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Elliptic curve cryptographic systems

Andreas Enge∗

13 December 2012

The following text is published as Section 16.4 of [54] and reproduced here without
the cross-references to other chapters of the book.

[7], [8], [16] give comprehensive accounts of elliptic curve cryptography.

1 Cryptosystems based on elliptic curve discrete logarithms

Remark 1 The Fq-rational points on an elliptic curve E defined over a finite field Fq
form a finite abelian group; its group order is close to q by Hasse’s theorem. This group
can be used to implement discrete logarithm based cryptosystems as first observed in
[46, 53].

Remark 2 For reasons of efficiency, elliptic curve cryptosystems are usually imple-
mented over prime fields Fp or fields F2m of characteristic two. Supersingular curves
over fields F3m of characteristic three have attracted some attention in the context of
pairing based cryptography, see Section 2.

1.1 Key sizes

Remark 3 To resist generic attacks on the discrete logarithm problem, elliptic curve
cryptosystems are implemented in the prime order cyclic subgroup of maximal cardinal-
ity n inside E(Fq). For representing group elements with the minimum number of bits, it
is desirable that the curve order itself be prime. Except for special cases (see Section 1.3
and [59, 61, 65]), only generic attacks are known on the elliptic curve discrete logarithm
problem (ECDLP), with a running time on the order of

√
n. A security level of m bits,

corresponding to a symmetric-key cryptosystem with 2m keys, thus requires an order n
of 2m bits. Extrapolating the theoretical subexponential complexity for factoring or the
DLP in finite fields allows to derive heuristic security estimates for the corresponding
public key cryptosystems. Several studies have been carried out in the literature, taking
added heuristics on technological progress into account, see [36]. They are summarized
in the following table; the figures for the factorization based RSA system essentially
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carry over to systems based on discrete logarithms in finite fields. The 80 bit security
level is a historic figure.

security (bits) symmetric ECC RSA RSA RSA
[36, 47] [56, §7.2.2.3] [67, Table 7.2]

80 — 160 1513 1536 1248
112 Triple DES 224 4509 4096 2432
128 AES-128 256 6669 6000 3248
192 AES-192 384 22089 — 7936
256 AES-256 512 49562 — 15424

1.2 Cryptographic primitives

Remark 4 Some cryptographic primitives (encryption, signatures, etc.) have been
adapted and standardised specifically for elliptic curves. As other discrete logarithm
based systems, they require a setup of public domain parameters, a cyclic subgroup G
of prime order n of some curve E(Fq), with a fixed base point P such that G = 〈P 〉.
Moreover, the bit patterns representing elements of Fq and E(Fq) need to be agreed
upon.

Example 5 (Elliptic Curve Integrated Encryption Scheme, ECIES) This cryptosystem
is essentially the same as ElGamal’s; but the encryption of elements of G is replaced
by symmetric key encryption of arbitrary bit strings with a derived secret key. So the
scheme is hybrid, using symmetric key and public key elements. An additional message
authentication code (MAC) prevents alterations of the encrypted message during trans-
mission and authenticates its sender. (A MAC is essentially a hash function, depending
additionally on a symmetric key, and can indeed be constructed from hash functions; for
more details, see [50, Subsection 9.5.2].)

Besides the domain parameters for the elliptic curve group, the setup comprises a
symmetric key scheme with an encryption function Ek1 and inverse decryption function
Dk1 , using keys k1 of length `1 bits; and a message authentication code Mk2 using keys
k2 of length `2. Party A has the private key a ∈ [0, n − 1] and the related public key
Q = aP .

To encrypt a message m ∈ {0, 1}∗, party B selects a random integer r ∈ [0, n − 1],
computes R = kP , S = kQ and (k1, k2) = f(S), where f : G → {0, 1}`1 × {0, 1}`2 is
a key derivation function (for instance, a cryptographic hash function). He computes
c1 = Ek1(m) and c2 = Mk2(c1); the ciphertext is (R, c1, c2).

To decrypt such a ciphertext, party A recovers S = aR and (k1, k2) = f(S). If
Mk1(c1) 6= c2, she rejects the ciphertext as invalid; otherwise, she obtains the clear text
as m = Dk1(c1).

Remark 6 The scheme has been first described in a generic discrete logarithm setting
(and in a slightly different form) in [6], and standardised under the name Elliptic Curve
Augmented Encryption Scheme in [2]. For arguments supporting its security under
suitable assumptions on the underlying primitives, see [6, 66] and [8, Chapter III].
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Example 7 (Elliptic Curve Digital Signature Algorithm, ECDSA) The algorithm is a
simple transposition of the DSA to the elliptic curve setting.

Besides the domain parameters for the elliptic curve group, the setup comprises a
hash function H : {0, 1}∗ → [0, n − 1] and the reduction function f : G → [0, n − 1],
(x, y) 7→ x (mod n).

Party A has the private key a ∈ [0, n− 1] and the related public key Q = aP .
To sign a message m, party A randomly selects an integer k ∈ [1, n − 1], computes

R = kP , r = f(R), h = H(m) and s ≡ k−1(h+ ar) (mod n). The signature is the pair
(r, s).

To verify such a signature, party B computes h = H(m), w ≡ s−1 (mod n), u1 ≡ wh
(mod n), u2 ≡ wr (mod n) and R = u1P + u2Q. He accepts the signature as valid if
and only if r = f(R).

Remark 8 The scheme has been standardised in [1], see also [28], [42, Subsections
7.2.7–7.2.8], and [55, Section 6]. For arguments supporting its security under suitable
assumptions on the underlying primitives, see [8, Chapter II] and [12]. The fact that
the function f depends only on the x-coordinate of its argument has raised doubts
about the security of the scheme [68]; in particular, it implies weak malleability: From a
signature (r, s) on a given message, another signature (r,−s) on the same message may
be obtained.

1.3 Special curves

Remark 9 A necessary condition for the security of an elliptic curve cryptosystem is
that the order of E(Fq) be prime, or a prime multiplied by a small cofactor. Some special
curves for which this condition is easily tested have been suggested in the literature.
These are more and more deprecated in favour of random curves (see Section 1.4) in
conventional discrete logarithm settings, [13]. Supersingular and especially CM curves
are still needed, however, in pairing based cryptography; see Section 2.

Example 10 (Supersingular curves) The orders of supersingular elliptic curves are
known by [75]. Over Fp, the only occurring order is p+ 1. Over Fpm with p ∈ {2, 3}, the
orders pm + 1 − t with t ∈ {0,±pm/2,±p(m+1)/2,±2pm/2} may occur depending on the
parity of m. The ECDLP on supersingular curves over Fpm may be reduced to the DLP
in the multiplicative group of Fp2 for curves over Fp; of Fp, Fp2 , Fp3 or Fp4 for curves
over F2m ; and of Fp, Fp2 , Fp3 or Fp6 for curves over F3m . Thus, supersingular curves are
deprecated except for low security pairing based cryptosystems.

Example 11 (Curves over extension fields) If E is defined over a finite field Fq with q
small, then |E(Fq)| can be obtained by exhaustively enumerating all points; and |E(Fqm)|
is easily computed. In particular, the case q = 2 has been suggested in the literature.
However, since E(Fqm) contains the subgroup E(Fq) (and further subgroups if m is not
prime), the group order cannot be prime any more.
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Remark 12 The existence of the additional Frobenius automorphism of order m, to-
gether with the negation automorphism of order 2, may be used to speed up the generic
algorithms by a factor of

√
2m [32, 76], which reduces the effective security level.

Remark 13 (Weil descent) If E is defined over an extension field Fqm , then E(Fqm)
can be embedded into A(Fq), where A is an abelian variety of dimension m, called
the Weil restriction or restriction of scalars of E. There is reason to believe that the
discrete logarithm problem in A(Fq) may be easier to solve than by a generic algorithm,
relying on an approach of representing the group A(Fq) by a set of generators (called
the factor base) and relations which are solved by linear algebra, leading to a potential
attack described first in [27, Section 3.2]. Cases where A contains the Jacobian of a
hyperelliptic curve of genus close to m have been worked out for curves over fields of
characteristic 2 in [31, 33], and fields of odd characteristic in [19]. So far, the attack has
been made effective for certain curves with prime m 6 7.

Another algorithm for discrete logarithms, working directly with curves over Fqm
and specially adapted factor bases, is described in [35]; heuristically, it is faster than the
generic algorithms for m > 3 fixed and q → ∞. Since it involves expensive Gröbner
basis computations, it has been made effective only for m 6 3.

Combinations of these approaches are also possible and have led to an attack on
curves of close to cryptographic size over Fp6 [43]. Moreover, isogenies may be used to
transport the discrete logarithm problem from a seemingly secure curve to one that may
be attacked by Weil descent [29].

It thus appears cautious to prefer for cryptographic applications curves over prime
fields Fp or, if even characteristic leads to significant performance improvements, fields
F2m of prime extension degree m.

Example 14 (Complex multiplication curves) All ordinary elliptic curves over a finite

field Fq = Fpm have complex multiplication by some order OD =
[
1, D+

√
D

2

]
Z

of dis-

criminant D < 0 in the imaginary-quadratic field Q(
√
D);. For small |D|, this can be

exploited to explicitly construct curves with a known number of points as follows.

1. Let D < 0, D ≡ 0 or 1 (mod 4), p prime and m minimal such that 4pm = t2− v2D
has a solution in integers t, v.

2. Compute the class polynomial HD ∈ Z[X], the minimal polynomial of j
(
D+
√
D

2

)
,

where j is the absolute elliptic modular invariant function.

3. HD splits completely over Fpm (and no subfield), and its roots are the j-invariants
of the elliptic curves defined over Fpm with complex multiplication by OD. For each
such j-invariant, one easily writes down a curve with pm + 1− t points by solving
the expression of j for the curve coefficients (up to isomorphisms and twists, the
solution is unique).

Remark 15 It is easy to see that a prime number of points is only possible for D ≡ 5
(mod 8).
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Remark 16 The degree of the class polynomial is the class number of OD, and its
total bit size is of the order of O(|D|1+ε) under GRH. Several quasi-linear algorithms
of complexity O(|D|1+ε) for computing class polynomials have been described in the
literature, by floating point approximations of its roots [21], lifting to a local field [17]
or Chinese remaindering [5]. Nevertheless, the algorithms are restricted to small values
of |D|, while random curves correspond to |D| of the order of q, so that only a negligible
fraction of curves may be reached by the CM approach.

Remark 17 While no attack on this particular fraction of curves has been devised so
far, random curves are generally preferred where possible; note, however, that pairing-
based cryptosystems require the use of either supersingular curves or ordinary curves
obtained with the CM approach; see Section 2.4.

Example 18 (NIST curves) The USA standard [55] suggests a prime field Fp and a
pseudorandom curve (assuming that the hash function SHA-1 is secure) of prime order
over Fp for p of 192, 224, 256, 384 and 521 bits. (The largest example is for the Mersenne
prime p = 2521 − 1.) For the binary fields F2163 , F2233 , F2283 , F2409 and F2571 , a pseudo-
random curve (of order twice a prime) and a curve defined over F2 (of order twice or
four times a prime) are given. As recommended in Remark 13, the extension degrees are
prime for curves defined over F2.

Remark 19 We note that the generic discrete logarithm algorithms allow for a trade-off
between precomputations and the breaking of a given discrete logarithm: In a group of
size about 2m, a precomputation of 2k group elements yields additional logarithms in
time 2m−k. As a precaution, one may thus wish to avoid predetermined curves, especially
at lower security levels.

1.4 Random curves: point counting

Remark 20 Algorithms for counting points on random elliptic curves currently come
in two flavours. The first algorithm, SEA, is of polynomial complexity; for curves over
extension fields Fpm , there are a variety of algorithms using p-adic numbers, with a much
better polynomial exponent in m, but which are exponential in log p.

Algorithm 21
(Schoof) In [60], Schoof describes the first algorithm of complexity polynomial in log q
for counting the number of points on an arbitrary elliptic curve E(Fq). The algorithm is
deterministic and computes the trace of Frobenius aq and thus the zeta function. Given
a prime ` not dividing q, the value of aq modulo ` can be determined by checking for
all possible values whether the numerator of the zeta function annihilates the `-torsion
points. Chinese remaindering for sufficiently many primes yields the exact value of aq,
which is bounded by Hasse’s theorem. The algorithm has a complexity of O

(
(log q)5+ε)

)
,

due in part to the fact that the `-torsion points generate an Fq-algebra of dimension
O(`2).
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Algorithm 22
(Schoof–Elkies–Atkin, SEA) Improvements are due to Atkin and Elkies [20]. When there
is an Fq-rational separable isogeny of degree ` from E(Fq) to another curve, then the
`-torsion points may be replaced by the kernel of the isogeny, generating an algebra
of dimension O(`) over Fq. By the complex multiplication theory of Example 14, this
happens when ` is coprime to the conductor of the ring of endomorphisms OD of E and
` is not inert in the quadratic number field Q(

√
D), which holds for about half of the

primes. The complexity of the algorithm becomes O
(
(log q)4+ε)

)
[7, Chapter VII], [16,

Section 17.2].

Remark 23 The practical bottleneck of the algorithm used to be the computation of
bivariate modular polynomials, of size O(`3+ε), needed to derive isogenies of degree `.
A quasi-linear algorithm is described in [22]; eventually limited by space, it has been
used for ` up to around 10000. A more recent algorithm [69] computes the polynomial,
reduced modulo the characteristic p of Fq and instantiated in one variable by an element
of Fq, also in time O(`3+ε), but in space O(`(` + log q)); it has been used for ` up to
about 100000. Further building blocks of the SEA algorithm have also been optimized
[10, 34, 52]. The current record is for a prime field Fp with p having about 5000 decimal
digits [70].

Remark 24 The SEA algorithm is implemented in several major computer algebra
systems, and random elliptic curves of cryptographic size with a prime number of points
are easily found, be it as domain parameters, be it in a setting where each user has his
own elliptic curve as part of his public key.

Algorithm 25
(p-adic point counting) For an elliptic curve E over an extension field Fpm , Satoh [58]

introduced an algorithm computing its canonical lift to a curve Ê over Qpm , the un-
ramified extension of degree m of the p-adic numbers Qp. The curve Ê has the same
endomorphism ring OD (Example 14) as E and reduces modulo the maximal ideal of
Qpm to E. More precisely, an approximation to Ê may be computed by Newton iter-
ations on a function derived from the modular polynomial of level p, Algorithm 21, at
arbitrary p-adic precision. In a second step, the trace of the Frobenius map is computed
in this characteristic 0 setting by the action of its dual isogeny (the reduction of which is
separable) on a holomorphic differential; for this, the isogenies are computed explicitly.
After a precomputation of O(p3+ε) for the p-th modular polynomial (see Algorithm 21),
the complexity of the algorithm is O(p2m3+ε).

Remark 26 Satoh’s algorithm is not immediately applicable in characteristic 2. Mestre
suggests in [51] to use arithmetic-geometric mean (AGM) iterations, a sequence of iso-
genies of degree 2, to obtain the canonical lift and the trace of the Frobenius map, also
in time O(m3+ε).

Remark 27 Later work concentrates on lowering the complexity in m: to quasi-qua-
dratic for finite fields Fqm with a Gaussian normal basis [48] or in the general case [37];

6



or on lowering the complexity in p: to quasi-linear [24] or even quasi-square root [38].
The record in [48] for a curve over F2100002 goes beyond all practical cryptographic needs.

Remark 28 For a more thorough account, see [8, Chapter VI] or [16, Section 17.3].

2 Pairing based cryptosystems

Remark 29 While conventional elliptic curve cryptography relies on the map x 7→ xP ,
which is a group homomorphism or, equivalently, a linear map of Z/nZ-modules, pairing
based cryptography requires a bilinear map e : G1 × G2 → G3. This introduces an
additional degree of freedom and a wealth of new cryptographic primitives. Since 2007,
a series of conferences, Pairing-Based Cryptography — Pairing, has been devoted to the
topic [30, 44, 62, 71].

2.1 Cryptographic pairings

Definition 30 Let E be an elliptic curve defined over a finite field Fq, and let n be the
largest prime divisor of the cardinality of E(Fq). Assume that n does not divide q. (This
is required in a cryptographic setting due to anomalous curves.) Then the embedding
degree of E is the smallest integer k such that E(Fqk) contains E(Fq)[n], the n2 points

of n-torsion of E(Fq); i.e., k is minimal such that E(Fqk)[n] = E(Fq)[n].

Theorem 31 [3, Theorem 1] If n does not divide q − 1, then the embedding degree is
the smallest integer k such that n divides qk − 1.

Definition 32 A cryptographic elliptic pairing is a map e : G1 × G2 → G3 that is
bilinear, non-degenerate and efficiently computable, where E is an elliptic curve defined
over Fq, n is the largest prime factor of |E(Fq)|, n divides neither q − 1 nor q, k is the
embedding degree of E, and G1 ⊆ E(Fq) and G2 ⊆ E(Fqk) (denoted additively) and
G3 ⊆ F∗

qk
(denoted multiplicatively) are subgroups of order n.

Remark 33 In this setting, G1 = E(Fq)[n] and G3 are in fact fixed, while there are n+1
possible choices for G2; see Subsection 2.3. Diagonalising the matrix of the Frobenius
endomorphism on E(Fq)[n] yields a mathematically canonical choice also for G2, which
is given by the following theorems.

Theorem 34 G1 is the subgroup of E(Fqk)[n] generated by the points having eigen-

value 1 under the Frobenius endomorphism ϕq. There is a unique subgroup G2 ⊆ E(Fqk)
of order n generated by the points having eigenvalue q under the Frobenius endomor-
phism.

Theorem 35 Let Tr : E(Fq) → E(Fq), P 7→
∑k−1

i=0 ϕ
i
q(P ), denote the trace endomor-

phism of level k on E. Then the endomorphisms Tr and π2 = id − ϕq, restricted to
E(Fqk)[n], yield surjective group homomorphisms Tr : E(Fqk)[n] → G1 with kernel G2

and π2 : E(Fqk)[n]→ G2 with kernel G1.
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Definition 36 For a point P on E defined over some extension field Fqm and an inte-
ger r, let fr,P be the function with divisor r(P )− (rP )− (r− 1)(O) that is defined over
Fqm and has leading coefficient 1 in O.

For finite points R and S 6= −R, denote by vR = x − x(R) the line with divisor
(R) + (−R) − 2(O) and by `R,S = (y − y(R)) − λR,S(x − x(R)) the line with divisor
(R) + (S) + (−R− S)− 3(O), where

λR,S =

{
y(S)−y(R)
x(S)−x(R) if R 6= S,
3x(R)2+2a2x(R)+a4−a1y(R)

2y(R)+a1x(R)+a3
if R = S;

additionally, `R,−R = vR and vO = 1.

Definition 37 An addition-negation chain for an integer r is a sequence r1, . . . , rs such
that r1 = 1, rs = r and each element ri is either

1. the negative of a previsously encountered one: there is 1 6 j(i) < i such that
ri = −rj(i); or

2. the sum of two previously encountered ones: there are 1 6 j(i) 6 k(i) < i such
that ri = rj(i) + rk(i).

Algorithm 38
Require: A point P on E and an integer r

Ensure: fr,P = L
V , where L and V are given as products of lines

Compute an addition-negation chain r1, . . . , rs for r.
P1 ← P , L1 ← 1, V1 ← 1
for i = 2, . . . , s do
j ← j(i), k ← k(i)
if ri = −rj then
Pi ← −Pj
Li ← Vj
Vi ← LjvPi

else
Pi ← Pj + Pk
Li ← LjLk`Pj(i),Pk(i)

Vi ← VjVkvPi

end if
end for
return L = Ls, V = Vs

Example 39 The Weil pairing en is a cryptographic pairing as long as G2 6= G1. If P ,

Q ∈ E(Fqk)[n], then en(P,Q) = (−1)n
fn,P (Q)
fn,Q(P ) .

Example 40 Assume that E(Fqk) does not contain a point of order n2, or, equivalently,
that n3 does not divide |E(Fqk)|. Then the map E(Fqk)[n] → E(Fqk)/nE(Fqk), Q 7→
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Q + nE(Fqk), is a group isomorphism, and the Tate pairing T yields a non-degenerate
pairing

e′T : E(Fqk)[n]× E(Fqk)[n]→ F∗qk/(F
∗
qk)n, (P,Q) 7→ T(P,Q+ nE(Fqk)).

Since e′T |G1×G1 takes values in F∗q/(F∗q)n = {1}, the restriction e′T |G1×G2 is non-degener-
ate for any G2 6= G1.

The reduced Tate pairing

eT : G1 ×G2 → G3, (P,Q) 7→
(
T(P,Q+ nE(Fqk))

)(qk−1)/n
,

is a cryptographic pairing for any G2 6= G1. It is computed as

eT (P,Q) = (fn,P (Q))(q
k−1)/n .

Remark 41 We observe that during the computation of the reduced Tate pairing by
Algorithm 38, all factors lying in a subfield of Fqk may be omitted due to the final
exponentiation. In particular, if the x-coordinate of Q lies in a subfield, then all vPi may
be dropped, a technique known as denominator elimination; see Remark 51.

Definition 42 A distortion map is an effectively computable endomorphism

ψ : E(Fq)→ E(Fq)

that restricts to an isomorphism ψ : G1 → G2 for some subgroup G2 6= G1.

Remark 43 Since G1 is invariant under the Frobenius ϕq, but G2 is not, the endomor-
phisms ψ and ϕq cannot commute. So the existence of ψ implies that E is supersingular.
Conversely, for supersingular curves, there are distortion maps ψ : G1 → G2 for any
G2 6= G1 [74, Theorem 5].

Example 44 Let E be a supersingular curve with distortion map ψ and G2 = ψ(G1).
Let e : G1 ×G2 → G3 be a cryptographic pairing. Then

e′ : G1 ×G1 → G3, (P,Q) 7→ e(P,ψ(Q)),

is a cryptographic pairing in which both arguments come from the same group G1. This
setting is sometimes called a symmetric pairing in the literature, although it does not in
general satisfy e(P,Q) = e(Q,P ); see also Section 2.3.

Remark 45 Further work has produced a variety of pairings with a shorter loop in
Algorithm 38, that is, defined by some function fr,P with r < n. In general, this
is obtained by choosing special curves and restricting to the subgroups G1 and G2 of
Theorem 35. Since all involved groups are cyclic, such pairings are necessarily powers of
the Tate pairing.
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Example 46 (Eta pairing) Let E be a supersingular curve with even k = 2a and dis-
tortion map ψ as in Definition 42. Let T = t − 1, where t is the trace of the Frobenius
map. Then T ≡ q (mod n) and n | (T a + 1). Assume that n2 - (T a + 1). Then the map

G1 ×G1 → G3, (P,Q) 7→ fT,P (ψ(Q))aT
a−1 qk−1

n ,

is a cryptographic pairing. For a proof, see [4, Section 4] and [40, Section III]. By Exam-
ple 62, only curves over fields of characteristic two or three may satisfy the assumptions
of the theorem. Notice that T is of order

√
q by Hasse’s theorem, so that in the best

case ρ ≈ 1 (see Definition 66) the loop length in Algorithm 38 is reduced by a factor of
about 2, while the final exponentiation becomes more expensive.

Example 47 (Ate pairing) Let T = t − 1, where t is the trace of the Frobenius map,
and assume that n2 - (T k − 1). Then the map

G2 ×G1 → G3, (Q,P ) 7→ fT,Q(P )
qk−1

n ,

is a cryptographic pairing [40]. Notice that the roles of G1 and G2 are inverted compared
to the reduced Tate pairing of Example 40. Thus, as a price to pay for the loop shortening
in Algorithm 38, the number of operations in G2 and thus Fqk increases.

Conjecture 48 (Optimal ate pairing) A loop length of essentially log2 n
ϕ(k) , where ϕ is

Euler’s function, may be obtained for a pairing of the previous type, for instance via

a product of functions fci,Q(P )q
i q

k−1
n with

∑
log2 ci of the desired magnitude; concrete

instances have been obtained using lattice reduction [39, 73].

2.2 Pairings and twists

Theorem 49 Assume that E is defined over the field Fq of characteristic at least 5 and
that d ∈ {2, 3, 4, 6} is such that d | gcd(k,# Aut(E)). There is, besides E itself and up
to equivalence, precisely one twist E′ of degree d such that n | #E′(Fqk/d). There is an
isomorphism ϕ : E′ → E which is defined over Fqd. The subgroup G′2 of order n of

E′(Fqk/d) satisfies ϕ(G′2) = G2.

Remark 50 Theorem 49 implies that in the presence of twists, elements of G2 are more
compactly represented by elements of G′2; or otherwise said, any cryptographic pairing
e : G1 × G2 → G3 yields an equivalent cryptographic pairing e′ : G1 × G′2 → G3,
(P,Q′) 7→ e(P,ϕ(Q′)).

Remark 51 Theorem 49 and the explicit form of ϕ show that the x-coordinates of
elements in G2 lie in Fqk/2 for d even and that the y-coordinates lie in Fqk/3 where
3 - d. This may allow for simplifications of Algorithm 38 in conjunction with the final
exponentiation; see Remark 41.
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Example 52 (Twisted ate pairing) Under the hypotheses of Theorem 49, let T = t−1,
where t is the trace of the Frobenius map, and assume that n2 - (T k− 1). Then the map

G1 ×G2 → G3, (P,Q) 7→ fTk/d,P (Q)
qk−1

n ,

is a cryptographic pairing [40]. Here, the roles of G1 and G2 are again as in the reduced
Tate pairing of Example 40. However, compared to the ate pairing of Example 47, the
loop length in Algorithm 38 is increased by a factor of k

d . Unless t is smaller than
generically expected, the twisted ate pairing is in fact less efficient to compute than the
reduced Tate pairing.

2.3 Explicit isomorphisms

Remark 53 For the sake of giving security arguments for pairing based systems, the
cryptologic literature has taken to distinguishing pairings according to the possibility of
moving efficiently between the groups G1 and G2. For instance, if G1 = G2, then the
decisional Diffie-Hellman problem is easy in G1: Given P , aP , bP and R ∈ G1, one has
R = abP if and only if e(P,R) = e(aP, bP ).

Definition 54 Let e be a cryptographic pairing in the sense of Definition 32. It is of

1. Type 1 if G1 = G2;

2. Type 2 if there is an efficiently computable isomorphism ψ : G2 → G1, but no such
isomorphism G1 → G2 is known;

3. Type 3 if no efficiently computable isomorphisms G1 → G2 or G2 → G1 are known.

Remark 55 We note that since G1 and G2 are cyclic of the same order n, they are
trivially isomorphic; but exhibiting an effective isomorphism may require to compute
discrete logarithms. In general, an efficiently computable isomorphism will be given by
an endomorphism of the elliptic curve.

Example 56 The pairing of Example 44 on supersingular curves with distortion map
is of type 1. Any pairing with G2 6= G1, G2 is of type 2: The isomorphism is given by
the trace map Tr of Theorem 35. To the best of our knowledge, pairings with G2 = G2

are of type 3; at least the trace is trivial on G2.

Remark 57 The terminology Type 4 has been used for pairings in which the second
argument comes from the full n-torsion group; in this case, G2 can be seen as the group
generated by this argument, which may vary with each use of the cryptographic primitive.
As it is then unlikely that G2 = G1 or G2, a Type 4 pairing essentially behaves as a
Type 2 pairing.
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Remark 58 Type 1 pairings, being restricted to supersingular curves, offer a very lim-
ited choice of embedding degrees, see Example 62. Type 2 pairings are sometimes pre-
ferred in the cryptographic literature since they appear to facilitate certain security argu-
ments. On the other hand, the existence of ψ implies that the decisional Diffie-Hellman
problem is easy in G2, and it is apparently not possible to hash into any subgroup G2

different from G1 and G2; see Subsection 2.5. Recent work introduces a heuristic con-
struction to transform a cryptographic primitive in the Type 2 setting, together with its
security argument, into an equivalent Type 3 primitive [14].

Remark 59 Some cryptographic primitives have been formulated with a pairing on
subgroups of composite order n. More precisely, n is the product of two primes that are
unknown to the general public, but form part of the private key as in the RSA system.
Such pairings can be realised either with supersingular curves [9, Section 2.1] or using
Algorithm 64; the former leads to a ρ-value (Definition 66) at least 2, the latter to a ρ-
value close to 2. There is a heuristic approach to transform such cryptosystems, together
with their security proofs, into the setting of prime order subgroups [24].

2.4 Curve constructions

Remark 60 The existence of a cryptographic pairing e : G1 × G2 → G3 reduces the
discrete logarithm problem in G1 or G2 to that of G3: For instance, given a point
P ∈ G1 and a multiple xP , choose a point Q ∈ G2 such that ζ = e(P,Q) 6= 1. Then
ξ = e(P, xQ) = e(P,Q)x, and x is the discrete logarithm of ξ ∈ G3 to the base ζ [26, 49].

Remark 61 Thus to balance the difficulty of the discrete logarithm problems in the
elliptic curve groups G1 and G2 over Fq and G3 ⊆ F∗

qk
, the embedding degree k should

be chosen according to the security equivalences in Section 1.1. For instance, if one
follows the recommendations of [67], for a system of 256 bit security one would choose
n ≈ 2512 and thus q ≈ 2512, and k ≈ 15425

512 ≈ 30. Since by Theorem 31 the embedding
degree k equals the order of n in Fq, it will be close to q for random curves. Hence one
needs special constructions to obtain pairing-friendly curves, curves with a prescribed,
small value of k. For a comprehensive survey, see [25].

Example 62 (Supersingular curves) As first noticed in [49], the embedding degree is
always exceptionally small for supersingular curves. The following table gives the pos-
sible cardinalities, the maximal size n of a cyclic subgroup by [57] and the embedding
degree k with respect to n.

|E(Fq)| n k

q + 1 q + 1 2
q + 1±√q q + 1±√q 3
q + 1±

√
2q q + 1±

√
2q 4

q + 1±
√

3q q + 1±
√

3q 6
q + 1± 2

√
q

√
q ± 1 1
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Remark 63 All algorithms for finding ordinary pairing-friendly curves rely on complex
multiplication constructions, cf. Example 14, and construct curves over prime fields only.

Algorithm 64
A very general method is due to Cocks and Pinch [25, Section 4.1]. It allows to fix
the desired group order n beforehand; choosing a low Hamming weight in the binary
decomposition of n or more generally a value of n with a short addition-subtraction
chain speeds up Algorithm 38.

Require: An integer k > 2, a quadratic discriminant D < 0 and a prime n such that
k | (n− 1) and the Legendre symbol

(
D
n

)
= 1

Ensure: A prime p and an elliptic curve E(Fp) (with complex multiplication by OD)
having a subgroup of order n and embedding degree k
repeat
ζ ← an integer such that ζ modulo n is a primitive k-th root of unity in F∗n
t← ζ + 1
v ← an integer such that v ≡ t−2√

D
(mod n)

p← t2−v2D
4

until p is an integer and prime
Then p ≡ t− 1 (mod n)
Construct the curve E over Fp with p+ 1− t points as in Example 14

Remark 65 Generically, in this construction t and v will be close to n, so that p will
be close to n2. This motivates the following definition.

Definition 66 The ρ-value of a pairing-friendly curve is given by

ρ =
log p

log n
.

Remark 67 By Hasse’s theorem, the superior limit of ρ is at least 1 for p→∞. Values
of ρ larger than 1 result in a loss of bandwidth when transmitting elements of G1, which
is a log2 n-bit subgroup embedded into a ρ log2 n-bit group, and a less efficient arithmetic
in the elliptic curve. The security equivalences of Section 1.1 do in fact not fix the value
of k, but that of ρk; so different values of k may lead to comparable security levels.

Remark 68 Further research has concentrated on finding families of pairing-friendly
curves, the parameters of which are given by values of polynomials.

Algorithm 69
[11] The following is a direct transcription of Algorithm 64 to polynomials.

Require: An integer k > 2 and a quadratic discriminant D < 0
Ensure: Polynomials p and n ∈ Q(x) such that if the values p(x0) and n(x0) are si-

multaneously prime integers, then there is an elliptic curve E(Fp(x0)) (with complex
multiplication by OD) having a subgroup of order n(x0) and embedding degree k

13



n ← an irreducible polynomial in Q[x] such that the number field K = Q[x]/(n)
contains

√
D and a primitive k-th root of unity

z ← a polynomial in Q[x] that reduces to a primitive k-th root of unity ζ in K
t← z + 1
v ← a polynomial in Q[x] that reduces to the element ζ−1√

D
in K

s← a polynomial in Q[x] that reduces to
√
D in K

v ← (z−1)s
D mod n

p← t2−Dv2
4

Remark 70 The polynomials p and n need not represent primes or even integers; choos-
ing small values of |D|, and n such that z, s ∈ Z[X] may help. Let d = deg(n) be the
degree of K. While it is always possible to choose n such that either z or v is of low de-
gree (as low as 1 if n is the minimal polynomial of the corresponding algebraic number),
it is a priori not clear whether both can be chosen of low degree. Generically, p is of
degree 2(d− 1), and the asymptotic ρ-value of the family is 2− 2

d , a small improvement
over Algorithm 64. In many cases, however, actual ρ-values are much closer to 1, as
demonstrated by the following example.

Example 71 [11, p. 137] Let k be odd, D = −4 and K = Q(ζ,
√
−1) = Q[x]/(Φ4k(x))

where Φ4k(x) = Φk(−x2) is the 4k-th cyclotomic polynomial. Choose ζ(x) = −x2, t(x) =
−x2 +1, s(x) = 2xk, v(x) = 1

2(xk+2 +xk), p(x) = 1
4(x2k+4 +2x2k+2 +x2k+x4−2x2 +1).

The polynomial p takes integral values in odd arguments and, conjecturally, represents
primes if it is irreducible (since p(1) = 1, there is no local obstruction to representing
primes). Asymptotically for p→∞, ρ→ k+2

ϕ(k) , and ρ→ 1 if furthermore k →∞ with a
fixed number of prime factors.

Remark 72 Similar results hold for even k, and for D = −3 since
√
−3 ∈ Q[x]/(Φ3(x)).

Remark 73 Table 1, taken from [25], gives the current best values of ρ = deg p
degn for

polynomial families of pairing-friendly curves for k > 4. (Smaller values of k may be ob-
tained for prime fields using supersingular curves; see Example 62.) For the constructions
behind each family, see [25].

2.5 Hashing into elliptic curves

Remark 74 Hashing into elliptic curve groups is often required for pairing-based cryp-
tosystems. Standard cryptographic hash functions {0, 1}∗ → {0, 1}` of sufficient length `
are easily modified to yield values in Z/nZ (by reduction modulo n) and to arbitrary
finite fields (by hashing to coefficients with respect to a fixed basis). One would like to
extend such constructions to elliptic curves.

Remark 75 In the setting of Definition 32, if H : {0, 1}∗ → Z/nZ is a collision-
resistant hash function and G1 is generated by a point P of order n, then the function
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k deg p deg n ρ kρ

4 2 2 1.00 4.0
5 14 8 1.75 8.8
6 2 2 1.00 6.0
7 16 12 1.33 9.3
8 10 8 1.25 10.0
9 8 6 1.33 12.0

10 4 4 1.00 10.0

11 24 20 1.20 13.2
12 4 4 1.00 12.0
13 28 24 1.17 15.2
14 16 12 1.33 18.7
15 12 8 1.50 22.5
16 10 8 1.25 20.0
17 36 32 1.12 13.8
18 8 6 1.33 24.0
19 40 36 1.11 21.1
20 22 16 1.38 27.5

21 16 12 1.33 28.0
22 26 20 1.30 28.6
23 48 44 1.09 25.1
24 10 8 1.25 30.0
25 52 40 1.30 32.5
26 28 24 1.17 30.3
27 20 18 1.11 30.0

k deg p deg n ρ kρ

28 16 12 1.33 37.3
29 60 56 1.07 31.1
30 12 8 1.50 45.0

31 64 60 1.07 33.1
32 34 32 1.06 34.0
33 24 20 1.20 39.6
34 36 32 1.12 38.2
35 72 48 1.50 52.5
36 14 12 1.17 42.0
37 76 72 1.06 39.1
38 40 36 1.11 42.2
39 28 24 1.17 45.5
40 22 16 1.38 55.0

41 84 80 1.05 43.0
42 16 12 1.33 56.0
43 88 84 1.05 45.0
44 46 40 1.15 50.6
45 32 24 1.33 60.0
46 50 44 1.14 52.3
47 96 92 1.04 49.0
48 18 16 1.12 54.0
49 100 84 1.19 58.3
50 52 40 1.30 65.0

Table 1: Pairing-friendly curve parameters

{0, 1}∗ → G1, m 7→ H(m)P , is trivially collision-resistant. However, this simple con-
struction reveals the discrete logarithm of the hash value, which in general renders the
cryptosystem totally insecure.

Remark 76 In the following, let E be an elliptic curve defined over Fq as in Defini-
tion 32, and assume that n3 - |E(Fqk)|. If one can hash into E(Fq), then one can also

hash into G1 = E(Fq)[n]: It suffices for that to multiply the result by the cofactor
|E(Fq)|
n .

The same argument holds for E(Fqk)[n]. However, it is then in general not possible to

project into an arbitrary group G2. For G2 as in Theorem 35, that is, Type 3 pairings
as in Definition 54, the trace Tr : E(Fqk)[n]→ G2 can be used to obtain a hash function

with values in G2. Alternatively, in the presence of twists as described in Theorem 49,
one may more efficiently hash into the subgroup G′2 on the twisted curve, for which the
cofactor is smaller.

To hash into E(k) where k = Fq or k = Fqk , one may use a hash function H :
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{0, 1} → k to obtain the x-coordinate of a point. As not all elements of k occur as
x-ccordinates, one may need several trials. A possibility is to concatenate the message
m with a counter i, denoted by m||i, and to increase the counter until H(m||i) is the
x-ccordinate of a point on E. An additional hash bit may be used to determine one of
the generically two points with the given x-coordinate. The algorithm is deterministic
and, if H is modelled as a random function, it needs an expected number of two trials
averaged over all input values. However, for |k| → ∞, there is a doubly exponentially
small fraction of the input values that will take exponential time. Several recent results
exhibit special cases in which polynomial time hashing is possible uniformly for all input
values.

Example 77 [7, Section 4.1] If q ≡ 2 (mod 3), then E : y2 = x3 + 1 is a super-
singular curve over Fq with q + 1 points and k = 2. Precisely, since third powering
is a bijection on Fq with inverse z 7→ z1/3 = z(2q−1)/3, the map Fq → E(Fq)\{O},
y 7→

(
(y2 − 1)(2q−1)/3, y

)
, is a bijection.

Example 78 [63] Let E : y2 = f(x) = x3 + a2x
2 + a4x+ a6 over Fq of characteristic at

least 3. There are explicit rational functions u1(t), u2(t), u3(t) and v(t) such that v(t)2 =
f(u1(t

2))f(u2(t
2))f(u3(t

2)) [64]. So for any t there is at least one i(t) such that ui(t)(t
2)

is a square in Fq, which yields a map Fq → E(Fq), t 7→
(
ui(t)(t

2), f(ui(t)(t
2))1/2

)
. In a

cryptographic context, we may assume that a non-square in F∗q is part of the input, and
then Tonelli-Shanks’s algorithm computes square roots in deterministic polynomial time;
see [15, Section 1.5.1] and [72]. The argument is refined in [63] to give a deterministic
procedure for computing points on the curve without knowing a non-square and to show
that at least q−4

8 different points may be reached. The case of characteristic two is also
handled.

Example 79 [41] Let Fq with q ≡ 2 (mod 3) be of characteristic at least 5, and let

E : y2 = x3 + ax + b be an elliptic curve over Fq. Let v(t) = 3a−t4
6t and x(t) =(

v(t)2 − b− t6

27

)1/3
+ t2

3 . Then 0 7→ O, 0 6= t 7→ (x(t), tx(t) + v(t)) is a map Fq → E(Fq)
with image size at least q

4 , and conjecturally close to 5q
8 . A similar result holds for curves

over F2m with odd m.

Remark 80 Alternative encodings for elliptic curves in Hessian form over Fq with q ≡ 2
(mod 3) and odd are given in [23, 45]; see also [18]. They have an image of proven size
about q/2.
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der Signaturverordnung (Übersicht über geeignete Algorithmen). Bundesanzeiger,
85, June 7:2034, 2011.

[14] Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asym-
metric pairings—the role of Ψ revisited. Discrete Appl. Math., 159(13):1311–1322,
2011.

[15] Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1993.

[16] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren, editors. Handbook of Elliptic and Hyperelliptic
Curve Cryptography. Discrete Mathematics and Its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, 2006.

[17] Jean-Marc Couveignes and Thierry Henocq. Action of modular correspondences
around CM points. In Claus Fieker and David R. Kohel, editors, Algorithmic Num-
ber Theory — ANTS-V, volume 2369 of Lecture Notes in Computer Science, pages
234–243, Berlin, 2002. Springer-Verlag.

[18] Jean-Marc Couveignes and Jean-Gabriel Kammerer. The geometry of flex tan-
gents to a cubic curve and its parameterizations. Journal of Symbolic Computation,
47:266–281, 2012.

[19] Claus Diem. The GHS attack in odd characteristic. Journal of the Ramanujan
Mathematical Society, 18(1):1–32, 2003.

[20] Noam D. Elkies. Elliptic and modular curves over finite fields and related computa-
tional issues. In Computational perspectives on number theory (Chicago, IL, 1995),
volume 7 of AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence,
RI, 1998.

[21] Andreas Enge. The complexity of class polynomial computation via floating point
approximations. Mathematics of Computation, 78(266):1089–1107, 2009.

[22] Andreas Enge. Computing modular polynomials in quasi-linear time. Mathematics
of Computation, 78(267):1809–1824, 2009.

[23] Reza Rezaeian Farashahi. Hashing into Hessian curves. To appear in Africacrypt,
2011.

[24] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In Henri Gilbert, editor, Advances in Cryptology
— EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
44–61, Berlin, 2010. Springer-Verlag.

18



[25] David Freemann, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. Journal of Cryptology, 23(2):224–280, 2010.

[26] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete log-
arithm problem in the divisor class group of curves. Math. Comp., 62:865–874,
1994.

[27] Gerhard Frey. Applications of arithmetical geometry to cryptographic construc-
tions. In Dieter Jungnickel and Harald Niederreiter, editors, Finite Fields and
Applications — Proceedings of The Fifth International Conference on Finite Fields
and Applications Fq5, held at the University of Augsburg, Germany, August 2–6,
1999, pages 128–161, Berlin, 2001. Springer-Verlag.

[28] D. Fu and J. Solinas. IKE and IKEv2 authentication using the elliptic curve digital
signature algorithm (ECDSA). RFC 4754, Internet Engineering Task Force, 2007.
http://www.ietf.org/rfc/rfc4754.txt.

[29] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the GHS Weil
descent attack. In Lars Knudsen, editor, Advances in Cryptology — EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 29–44, Berlin, 2002.
Springer-Verlag.

[30] Steven D. Galbraith and Kenneth G. Paterson, editors. Pairing-Based Cryptography
— Pairing 2008, volume 5209 of Lecture Notes in Computer Science, Berlin, 2008.
Springer-Verlag.

[31] Steven D. Galbraith and Nigel P. Smart. A cryptographic application of Weil de-
scent. In Michael Walker, editor, Cryptography and Coding, volume 1746 of Lecture
Notes in Computer Science, pages 191–200, Berlin, 1999. Springer-Verlag.

[32] Robert Gallant, Robert Lambert, and Scott Vanstone. Improving the parallelized
Pollard lambda search on binary anomalous curves. Mathematics of Computation,
69(232):1699–1705, 2000.

[33] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. Journal of Cryptology, 15(1):19–46, 2002.

[34] P. Gaudry and F. Morain. Fast algorithms for computing the eigenvalue in the
Schoof–Elkies–Atkin algorithm. In Jean-Guillaume Dumas, editor, Proceedings of
the 2006 International Symposium on Symbolic and Algebraic Computations — IS-
SAC MMVI, pages 109–115, New York, 2006. ACM Press.

[35] Pierrick Gaudry. Index calculus for abelian varieties of small dimension and
the elliptic curve discrete logarithm problem. Journal of Symbolic Computation,
44(12):1690–1702, 2009.

[36] Damien Giry and Jean-Jacques Quisquater. Bluekrypt cryptographic key length
recommendation, 2011. v26.0, April 18, http://www.keylength.com/.

19

http://www.ietf.org/rfc/rfc4754.txt
http://www.keylength.com/


[37] Robert Harley. Asymptotically optimal p-adic point-counting, December 2002.
Posting to the Number Theory List, available at http://listserv.nodak.edu/

cgi-bin/wa.exe?A2=ind0212&L=NMBRTHRY&P=R1277.

[38] David Harvey. Kedlaya’s algorithm in larger characteristic. Int. Math. Res. Not.
IMRN, 2007(22):Art. ID rnm095, 29, 2007.

[39] Florian Hess. Pairing lattices. In S. D. Galbraith and K. Paterson, editors, Pairing-
Based Cryptography — Pairing 2008, volume 5209 of Lecture Notes in Computer
Science, pages 18–38, Berlin, 2008. Springer-Verlag.

[40] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The eta pairing revisited.
IEEE Transactions on Information Theory, 52(10):4595–4602, 2006.

[41] Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor, Advances in
Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science,
pages 303–316, Berlin, 2009. Springer-Verlag.

[42] IEEE. Standard specifications for public key cryptography. Standard P1363-2000,
Institute of Electrical and Electronics Engineering, 2000. Draft D13 available at
http://grouper.ieee.org/groups/1363/P1363/draft.html.

[43] Antoine Joux and Vanessa Vitse. Cover and decomposition index calculus on elliptic
curves made practical — Application to a seemingly secure curve over Fp6 . To appear
in Eurocrypt 2012, http://eprint.iacr.org/2011/020.pdf, 2011.

[44] Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors. Pairing-Based Cryptography
— Pairing 2010, volume 6487 of Lecture Notes in Computer Science, Berlin, 2010.
Springer-Verlag.

[45] Jean-Gabriel Kammerer, Reynald Lercier, and Guénaël Renault. Encoding points
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