N

N

Experience in validating protocol integration using
Estelle

Jean-Marc Jézéquel

» To cite this version:

Jean-Marc Jézéquel. Experience in validating protocol integration using Estelle. Third International
Conference on Formal Description Techniques, Nov 1990, Madrid, Spain. hal-00764941

HAL Id: hal-00764941
https://inria.hal.science/hal-00764941
Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00764941
https://hal.archives-ouvertes.fr

Experience in Validating Protocol Integration using Estelle

Jean-Marc JEZEQUEL

TRANSPAC
F-35512 CESSON SEVIGNE CEDEX, FRANCE

Abstract

This paper presents a ten months long experiment led at TRANSPAC to check the
interest of a Formal Description Technique like Estelle for industrial purposes.

Through the Intelligent Network new service introduction, Estelle —and associated
tools, e.g. VEDA and ECHZIDAA— has been used for different purposes: validation of a
brand new protocol and test of its implementation, modelisation of an already existing
one, and validation of the integration of both protocols.

After a brief introduction to the TRANSPAC framework, we present an outline of these
experiments. Then we draw some conclusion on the suitability of both Estelle and the
tools used in this context, and on the economical balance of such an approach to deal with
concrete problems.

1 TRANSPAC general framework

1.1 The first packet switching network in the world

TRANSPAC has been created in 1978 to commercialize, manage and expand the french public
packet switching network. There are now 70000 users directly connected to TRANSPAC, using
210 Packet Switching Systems (PSS) located in 124 different sites and exchanging 2.2G bytes
per month.

The basic service proposed is the Virtual Circuit. User can access to the TRANSPAC
network with X25, X32 or X28 standardized protocols[5], from dedicated links, telephonic or
telex networks, or ISDN B channels.

Higher level services are also proposed, as Atlas 400 —an X400 mailer with 2500 subscribers
and 150K messages exchanged /month— EDI servers, private network supervisions services...

1.2 Structure of the network

The TRANSPAC network is made of first and second generation PSS (Mitra 125 and Sesa
DPS-25) to connect users, and of Transit-PSS (Alcatel DPS-8300) to interconnect PSS using
high throughput links (> 256Kb/s), see figure 1. Users can be connected directly (with
synchronous or asynchronous links) or through User Public Concentrators or Enterprise Local
Concentrators... In the near future, users will also be able to connect themselves using ISDN
D channel permanent links.

Control Center

2G

PSS N
Synchronous or Pl
Asynchronous 1G

PSS

Subscribers

e

Figure 1: Structure of the TRANSPAC Network

Within the TRANSPAC network, inter-PSS communications are performed using the XCM
protocol, which is an evolution of X25.

1.3 The Intelligent Network project

In order to fit users’ needs, TRANSPAC has to offer new services above the basic network. Until
now, each new service introduced in the network was costly because we needed to modify the
software of each kind of PSS.

The Intelligent Network (IN) project aims at lowering these costs. Its principle is to remote
process the signalling (e.g. Call-Request, Call-Confirmation and Clear packets) in a so-called
Packet Service Command Point (P-SCP) specialized machine.

Access to this “intelligent” P-SCP is granted to Packet Service Access Systems (P-SAS),
which are in a first step located in TRANSPAC T-PSS. At the request of the P-SCP, the P-SAS
have to trap relevant transiting signalling packets, and send them to the P-SCP for processing
(see figure 2). The P-SCP can also spontaneously request a P-SAS to send signalling packets.

The dialogue between P-SAS and P-SCP is made on a Virtual Circuit established by the
P-SCP, and the P-SAS knows the P-SCP as a standard subscriber.

This architecture can be used to provide administration functions, like:

e Call Transfer Service
e dynamic configurable multiple subscriber service

e access supervision service

Calling Called
USers TRANSPAC Network users

Supervised
IN VC

Figure 2: The Intelligent Network Architecture

e access control service

e client specific services

1.4 Context of the study

In order to introduce the IN service, TRANSPAC had to develop a new protocol between P-
SAS and P-SCP. As the P-SAS should be implemented in the T-PSS DPS-8300 —which is a
multi-processor machine with internal protocols— the rather complex interactions of this new
IN protocol with the existing ones have to be studied carefully.

Having a growing interest for FDTs, TRANSPAC wanted to test the usefulness of those
technics on this IN project.

TRANSPAC needed a concrete, commercially available set of tools to model and validate
both new and already existing protocols.

After a rapid enquiry, TRANSPAC choose the Estelle language[2] and the VEDA
environment[3] designed at CNET and sold by VERILOG SA, mainly because it was the
only one environment —available in France— allowing some validation of real-size protocols.

Furthermore, through a contract with IRISA, TRANSPAC has been granted the right to use
ECHIDNA[4] as a second Estelle compiler, featuring a windowed interactive visual debugger
and a multi-processor kernel for experimentation purposes. For IRISA, the interest of this
contract was to check how ECHIDAA was suited for industrial purposes, and how to fit them
better.

2 Using Estelle to model and validate proprietary protocols

2.1 Specification and Validation of the IN protocol

This first part of the study was rather classical: given a brand new protocol, we had to make
a formal specification and a validation.

The communication between the two protocol entities P-SCP and P-SAS is performed
above an X25 VC, which can be Reseted or broken at any time by anyone of the P-SCP,
P-SAS or the TRANSPAC network. Each time this communication is broken, the P-SCP tries
to establish it again. However, the effects of such a failure on currently supervised VC should
be as low as possible, so a special mechanism has been designed to deal with message losses.

In a first step, the VC has been modeled as a bidirectional, reliable, unbounded FIFO
channel.

Starting with an informal description in French, we made a formal model with two Com-
municating Finite State Automata (CFSA), one for a supervised VC at the P-SAS, the other
one for its image at the P-SCP.

We did a coverage graph analysis with an experimental tool (lent by IRISA) which led to
some design error detection and showed the too much complexity of the protocol.

After various iterations and some simplification, we got an interesting validation, providing
informations on the maximum size of channels and the reuse of supervised VC identifiers.

Then we did a full model using Estelle (about 700 lines of source code). We took into
account the network sending Reset and Clear, and the resynchronization procedure upon re-
connection.

However, modeling the interfacing of this protocol with X25 was rather difficult, because
full modeling of X25 was not the point, but any simplified model led to interface problems.

We did intensive simulations using VEDA and ECHZDAA, but none of them led to new
error detection. During this phase, we appreciate the VEDA feature called observers!', which
made it possible to check easily for the consistency between the supervised VC view at the
P-SAS and at the P-SCP.

Using the experimentation on real distributed systems features offered by ECHIDANA, we
made a very demonstrative exhibition of this IN protocol using one Sun workstation playing
the role of the P-SAS and an other one playing the P-SCP role.

Another interest of this Estelle formal specification is its usefulness as a reference for
implementation testing. In this context, we built —at a relative low cost: 2 months.man— an
Estelle testing environment for the IN protocols using ECHIDAA above an X25 package. It
allows the TRANSPAC test team to specify test cases in Estelle, and then to compile and run
them in front of an actual protocol implementation.

'Kind of almighty deamons which can spy Estelle modules, see (1]

T-PSS
other |——= XCM XCM ——=| other

XCM XCM
PSS automaton automaton PSS

Internal Protocol

Figure 3: The T-PSS abstract specification for one Virtual Circuit

2.2 Modelisation of the T-PSS internal protocols

In order to study the integration of the new IN protocol within the T-PSS, we had to model
first the existing T-PSS internal protocols. The external abstract specification of the T-PSS
for a Virtual Circuit can be thought as a set of two XCM automata, each one communicating
with both the other one and the external world, thus performing the switching on the VC (see
figure 3).

Therefore the first step was to build a model of this specification using Estelle, in order to
have an operational reference model to be compared with the implementation. The only little
difficulty here was to take into account erroneous cases for which there were only informal
specifications.

We got a 300 lines —60 transitions— Estelle specification, from which we could auto-

matically produce a testing simulated environment for the implementation modelisation (see
below).

Switching and signalling functions are implemented in the DPS-8300 T-PSS on a set of
boards linked through an high speed bus, and communicating with both message exchanges
and shared memory, see figure 4. Micro-coded AMD 29116 boards (XPU) are used to perform
fast switching of simple packets (i.e. Data packets), meanwhile signalling processing and
routing is subcontracted to MC 68000 boards (SPU).

For a given VC, signalling related internal interactions between components are described
in figure 5.

The typical processing of an incoming signalling packet is described in figure 6, but in
reality, as there were many performance related improvements during the development and
maintenance courses of the project, the real protocols are quite different from the initial
specifications.

What we had to do here can really be called reverse engineering, because we had to build
an high level description from assembly listing.

As each processing of an internal interaction could be considered atomic —and therefore
modeled with an Estelle transition— the main problem was to model shared memory commu-
nications. We finally choose to gather in a single Estelle module both the common memory
block and the transitions of the two processors accessing it. With that choice, we loose some
parallelism between those two processors, but anyway, there is a price to be paid for every

1/0 XPU Shared SPU
Board 29116 Memory 63000

X-BUS

SPU /O Control XPU
68000 Board Board 29116

SPU: Signalisation processing unit, XPU: Switching processing unit

Figure 4: The DPS-8300 T-PSS architecture

Timers Timers
SPU; : L] SPu,
MEMORY MEMORY
XPU; XPU,
Incomming Outgoing

Signalisation Packets

Figure 5: Relations between components during signalling processing

‘ S Eg : SProcess P

L S P(S;) P): _end P
Incoming | S(S) Eob () e’

. Signalisation Processing (P)
. Packet S EOP(S) P(S'd)

‘ | q

| | OK(S'; :

J Outgoing

v Packet S’
Time XPU; SPU; SPU, XPU,

Figure 6: Typical signalling packet processing

abstraction.

This implementation fulfilled all its tests and was to be run on the actual TRANSPAC
network, so we were quite confident on its correctness. We wanted to use it as benchmark
to test validation methods. We develop a three stages validation procedure, using ECHZDAA
because our Estelle description was too much big for our VEDA commercial version (1200
lines —100 transitions— for a single module).

1. interactive simulation, with a full view on internal protocol states. This was helpful to
get rid of trivial errors due to transcriptions during the modelisation phase, but this
kind of white box simulation (where one can see every interaction of the system) is rather
slow.

2. black box interactive simulation, which looks like classical testing procedures. The T-PSS
is a black box, and we can only check its external reaction when we feed it with test
suites. Much faster than white box simulation, this method gave us a good confidence
in our Estelle description as an accurate model of the real thing.

3. intensive automatic simulation: our T-PSS Estelle model is connected to two XCM
automata (automatically derived from the abstract T-PSS Estelle specification), being
able to randomly send both XCM correct and incorrect packets to the T-PSS and check
the conformance of the T-PSS reaction to XCM.

Upon error detection, the seed of the random number generator is recorded, and the
simulation is executed again with that seed and an option to trace each internal inter-
action. This can be performed automatically, saving in a file only the 100 last lines of
the trace for each error condition detected. If more information is needed to understand
what happened, we can come back to step 1 with that precise scenario.

Using this approach, we detected some (=~ 10 truly different) error conditions (in facts
actual bugs) which could arise on the TRANSPAC network with very small probability, for the
necessity of precise timings upon collisions of signalling packets in the T-PSS.

This study helped to explain and patch some real network problems —until then
unexplained— and to improve validation test suites.

IN—qugqcol

s | ey !

. Incoming \ IN-P(S 1

. Signalisation IN-S(S") >;: - =

. Packet S N 1 5(S")

| \

: : P(S') Outgoing
: EOP(S) ///Z Packet S’
% =1 ! OK(S O) =
Time XPU; SPU; P-SAS P-SCP SPU, XPU,

(remote)

Figure 7: New signalling packet processing

2.3 Integration of the IN protocol in the T-PSS

The T-PSS being itself a parallel machine with its own internal protocols, the integration of
the new IN protocol raises several problems, as potential signalling packet collisions and errors
must be dealt properly.

The principles remain simple—the incoming-side SPU sends revelant signalling packets
to the remote P-SCP, and waits for a proper request to be performed according to the IN
protocol, see figure 7 for an example— but the informal specifications are rather tricky and
show that the number of internal interactions within the T-PSS are twice the initial number.

The Estelle formal description of these new specifications is still in progress, but given the
complexity of this protocol we expect interesting results from its validation. The interesting
point here is that we can easily —thanks to Estelle modularity— simulate the behaviour of this
new implementation in an environment obtained melting both environments developed during
previous rounds: XCM and P-SCP entities, from whom we can use directly error detection
features.

3 Conclusion on this experiment

3.1 About Estelle

What is said here is not a synthesis on strength and weakness of the Estelle language as itself,
but much more an overall feeling about its usage in the above defined context.

Protocol people were already thinking in terms of communicating finite state automata,
extended with some private variables and delay clauses, so no one found Estelle hard to
understand: as we only use the usually called static subset of Estelle, there were few new
concepts. Estelle was easy to be explained and taught, which is very important in an industrial
context where people have limited time to learn new concepts.

In the IN specification project, it was quite easy to make Estelle description from both
unformal specifications and pieces of automata —in facts easier than to remove ambiguities in
the initial description.

On the other hand, it was very difficult to model real time systems communicating with
both shared memory and message exchanges using Estelle. Indeed atomicity in this kind of
system is very small (bounded by two consecutive accesses to the shared memory). As a fair
shared memory construct does not really exist in Estelle, either one has to model every possible
interleaving —which gives a lot of very small, unnatural atomic transitions— or to abstract
from reality. After various tries with the first solution —every time more complicated— we
finally choose to model the system at an higher level, and got interesting results. As far as we
know, there is no suitable tool to deal with this kind of system, therefore we think that Estelle
was still useful to do this job.

For instance, the kind of modularity offered by the Estelle module related constructs was
appreciated to connect easily various simulated interface modules to the very same Estelle
description of the T-PSS, or to its specification. Furthermore, this Estelle description is very
readable —and brings a much better understanding of the protocol— and can be used as an
implementation specification of the actual protocol, thus allowing us to perform some kind of
validation before any new modification of this implementation.

3.2 The tools used

Using Verilog VEDA 1.00, we found observers a very interesting feature to observe global
properties of a system. However, as we used the very first commercial —rather slow and
closed— version of VEDA, we encountered various problems and limitations which are expected
to be solved in future releases.

ECHIDN\A features a much faster compiler (100 1/s) generating C' code —thus interfacing
with C-based software is easy—, but although it has very good interactive simulation capabili-
ties (useful for fast first step debugging), its main interest is for distributed code generation to
meet experimentation requirements on real systems. ECHZ DA has its own Estelle restrictions,
and there is nothing in it equivalent to observers.

The main problem was the lack of a tool being able to make graph coverage analysis
from an Estelle specification (with IS 9074 syntax) using unbounded FIFO queues. This is a
serious obstacle against multi-side validation of a protocol, where one could mix partial graph
analysis and interactive or automated simulation. We hope that new tools will soon fill this
gap between exhaustive validation and simulation.

Finally, we saw in this experiment the interest of open tools, i.e. which can be easily in-
terconnected with user’s favourite environment. Here, it allowed us to build protocol demon-
stration models with user’s friendly —mouse driven— interface to let protocol designer “play”
with their creation in order to see if the formal specification fitted their ideas; and also to
connect prototypes with already existing environments (X25 package for instance).

3.3 Economical balance

We have made a little study to value the cost of real network problems caused by T-PSS
software anomalies versus early problem detection using specification and implementation
modeling with Estelle. As this is a complex problem to address, numeric results should be
interpreted with great care, above all before any generalization.

In facts, the only data we can collect is about problem correction costs and not really about

problem costs, which could be rather high (see for instance the billions of dollars lost by ATT
with its famous bug in USA this year).

We collected three years long existing statistics on total maintenance costs for T-PSS at
TRANSPAC, and tried to see how there were related to network problem identifications and
corrections meanwhile.

To identify and fix network problems, we got an average used manpower of 0.4 month.man
per network problem. At TRANSPAC, every hardware or software modification must fulfill a
validation step (test suites checking intensively the modification, and no regression, interoper-
ability and endurance testing of the full thing) before being installed on a pilot site on the real
network. The extension to the full network occurs only several weeks later if no new problem
is detected. This leads to additional costs estimated to 0.3 month.man per network problem
fixed, so the average total cost of a network problem would be around 0.7m.m.

These data are valid for a cruising situation, where people know both products and main-
tenance procedures. In order to be fair, we have to assume that formal validation is performed
by someone already knowing Estelle (or another FDT) and the TRANSPAC context.

Our experiment on the T-PSS internal protocol shows that a two months formal validation
course could find out an high proportion of problems linked to signalling processing —usually
detected during implementation, partial or full testing or even only on the actual network—
and discovered around ten new bugs. However, it is difficult to draw any conclusion about
exact savings, because we cannot know the proportion of signalling related patches vs. total
maintenance costs.

Acknowledgments

I would like to thank both TRANSPAC people (and especially J. Méar, R. Rigault and P. Rocher) and
IRISA people (C. Jard) who made it possible this fruitful collaboration between an industrial company
and a research laboratory by their everyday help.

References

[1] R. Groz. Unrestricted verification of protocol properties on a simulation: an observer
approach. In 6! IFIP International Workshop on Protocol Specification, Testing, and
Verification, Montréal, Gray rock, North Holland, June 1986.

[2] ISO 9074. Estelle: a Formal Description Technique based on an Extented State Transition
Model. ISO TC97/SC21/WG6.1, 1989.

[3] C.Jard, R. Groz, and J.F. Monin. Development of VEDA: a prototyping tool for distributed
algorithms. In IEEE Trans. on Software Engin., March 1988.

[4] C. Jard and J.-M. Jézéquel. A multi-processor Estelle to C' compiler to experiment dis-
tributed algorithms on parallel machines. In Proc. of the 9" IFIP International Workshop
on Protocol Specification, Testing, and Verification, University of Twente, The Nether-
lands, North Holland, 1989.

[5] TRANSPAC. Spécifications Techniques d’Utilisation du Réseau. Direction Commerciale,
Tour Montparnasse, 33 av. du Maine 75755 Paris, 1989.

10

