for recursive programs has been seldom
considered in the literature. The only work we are aware of is [6] which considers
a model of deterministic PDA with inputs/outputs (IOPDS) and generate test cases in
the same model. The present work can be seen as an extension of this, where non-
determinism is taken into account.
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Contribution and outline: The contribution of the paper is as follows. Section 2 recalls
the main ingredients of the ioco testing theory for IOLTSs. In Section 3, we define the
model of RTS for the description of recursive reactive programs, give its semantics in
terms of an infinite state IOLTS obtained by recursive expansion of tiles. In Section 4,
in the ioco framework, we propose an off-line test selection algorithm guided by test
purposes for Weighted RTSs, a determinizable sub-class of RTSs, and prove essential
properties of generated test cases. Furthermore in Section 5, we design an on-line test
generation algorithm for the full RTS model, also using test purposes for test selection.

2 Conformance testing theory for IOLTS

This section recalls the ioco testing theory for the model of Input/Output Labelled Tran-
sition Systems that will serve as a basis for test generation from RTS. We first give a
non-standard definition of IOLTS and introduce notations and basic operations, then
review the ioco testing theory.

Definition 1 An IOLTS (Input Output Labelled Transition System) is a tuple M =
(QM, ΣM, ΛM,→M, CM, initM) where QM is a set of states; ΣM is the alphabet of
actions partitioned into a set of inputs Σ?

M, a set of outputs Σ!
M and a set of internal

actions Στ
M and we denote by Σo

M , Σ?
M ∪ Σ!

M the set of visible actions 4; ΛM is a
set of colours with initM ∈ ΛM a colour for initial states;→M⊆ QM × ΣM × QM

is the transition relation; CM ⊆ QM × ΛM is a relation between colours and states.

In this non-standard definition of IOLTSs, colours are used to mark states by the
relation CM. For a colour λ ∈ ΛM, CM(λ) , {q ∈ QM | (q, λ) ∈ CM} and CM(λ) ,
{q ∈ QM | (q, λ) 6∈ CM} denote respectively the sets of states coloured and not
coloured by λ. In particular, CM(initM) defines the set of initial states.

We write q a−→M q′ for (q, a, q′) ∈→M and q a−→M for ∃q′ : q a−→M q′. This
notation is generalized to sequences of actions, and for w = µ1 . . . µn ∈ (ΣM)∗, we
note q w−→M q′ for ∃q0, . . . , qn : q = q0

µ1−→M q1
µ2−→M · · ·

µn−→M qn = q′.
For X ⊆ QM a subset of states and Σ′ ⊆ Σ a sub-alphabet, we denote by

postM(Σ′, X) = {q′ ∈ QM | ∃q ∈ X,∃µ ∈ Σ′ : q
µ−→M q′} the set of direct

successors of a state in X by an action in Σ′, and preM(Σ′, X) = {q ∈ QM | ∃q′ ∈
X,∃µ ∈ Σ′ : q

µ−→M q′} the set of direct predecessors of X by a transition in Σ′.
The set of states reachable from P ⊆ QM by actions in Σ′ is reachM(Σ′, P ) ,
lfp(λX.P ∪postM(Σ′, X)) where lfp is the least fixed point operator. Similarly, the set
of states coreachable from P ⊆ QM (i.e. the set of states from which P is reachable) is
coreachM(Σ′, P ) , lfp(λX.P ∪ preM(Σ′, X)). We will also write reachM(Σ′, λ)
for reachM(Σ′, CM(λ)) and coreachM(Σ′, λ) for coreachM(Σ′, CM(λ)).

ΓM(q) , {µ ∈ ΣM | q
µ−→M} denotes the subset of actions enabled in q and

respectively, OutM(q) , ΓM(q) ∩Σ!
M and InM(q) , ΓM(q) ∩Σ?

M denote the set of
outputs (resp. inputs) enabled in q. For P ⊆ QM, OutM(P ) ,

⋃
q∈P OutM(q) and

InM(P ) ,
⋃
q∈P InM(q).

4 In the examples, for readability reasons, we write ?a for an input a ∈ Σ?
M, !x for an output

x ∈ Σ!
M and internal actions have no sign.
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Visible behaviours ofM are defined by the relation =⇒M∈ QM×({ε}∪Σo
M)×QM

as follows: q ε
=⇒M q′ , q = q′ or q τ1.τ2···τn−→M

∗
q′ and for a ∈ Σo

M, q a
=⇒M q′ ,

∃q1, q2 : q
ε

=⇒M q1
a−→M q2

ε
=⇒M q′. For σ = a1 · · · an ∈ (Σo

M)∗ a sequence of
visible actions, q σ

=⇒M q′ stands for ∃q0, . . . , qn : q = q0
a1=⇒M q1 · · ·

an=⇒M qn = q′

and q σ
=⇒M for ∃ q′ : q σ

=⇒M q′. We denote q after σ , {q′ ∈ Q | q σ
=⇒M q′} for

the set of states in which one can be after observing σ starting from q and for P ⊆ QM,
P after σ ,

⋃
q∈P q after σ. Traces(q) , {σ ∈ (Σo

M)∗ | q σ
=⇒M} denotes

the set of sequences of visible actions that may be observed from q and Traces(M) ,⋃
q0∈C(initM) Traces(q0). TracesP (M) = {σ ∈ (Σo

M)∗ | (CM(initM) afterσ) ∩
P 6= ∅} denotes the set of traces of sequences accepted in P .
M is input-complete if in each state all inputs are enabled, possibly after internal

actions, i.e. ∀q ∈ QM,∀a ∈ Σ?
M, q

a
=⇒M.M is complete in a state q if any action is

enabled in q: ∀q ∈ QM, Γ (q) = ΣM.M is complete if it is complete in all states.
An IOLTSM is deterministic if |C(initM)| = 1 (i.e. there is a unique initial state)

and ∀q ∈ QM, ∀a ∈ Σo
M, |q after a| ≤ 1, where |.| is the cardinal of a set.

From an IOLTSM, one can define a deterministic IOLTS D(M) with same traces
asM as follows: D(M) = (2QM , Σo

M, ΛD,→D, CD, initD) where for P, P ′ ∈ 2QM ,
a ∈ Σo

M, P a−→D P ′ ⇐⇒ P ′ = P after a, and initD ∈ ΛD is the colour for
the singleton state CD(initD) = CM(initM) after ε ∈ 2QM . One can define other
colours in ΛD and, depending on the objective, the colouring CD may be defined ac-
cording to ΛM and CM. For example, if f ∈ ΛM defines marked states inM, one may
define a colour F ∈ ΛD forD(M) such that TracesCM(f)(M) = TracesCD(F )(D(M))
simply by colouring by F the states in s ∈ 2QM such that C(f) intersects s, i.e. at
least one state in s is marked by f . Observe that the definition of D(M) is not always
effective. However, it is the case wheneverM is a finite state IOLTS. Even when it is ef-
fective, such a transformation may lead to an exponential blow-up. Often, for efficiency
reasons, the full construction of D(M) is avoided, and on-the-fly paths are computed
(visiting only a limited part of the powerset).

Synchronous product of IOLTS: One may define a product of two IOLTS such that
sequences of actions in the product are the sequences of actions of both IOLTS:

Definition 2 LetMi = (QMi
, Σ, ΛMi

,→Mi
, CMi

, initMi
), i = 1, 2 be two IOLTSs

with same alphabet Σ. Their synchronous product M1 × M2 is the IOLTS P =
(QP , ΣP , ΛP ,→P , CP , initP) such that QP , QM1

×QM2
, and ∀(q1, q2), (q′1, q′2) ∈

QP , (q1, q2)
a−→P (q′1, q

′
2) , q1

a−→M1 q
′
1∧q2

a−→M2 q
′
2. We define ΛP , ΛM×ΛM′ ,

in particular initP , (initM1
, initM2

), and for any (λ1, λ2) ∈ ΛP the colouring
relation is defined by CP((λ1, λ2)) , CM1

(λ1)× CM2
(λ2).

Specification and implementation: In the ioco testing framework, we assume that the
behaviour of the specification is modelled by IOLTS S = (QS , ΣS , ΛS ,→S , CS , initS).
The implementation under test is a black box system with same observable interface
as the specification. In order to formalize conformance, it is usually assumed that the
implementation behaviour can be modelled by an (unknown) input-complete IOLTS
I = (QI, ΣI, ΛI,→I, initI) with ΣI = Σ?

I ∪Σ!
I ∪Στ

I and Σ?
I = Σ?

S and Σ!
I = Σ!

S .
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Quiescence: It is current practice that tests observe traces of the implementation, and
also absence of reaction (quiescence) using timers. Tests should then distinguish be-
tween quiescences allowed or not by the specification. Several kinds of quiescence may
happen in an IOLTS: a state q is output quiescent if it is only waiting for inputs from
the environment, i.e.Γ (q) ⊆ Σ?

M, (a deadlock i.e.Γ (q) = ∅ is a special case of out-
put quiescence), and a livelock if an infinite sequence of internal actions is enabled,
i.e.∀n ∈ N,∃σ ∈ (Στ

M)n, q
σ−→M

5. We note quiescent(q) if q is either an output
quiescence or in a livelock. From an IOLTS M one can build a new IOLTS ∆(M)
where quiescence is made explicit by a new output δ:

Definition 3 LetM = (QM, ΣM, ΛM,→M, CM, initM) be an IOLTS, ∆(M) is the
IOLTS ∆(M) = (QM, Σ∆(M), ΛM,→∆(M), CM, initM) where Σ∆(M) = ΣM ∪ {δ}
with δ ∈ Σ!

∆(M) (δ is considered as an output, observable by the environment), and
→∆(M)=→M ∪{(q, δ, q) | q ∈ quiescent(M)} is obtained from →M by adding δ
loops for each quiescent state q.

In the sequel, we note Σ!δ
M for Σ!

M ∪ {δ} and Σoδ
M for Σo

M ∪ {δ}. The traces of
∆(M) denoted by STraces(M) are called the suspension traces ofM. They represent
the visible behaviour ofM, including quiescence and are the basis for the definition of
the ioco conformance relation.

Conformance relation: In the ioco formal conformance theory [13], the implementa-
tion I conforms to its specification S if after any suspension trace σ of S the imple-
mentation I exhibits only outputs and quiescences that are specified in S. Formally:

Definition 4 Let S be an IOLTS and I be an input-complete IOLTS with same visible
alphabet (Σ?

S = Σ?
I and Σ!

S = Σ!
I),

I ioco S , ∀σ ∈ STraces(S), Out(∆(I) afterσ) ⊆ Out(∆(S) afterσ).

It can be proved [10] that I ioco S ⇐⇒ STraces(I) ∩ MinFTraces(S) = ∅,
where MinFTraces(S) , STraces(S).Σ!

S \ STraces(S) is the set of non-conformant
suspension traces, minimal for the prefix ordering.

Test cases, test suites, properties: The behaviour of a test case is modelled by an IOLTS
equipped with colours representing verdicts assigned to executions.

Definition 5 A test case for S is a deterministic and input-complete IOLTS
T C = (QTC , ΣTC , ΛT C ,→TC , CTC , initTC) where Pass,Fail, Inc,None ∈ ΛT C are
colours characterising verdicts. CTC(Pass), CTC(Fail), CTC(Inc) and CTC(None) forms
a partition of QTC . Its alphabet is ΣTC = Σ?

TC ∪Σ!
TC where Σ?

TC = Σ!δ
S and Σ!

TC =
Σ?

S (outputs of T C are inputs of S and vice versa). A test suite is a set of test cases.

The execution of a test case T C against an implementation I can be modelled by
the parallel composition T C‖I where common actions (inputs, outputs and quiescence)

5 We here consider both loops or internal actions and divergences, i.e. infinite sequences of in-
ternal actions traversing an infinite number of states
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are synchronized. The effect is to intersect sets of suspension traces (Traces(T C‖I) =
STraces(∆(I)) ∩ Traces(T C)). Consequently, the possible failure of a test case on an
implementation is defined as T C fail I , STraces(∆(I)) ∩ TracesCTC(Fail)(T C) = ∅.
Similar definitions can be given for pass and inconc relative to Pass and Inc.

We now define some properties that should be satisfied by test cases in order to
correctly relate conformance to rejection by a test case:

Definition 6 Let S be a specification, and T S a test suite for S.
TS is sound if no test case may reject a conformant implementation:
∀I,∀T C ∈ T S, I ioco S =⇒ ¬(T C fail I).

T S is exhaustive if it rejects all non-conformant implementations:
∀I,¬(I ioco S) =⇒ ∃T C ∈ T S, T C fail I.

It is complete if it is both sound and exhaustive.
TS is strict if it detects non-conformance as soon as they happen:
∀I,∀T C ∈ T S,¬(T C‖I ioco S)⇒ T C fail I.

The following characterisations derived from [10] are very convenient to prove
those properties on generated test suites:

Proposition 1 Let T S be a test suite for S,
T S is sound if

⋃
T C∈T S TracesCTC(Fail)(T C) ⊆ MinFTraces(S).Σ∗S ,

T S is exhaustive if
⋃
T C∈T S TracesCTC(Fail)(T C) ⊇ MinFTraces(S),

T S is strict if
∧
T C∈T S(Traces(T C) ∩MinFTraces(S) ⊆ TracesCTC(Fail)(T C)).

3 Recursive Tiles Systems and their properties

In this section, we define the Recursive Tiles Systems (RTS), a model to define infinite
state IOLTS based on the regular graphs of [7]. We present some key properties of these
systems relative to ε-closure (suppression of internal actions), product and determiniza-
tion that will be useful for test generation in the next sections.

Definition 7 A recursive tile system (RTS) is a tupleR = ((Σ,Λ), T , t0) where

– Σ = Σ? ∪ Σ! ∪ Στ is a finite alphabet of actions partitioned into inputs, outputs
and internal actions,

– Λ is a finite set of colours with a particular one init marking initial states.
– T is a set of tiles tA = ((Σ,Λ), QA,→A, CA, FA) defined on (Σ,Λ) where
• QA ⊆ N is the set of vertices,
• →A⊆ QA ×Σ ×QA is a finite set of transitions,
• CA ⊆ QA × Λ is a finite set of coloured vertices,
• FA ⊆ T × 2N×N, the frontier, relates to some tile, tB, a partial function (often

denoted fB) over N, associating to vertices of QB, vertices of QA.
– t0 ∈ T is an initial tile (the axiom).

The frontier FA of a tile tA is used to append tiles tB to tA: the frontier of tA
identifies tiles tB and how some vertices of tB are merged with vertices of tA.

A tile tA defines an IOLTS [tA] = (QA, Σ, Λ,→A, CA, init).
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Example 1 The following example presents an RTS abstracting the program of Fig. 1,
R = ((Σ,Λ), T , tmain) with Στ = {try, throw, catch, Block5}, Σ? = {?Block1, ?Block4},
Σ! = {!Block2, !Block3, !Block6, !Block7}, Λ = {init, succ}, T =

{
tmain, tcomp

}
a set of

tiles, and tmain the initial tile.

– tmain = ((Σ,Λ), Qmain,→main, Cmain, Fmain) with
Qmain = {0, 1, 2, 3, 4, 5, 6}, Cmain = {(0, init)} (init depicted by 3)
Fmain = {(comp, {0→ 2, 2→ 3, 5→ 4})}, and→main depicted below,

– tcomp = (comp, (X,Σ,Λ), Qcomp,→comp, Ccomp, Fcomp) with
Qcomp = {0, 1, 2, 3, 4, 5},→comp Ccomp = {(2, succ)} (succ depicted by �),
Fcomp = {(comp, {0→ 3, 2→ 4, 5→ 5})} and→comp depicted below.

main: 0 1

2fcomp(0)

3fcomp(2)

4 fcomp(5)

5

6

try

?Block1

!Block2

!Block3

catch

comp:

10

2

3 fcomp(0)

4 fcomp(2)

5 fcomp(5)

?Block4

!Block7

!Block6

Block5

throw

For the frontier, e.g., in the tile tmain, 2fcomp(0) means that (comp, {0→ 2}) belongs
to Fmain, i.e. the vertex 0 of tcomp is associated to the vertex 2 of tmain.

The semantics of an RTS is formally defined by an IOLTS by a tiling operation that
appends tiles to another tile (initially, the axiom), inductively defining an IOLTS. For-
mally, given a set of tiles T and a tile tE = ((Σ,Λ), QE ,→E , CE , FE) with FE defined
on T , the tiling of tE by T , denoted by T (tE), is the tile t′E = ((Σ,Λ), Q′E ,→′E , C′E , F ′E)
iteratively defined according to the elements of the frontier FE , as follows:

1. Initially, Q′E = QE ,→′E=→E , C′E = CE F ′E = ∅;
2. for each pair (tB, fB) ∈ FE , with tB = ((Σ,Λ), QB,→B, CB, FB) ∈ TB,

let ϕB : QB → N be the injection mapping vertices of QB to new vertices of Q′E
with ϕB(n) := fB(n) whenever n ∈ dom(fB), n+max(Q′E)+1 otherwise, where
max(Q′E) is the vertex with greatest value in Q′E . The tile t′E is then defined by:

– Q′E = Q′E ∪ Im(ϕB),
– →′E=→′E ∪{(ϕB(n), a, ϕB(n

′)) | (n, a, n′) ∈→B},
– C′E = C′E ∪ {(ϕB(n), λ) | (n, λ) ∈ CB},
– F ′E = F ′E ∪ {(tC , {(ϕB(j), fC(j)) | j ∈ dom(fC)}) | (tC , fC) ∈ FB}. The up-

date of F ′ expresses that the frontier of the new tile t′A is composed from those
of the tiles that have been added.

Remark 1 In a tiling, the order chosen to append a copy of the tiles that belong to the
frontier is not important. Two different orders would produce isomorphic tiles (up to a
renaming of vertices).
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0 1

2

3

4 fcomp(5)

5

6 8 10

fcomp(0)

11

fcomp(2)

try

?Block1

!Block2

!Block3

catch

?Block4

Block5

!Block7

!Block6

throw
0 1

2

3

4

fcomp(5)

5

6 8 10

11

13 15

fcomp(0)

16

fcomp(2)

try

?Block1

!Block2

!Block3

catch

?Block4

Block5

!Block7

!Block6

throw

?Block4

Block5

!Block7

!Block6

throw

Fig. 2. T (tmain) and T 2(tmain) tiles

Example 2 We illustrate the principle of tiling using the RTS defined in Example 1.
Consider that tmain is the initial tile. Its tiling T (tmain), is performed as follows: there
is a single element in its frontier; we add a copy of tcomp (with new vertices), identifying
vertices 2, 3 and 4 of tmain to vertices 0, 2 and 5 of tcomp.

The resulting tile is depicted in Fig. 2 (left-hand side). This new tile may be in turn
extended by adding a copy of tcomp, identifying 4, 10 and 11 to 0, 2 and 5. Again, we
illustrate the resulting tile in Fig. 2 (right-hand side) (observe that our definition of
ϕcomp induces that some elements of N are left out). Obviously iterating this process
will result in vertex 4 having infinite in-degree.

An IOLTS is finally obtained from an RTS as the union of the IOLTS of tiles resulting
from the iterated tilings from the axiom. Formally,

Definition 8 LetR = ((Σ,Λ), T , t0) be an RTS.R defines an IOLTS
JRK = (QR, Σ, Λ,→R, CR, init) given by⋃

k[T k(t0)]

The infinite union of Definition 8 is valid because, by construction, for all k ≥ 0:
[T k(t0)] ⊆ [T k+1(t0)], where ⊆ is understood as the inclusion of IOLTS, i.e. inclusion
of states, transitions and colourings.

For an RTSR with axiom t0, and a state q in JRK, `(q) denotes the level of q, i.e. the
least k ∈ N such that q is a state of [T k(t0)], and t(q) denotes the tile in T that created
q. For a vertex v of a tile ofR, JvK denotes the set of states in JRK corresponding to v.

Requirement 1 In order to simplify proofs, we impose some technical restrictions on
the RTS,R = ((Σ,Λ), T , t0), that can be ensured by a normalisation step, without loss
of generality:

1. for any state, q, of finite degree in JRK, every transition connected to q is either
defined in t(q) or one of the tiles of its frontier (this may be checked on T )

2. the set of enabled actions in copies of a vertex v is uniform (for all vertices v
in R, for all q, q′ in JvK, ΓJRK(q) = ΓJRK(q

′)), thus can be written ΓJRK(JvK).
Furthermore, we may assume that each vertex possesses a colour reflecting this
value (see Corollary 1 below).

Remark 2 The IOLTS obtained from RTS correspond to the equational, or regular
graphs of [7] and [3]. These IOLTS are derived from an axiom using deterministic HR-
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grammars. Each such grammar may be transformed into a tiling system, and conversely.
Our definition aims at a greater simplicity.

Reachability Computation of (co)reachability sets, that are central for verification and
safety problems, as well as for test generation, are effective for RTS:

Proposition 2 ([3]) Given an RTS R = ((Σ,Λ), T , t0), a sub-alphabet Σ′ ⊆ Σ, a
colour λ ∈ Λ, and a new colour rλ 6∈ Λ, an RTS R′ = ((Σ,Λ ∪ {rλ}), T ′, t′0) can be
effectively computed, such that JR′K is isomorphic to JRK with respect to the transitions
and the colouring by Λ, and states reachable from a state coloured λ by actions in Σ′

are coloured rλ: CR′(rλ) = reachJR′K(C(λ), Σ′). The same result holds for states
co-reachable from λ.

Proposition 3.13 (b) of [3] enables to perform several computations related to our
purpose. We rephrase it for RTS.

Proposition 3 ([3]) Given an RTS R = ((Σ,Λ), T , t0), for any subset S in N ∪ {∞}
and new colour #S 6∈ Λ, it is possible to compute an RTSR′ = ((Σ,Λ∪{#S}), T ′, t′0)
such that JRK is isomorphic to JR′K with respect to the transitions and the colouring by
Λ, and every state of JR′K of (in- or out- or total-) degree is in S is coloured by #S .

In particular this result enables to identify on the set of tiles properties of the states,
like deadlocks, inputlock. The following corollary is also a direct consequence of this
proposition (performing successive colouring for computing the degree related to some
actions).

Corollary 1 Given an RTSR and a vertex v of a tile t ofR, for any q in JvK the allowed
actions ΓJRK(q) in state q can be effectively computed.

Observable behaviour of RTS: Abstracting away internal transitions is important for
test generation. With the following proposition, it is possible to do it for RTS.

Proposition 4 From an RTSR with IOLTS JRK = (QR, Σ, Λ,→R, CR, init) and vis-
ible actionsΣo ⊆ Σ, one can effectively compute an RTSClo(R) with same colours Λ,
whose IOLTS JClo(R)K = (Q′R, Σ

o, Λ,→′R, C′R, init) has no internal action, is of fi-
nite out-degree, and for any colour λ ∈ Λ, TracesCR(λ)(JRK) = TracesC′R(λ)(JClo(R)K).

This result is classical and follows mainly from [3]. Infinite out-degree may occur
whenever there is an infinite sequence of internal transitions. However, careful compu-
tation of Clo(R) enables to avoid such occurrences.

Synchronous product: The synchronous product of IOLTS is the operation used to
intersect languages, and is useful for test selection using a test purpose. We can prove
that the product of an RTS with a finite IOLTS is an RTS. More precisely, given any
RTSR with IOLTS JRK, and a finite state IOLTS A, one can compute an RTS denoted
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byR×A such that JR×AK = JRK×A (the × on the right-hand side of the equality
is the product for IOLTS).

In general, the product of two RTS is not recursive. Indeed, the intersection of two
context-free languages can be obtained by a product of two RTS, if such a product
was recursive the intersection of two context-free languages would be a context-free
language (e.g.,

{
anbnck | n, k ∈ N

}
∩
{
anbkck | n, k ∈ N

}
is not context-free).

Weighted RTS In the following we will often consider an important class of RTS. This
class possesses the valuable property of being determinizable.

Definition 9 An RTS R with IOLTS JRK = (QR, Σ, Λ,→R, CR, init) is weighted if
CR(init) is a singleton {q0}, and for any u ∈ Σ∗ and any states q, q′ ∈ QR, q0

u→ q

and q0
u→ q′ implies `(q) = `(q′) (same level).

Note that determining if an RTS is weighted is decidable, using an algorithm from [5].

Example 3 Assuming internal actions are not observable, the RTS defined in Exam-
ple 1 may be weighted or not depending on the way the closure is performed. A back-
ward closure ensures that the IOLTS is weighted: in fact, it is, then, deterministic. A
forward closure induces non-determinism at ?Block4. Since path ending with this block
would either be silently followed by throw and thus end in the initial tile (level 0), or be
followed by Block5 and terminate at the next level (at least 1).

Determinization of recursive LTS An RTSR is deterministic if its underlying IOLTS
JRK is deterministic. This is decidable from the set of tiles defining it (for example using
Proposition 3). However, since PDA cannot be determinized in general, there is no hope
to determinize an arbitrary RTS. Still, there are some classes of determinizable PDA,
like visibly PDA [2], or, more recently, the weighted grammars of [4]. These grammars
define a class of PDA that can be determinized and which both subsume the visibly
PDA and the height deterministic PDA [11].

Proposition 5 ([5]) Any weighted RTS R can be transformed into a deterministic one
D(R) with same set of traces and, for any colour, same traces accepted in this colour.

Example 4 Following Example 3, assume that vertex 5 is not in any frontier anymore,
and suppose that there are 3 transitions labelled ?Block4 between 0 and respectively 1,
3 and 5. This is a weighted system. In such a situation, determinization would simply
perform a finite LTS determinization in the tile tcomp. In the general case some tiles need
to be merged first.

4 Off-line test generation for weighted RTS
In this section and the following, we consider the generation of test cases from RTS. We
focus, here, on weighted RTS, which are determinizable, and propose an off-line test
generation algorithm that operates a selection guided by a test purpose (specified by a
finite IOLTS). Computations are performed at the RTS level with consequences on the
underlying IOLTS semantics, enabling the proof of properties on generated test cases.
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4.1 Construction of the canonical tester

Quiescence As seen in Section 2 quiescence represents the absence of action in the
specification. Given a specification defined by a RTS S, detecting vertices where the
absence of reaction is permitted enables to construct a suspended specification, ∆(S).

For finite state IOLTS, livelocks come from loops. On the contrary, for IOLTS de-
fined by RTS, livelocks may come from infinite paths of silent actions involving in-
finitely many states. We call such paths divergent.

Lemma 1 For a RTS R, there exists a loop or a divergent path in JRK if and only if
there exists a vertex v and two states q1, q2 ∈ JvK with `(q1) ≤ `(q2) such that q1

σ→ q2
for some σ ∈ Στ ∗ and for all states q on this path, `(q1) ≤ `(q).

Proof. (⇒) Let p = q0
a1→ q1

a2→ q2... be an infinite path in JRK, with ∀k ∈ N, ak ∈ Στ .
If p contains a loop, there exits one state of minimal level in this loop, let q1 be this state.
Now consider an elementary path. As each state is only seen once, we build a sequence
of states qik such that ∀ik ≤ j, `(qik) ≤ `(qj). As there are only a finite number of
vertices, there is a least one v such two states of JvK appear in this path. Let these two
states be q1 and q2.

(⇐) If there exist a vertex v and two states q1, q2 ∈ JvK with `(q1) = `(q2) such
that q1

σ→ q2 for σ ∈ Στ+, and for all states q on this path, `(q1) ≤ `(q), then
q1 = q2, since any path from two distinct occurrences of the same tile at the same level
involves vertices of lower level. Hence this path is a loop. Otherwise, `(q1) < `(q2),
let p0 := q1

σ→ q2 for σ ∈ Στ+, since for all q in this path, `(q1) ≤ `(q). Thus, by

definition, a similar path may be constructed reaching a state q3, with, q2
σ′

→ q3 for
σ′ ∈ Στ+, `(q2) < `(q3), and `(q2) ≤ `(q) for all q involved. Iterating this process
enables to produce an infinite path in JRK satisfying the hypothesis. ut

Proposition 6 From any RTSR, it is effective to build an RTS denoted ∆(R) such that
J∆(R)K = ∆(JRK). Consequently Traces(J∆(R)K) = STraces(JSK).

Proof. LetR be a RTS, we add self-loops δ as follows.
For deadlock and output lock, we use Requirement 1, item 2, which ensures that for a
vertex v in a tile t ofR, has a uniform value for ΓJRK(JvK). The δ-transitions are added
to each v inR such that ΓJRK(JvK) = ∅ or ΓJRK(JvK) ⊆ ΣR

? . This operation produces a
new RTSR′.
For livelocks, there are two different cases: internal loops and divergent paths. From
Lemma 1 we know that such situations may be detected from self-reaching vertices.
This result also ensures that this detection may be performed taking each tile as an
axiom. Then, for each tile t inR′:

– Colour each vertex v of tile t by a colour λv not in ΛR′ .
– Use Proposition 2 to colour by λ′v vertices in reachJRtK(Σ

τ , λ), where R
′
t is the

RTS identical to R
′, with initial tile t. This computation simply enables to detect

vertices involved in an infinite path, but the resulting RTS is not kept.
– Each vertex v coloured by both λv and λ′v is involved in a livelock. We add quies-

cence to each such vertex inR′ to produce ∆(R).
ut
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Output completion After using Proposition 6 for the computation of ∆(S) from the
specification S, the next step is to complete ∆(S) to recognise STraces(S).Σ!δ . The
complete suspended specification, denoted by CS(S), is computed from ∆(S) as fol-
lows: a new colour UnS is added to detect paths leading to unspecified behaviours.
Then, for every tile t, a new vertex, vUnS

t , is added (having colour UnS), new transitions
leading to vUnS

t are added as well:{
v

a→ vUnS | v ∈ QA ∧ a ∈ Σ!δ ∧ a 6∈ ΓJ∆(S)K(JvK)
}

.

By construction, we get Traces(JCS(S)K) = STraces(JSK).Σ!δ
S ∪ STraces(JSK) and

TracesC(UnS)(JCS(S)K) = STraces(JSK).

Canonical tester Whenever CS(S) is weighted, Proposition 5 enables to determinize
it into D(CS(S)). From D(CS(S)) we build a new RTS Can(S) called the canonical
tester of S as follows:

– a new colour Fail is considered and vertices of D(CS(S)) are coloured by Fail if
composed of vertices all coloured by UnS in CS(S).

– inputs and outputs are mirrored in Can(S) wrt. S.

From this construction we can deduce that

TracesC(Fail)(JCan(S)K) = MinFTraces(JSK) (1)
TracesC(Fail)(JCan(S)K) = STraces(JSK) (2)

and Traces(JCan(S)K) is their disjoint union.
In fact TracesC(Fail)(JCan(S)K) = TracesC(UnS)(JCS(S)K) = STraces(JSK) and

TracesC(Fail)(JCan(S)K) = TracesC(UnS)(JCS(S)K) \ TracesC(UnS)(JCS(S)K)
= Traces(JCS(S)K) \ TracesC(UnS)(JCS(S)K)

(asTraces(JCS(S)K) is the union TracesC(UnS)(JCS(S)K) ∪ TracesC(UnS)(JCS(S)K) )

= STraces(JSK).Σ!δ
S \ STraces(JSK)

= MinFTraces(JSK)

From (1) it immediately follows that the test suite T S reduced to {Can(S)} is
sound and exhaustive (see Section 2). T S is also strict, which is proved as follows:
Traces(JCan(S)K)∩MinFTraces(JSK) = (TracesC(Fail)(JCan(S)K)∪ STraces(JSK)∩
MinFTraces(JSK) = TracesC(Fail)(JCan(S)K) using the disjoint union and (1).

Test case selection with a test purpose The canonical tester has important properties,
but one may want to focus on particular behaviours, using a test purpose. In our formal
framework, a test purpose is a deterministic finite IOLTS T P overΣoδ , with a particular
colour Accept. States coloured by Accept have no successors.

As seen in the previous section, the product P between Can(S) and T P is an RTS.
On this product, new colours are specified as follows :

– CP(Fail) = CCan(S)(Fail)×QT P
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– CP(Pass) = CP(Fail)× CT P (Accept)
– CP(None) = Coreach(CP(Pass)) \ CP(Pass)
– CP(Inc) = QP \ (CP(Fail) ∪ CP(Pass) ∪ CP(None))

Note that, by construction, each state has a unique colour in {Fail,Pass,None, Inc}.
States coloured by Fail or Pass have no successors, and states coloured by Inc have
only Fail or Inc successors.

In order to avoid states coloured by Inc where the test purpose cannot be satisfied
anymore, transitions labelled by an output (input of S, controllable by the environment)
and leading to a state coloured by Inc may be pruned, as well as those leaving Inc.
Consequently, runs leading to an Inc coloured state necessarily end with an input action.

Finally, the test case T C generated from S and T P is the product P , equipped with
new colours Fail,Pass,None, Inc and pruned as above.

Example 5 Figure 3, below, represents the test case obtained from Example 1 with the
test purpose accepting only (Σoδ)∗?Block4?Block4(Σoδ)∗!Block2. The vertices labelled by
F correspond to the one coloured by Fail but is split for better readability. Triangle
vertices are those coloured by Inc. Observe that each vertex is a set of pairs, so indices
depicted below are not related to the original ones.

0

1 2 3 fcomp(1)

F

6 5 4 fcomp(4)

7 8 F

?Block1

?Block4 ?Block4

!Block7

!Block6!Block2

?Block2,3,6,7
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2,3,6,7 ?B

lo
ck2
,6

?B
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ck

2,
6
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2,3,7

?Block3,6,7

?B
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ck
7

?
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l
o
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k
3 ?Bl

ock
3

1 2 fcomp(1)

5 F

4 3 fcomp(4)

?Block4

?Block7

7Block6

?Block3

?Block2,6

?Block2,3,7

Fig. 3. Example of a test case

4.2 Properties of generated test cases

We now prove the requested properties of test cases defined in Section 2, relating test
case failure to non-conformance, and a new property, precision, that relates test case
success (Pass verdict) to the satisfaction of the test purpose.

Soundness and strictness According to the construction ofP , the definition of CP(Fail),
and pruning, selection by T P do not add any colouring by Fail with respect to Can(S),
thus TracesC(Fail)(JT CK) = Traces(JT CK)∩TracesC(Fail)(JCan(S)K). By (1) we deduce
TracesC(Fail)(JT CK) = Traces(JT CK) ∩MinFTraces(JSK) ⊆ MinFTraces(JSK) which
proves both strictness (equality) and soundness (inclusion).

Exhaustiveness We prove that the test suite T S composed of all test cases that can be
generated from arbitrary test purposes T P is exhaustive. We thus need to establish the
inequality

⋃
T C∈T S TracesC(Fail)(JT CK) ⊇ MinFTraces(JSK).

Let σ′ = σ.a ∈ MinFTraces(JSK) = TracesC(Fail)(JCan(S)K) be a minimal non-
conformant trace for S. We have σ ∈ STraces(JSK) and there exists b ∈ Σ!δ such
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that σ.b ∈ STraces(JSK) (if no output continues σ in STraces(JSK), a δ does). Now
consider a test purpose T P such that σ.b ⊆ TracesC(Accept)(T P) and let T C be the test
case generated from S and T P . By construction of T C, we get σ′ ∈ TracesFail(JT CK).

Precision As a complement to the above properties, precision relates test cases to
test purposes. It says that the verdict Pass is returned as soon as possible, once the
test purpose is satisfied. Formally, a test case T C is precise with respect to T P if
TracesC(Pass)(JT CK) = TracesC(Accept)(T P) ∩ STraces(JSK) ∩ Traces(JT CK).

By construction, states coloured by Pass are those coloured by Accept in T P and not
by Fail in Can(S). Thus TracesC(Pass)(JT CK) = TracesC(Accept)(T P) ∩ STraces(JSK)
which (since TracesC(Pass)(JT CK) ⊆ Traces(JT CK)) implies precision.

5 On-line test generation from RTS

For the general case, determinization is an issue, as seen in Section 3. As usual in
similar cases [13], one may rely on “on-line” test generation (executing test cases while
generating them) or equivalently produce test cases as finite trees.

5.1 Test case generation

Output-completion and ε-closure The process starts from the output-completed spec-
ification CS(S) defined in Section 4. This time, the canonical tester cannot be built
from CS(S). However, using Proposition 4, one can built Clo(CS(S)), ensuring the
following properties:

MinFTraces(S) ⊆ TracesC(UnS)(Clo(CS(S))) ⊆ STraces(S).Σ!δ

TracesC(UnS)(Clo(CS(S))) = STraces(S)

Product and colouring The next step consists in the computation of the product of
Clo(CS(S)) with a test purpose given as a complete finite IOLTS T P . Let P =
Clo(CS(S)) × T P be this product, one may define the following new colours on P
using a co-reachability analysis:

– CP(UnS) = CClo(CS(S))(UnS)×QT P

– CP(Pass) = CClo(CS(S))(UnS)× CT P (Accept)
– CP(None) = Coreach(CP(Pass)) \ CP(Pass)
– CP(Inc) = QP \ (CP(Fail) ∪ CP(Pass) ∪ CP(None))

Computing test cases The last step consists in computing test cases in a way similar
to [13]. These test cases will be modelled as finite trees. Formally such a finite tree will
be a prefix-closed set of words in Σoδ∗.({Fail,Pass,None, Inc} ∪ {ε}). Given a tree θ,
for some symbol a, the notation a; θ , {au | u ∈ θ}, furthermore, given two trees θ, θ′,
the tree formed by the union of those trees is denoted by θ + θ′.
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A test case T C is a tree built from P by taking as argument a set of states PS. Let
us define test cases by applying the following algorithm recursively, starting from the
initial state CP(init).
Choose non deterministically between one of the following operations.

1. ( * Terminate the test case *)
θ := {None}

2. (* Give a next input to the implementation *)
Choose any a ∈ out(PS) such that
(PS after a) ∩ (CP(Pass) ∪ CP(None)) 6= ∅
θ := a; θ′

where θ′ is obtained by applying the algorithm with PS′ = (PS after a)
3. (* Check the next output of the implementation *)

θ :=
∑
a∈X1

a;Fail +
∑
a∈X2

a; Inc +
∑
a∈X3

a;Pass +
∑
a∈X4

a; θ′

with:
– X1 = {a | PS after a ⊆ CP(UnS)}
– X2 = {a | (PS after a ⊆ (CP(Inc) ∪ CP(UnS)))

∧(PS after a ∩ CP(Inc) 6= ∅)}
– X3 = {a | PS after a ∩ CP(Pass) 6= ∅}
– X4 = {a | (PS after a ∩ CP(Pass) = ∅)

∧(PS after a ∩ CP(None) 6= ∅)}
– θ′ is obtained by applying the algorithm with PS′ = (PS after a)

Formally, a tree needs to be transformed into a test case IOLTS T C by an appropriate
colouring of states ending in Fail, Pass, Inc or None after a suspension trace. We skip
this for readability.

5.2 Properties of the test cases generated on-line

Soundness and Strictness By definition of X1, those traces of T C falling in a state
coloured by Fail are those in Traces(JCS(S)K) \ TracesC(UnS)(JCS(S)K) =

MinFTraces(JSK). Thus TracesC(Fail)(T C) = MinFTraces(JSK) ∩ Traces(T C) which
proves both soundness and strictness, as in the off-line case.

Exhaustiveness The proof of exhaustiveness is similar to the one in Section 4, con-
sisting in building a test purpose T P for each non-conformant trace, and proving that a
possible resulting test case would produce a Fail after this trace.

Precision From the construction of T C, in particular, the set X3, we have
TracesC(Pass)(T C) = TracesC(Pass)(Clo(CS(S)) × T P) ∩ Traces(T C). Then, by def-
initions of the colours, we obtain: TracesC(Pass)(T C) = TracesCUnS

(Clo(CS(S))) ∩
TracesC(Accept)(T P)) ∩ Traces(T C). Which eventually proves precision:
TracesC(Pass)(T C) = STraces(S) ∩ TracesC(Accept)(T P) ∩ Traces(T C).
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6 Conclusion

In this paper we have presented recursive tile systems, a general model of IOLTS allow-
ing for recursion. We have provided algorithms to produce sound, strict and exhaustive
test suites, either off-line or on-line. These algorithms enable to employ test purposes
(even, for the on-line case) which are a classical way to drive tests towards sensitive
properties. We have also established the precision of our tests with respect to test pur-
poses.

An interesting perspective would be to incorporate known results on probabilistic
RTS. This would enable to take into account quantitative properties of systems, or to
express coverage properties of finite test suites.
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