
HAL Id: hal-00765046
https://inria.hal.science/hal-00765046

Submitted on 18 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foundational Issues in Touch-Screen Stroke Gesture
Design - An Integrative Review

Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste Andersen,
Xiang Cao

To cite this version:
Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste Andersen, Xiang Cao. Foundational
Issues in Touch-Screen Stroke Gesture Design - An Integrative Review. Foundations and Trends in
Human-Computer Interaction, 2012, 5 (2), pp.97-205. �10.1561/1100000012�. �hal-00765046�

https://inria.hal.science/hal-00765046
https://hal.archives-ouvertes.fr

Foundations and TrendsR© in
Human–Computer Interaction
Vol. 5, No. 2 (2011) 97–205
c© 2012 S. Zhai, P. O. Kristensson, C. Appert,
T. H. Andersen, and X. Cao
DOI: 10.1561/1100000012

Foundational Issues in Touch-Surface Stroke
Gesture Design — An Integrative Review

By Shumin Zhai, Per Ola Kristensson,
Caroline Appert, Tue Haste Anderson,

and Xiang Cao

Contents

1 Introduction 99

2 Definition, Concepts, Characteristics, and the
Design Space of Stroke Gestures 104

2.1 Definition 104
2.2 Analogue versus Abstract Gestures 107
2.3 Command versus Symbol Gestures 108
2.4 Order of Complexity of Stroke Gestures 109
2.5 Visual-spatial Dependency 110
2.6 Implement and Sensor Type 112

3 Sample Gesture Systems 115

3.1 The iPhone Gesture Interface 115
3.2 Graffiti and Unistrokes 117
3.3 Crossing UI 118
3.4 Marking Menus 119
3.5 Word-gesture Keyboard 120

appert
Stamp

4 The Usability of Stroke Gesture as an Interaction
Medium: Early Research Issues 124

5 The Motor Control Complexity
of Stroke Gestures 128

5.1 Viviani’s Power Law of Curvature 129
5.2 Isokoski’s Line Segments Model 129
5.3 Cao and Zhai’s CLC Model 130
5.4 Applications of the CLC Model 135

6 Characterizing Visual Similarities
of Stroke Gestures 138

7 The Role of Feedback in Gesture Interfaces 140

7.1 Visual Gesture Feedback 140
7.2 Audio and Other Forms of Gesture Feedback 143
7.3 Feedback and the Esthetic, Subjective, and Emotional

Experience of Gesture Interfaces 148

8 Memory and Cognitive
Aspects of Stroke Gestures 151

8.1 Gesture’s Comparative Advantage
to Lexical Commands 152

8.2 Learning Stroke Gestures is Easier than Learning
Keyboard Shortcuts 153

8.3 People’s Ability to Learn and Memorize Stroke Gestures 158

9 Gesture Design 162

9.1 Making Gestures Analogous to Physics or Convention 162
9.2 Making Gestures Guessable and Immediately Usable by

Involving End Users Input in Design 164
9.3 Making Gestures as Simple as Possible 165

9.4 Making Gestures Distinct 165
9.5 Making Gestures Systematic 166
9.6 Making Gestures Self-revealing 167
9.7 Supporting the Right Level of Chunking 168
9.8 Supporting Progression from Ease to Efficiency 169
9.9 Providing Game-based Training

with Expanding Rehearsal 172

10 The Separation of Command from Scope Selection
and Stroke Gesture from Inking 175

11 Gesture Recognition Algorithms
and Design Toolkits 177

11.1 Recognition Algorithms 177
11.2 Stroke Gesture Toolkits 181

12 Evaluation of Stroke Gesture Interfaces 185

13 From Research to Adoption 188

13.1 Qwertynomics and the “Workstation” Hardware 188
13.2 Learning 189
13.3 Backward Compatibility 189

14 Summary and Conclusions 191

Acknowledgments 195

References 196

Foundations and TrendsR© in
Human–Computer Interaction
Vol. 5, No. 2 (2011) 97–205
c© 2012 S. Zhai, P. O. Kristensson, C. Appert,
T. H. Andersen, and X. Cao
DOI: 10.1561/1100000012

Foundational Issues in Touch-Surface Stroke
Gesture Design — An Integrative Review

Shumin Zhai1, Per Ola Kristensson2,
Caroline Appert3, Tue Haste Anderson4,

and Xiang Cao5

1 Google, USA, zhai@acm.org
2 University of St Andrews, UK, kristensson@acm.org
3 University of Paris-Sud & CNRS, France, appert@lri.fr
4 frog design, Milan, Italy, tuehaste@gmail.com
5 Microsoft Research Asia, China, xiangc@microsoft.com

Abstract

The potential for using stroke gestures to enter, retrieve and select
commands and text has been recently unleashed by the popularity of
touchscreen devices. This monograph provides a state-of-the-art inte-
grative review of a body of human–computer interaction research on
stroke gestures. It begins with an analysis of the design dimensions
of stroke gestures as an interaction medium. The analysis classifies
gestures into analogue versus abstract gestures, gestures for com-
mands versus for symbols, gestures with different orders of complexity,
visual-spatial dependent and independent gestures, and finger versus
stylus drawn gestures. Gesture interfaces such as the iOS interface, the
Graffiti text entry method for Palm devices, marking menus, and the

appert
Stamp

SHARK/ShapeWriter word-gesture keyboard, make different choices in
this multi-dimensional design space.

The main body of this work consists of reviewing and synthe-
sizing some of the foundational studies in the literature on stroke
gesture interaction, particularly those done by the authors in the last
decade. The human performance factors covered include motor control
complexity, visual and auditory feedback, and human memory capabil-
ities in dealing with gestures. Based on these foundational studies this
review presents a set of design principles for creating stroke gesture
interfaces. These include making gestures analogous to physical effects
or cultural conventions, keeping gestures simple and distinct, defining
stroke gestures systematically, making them self-revealing, supporting
appropriate levels of chunking, and facilitating progress from visually
guided performance to recall-driven performance. The overall theme
is on making learning gestures easier while designing for long-term
efficiency. Important system implementation issues of stroke gesture
interfaces such as gesture recognition algorithms and gesture design
toolkits are also covered in this review. The monograph ends with a
few call-to-action research topics.

1
Introduction

The advent of a new generation of touchscreen smartphones and tablets
is rapidly transforming the everyday computing experience of the
masses. It is also shaping and changing research questions and pri-
orities within the human–computer interaction research community.
One research question is how to exploit the continuous stroke gesture
capabilities that had not been previously available to most users on
keyboard and mouse-based desktop and laptop computers.

In fact, stroke gesture research has a long history in the human–
computer interaction (HCI) research field. Sketchpad, an early project
commonly recognized as one of the beginnings of HCI research, was
centered on graphical human–machine communication through stroke
gestures [108]. About a decade later the influential textbook by
Newman and Sproull [91] prominently featured stroke gestures as an
input mechanism and described in detail how to implement a rudimen-
tary stroke gestures recognizer. Buxton offered early insights into the
cognitive functions, such as “chunking,” that gestures may play in inter-
action [17]. Since the 1990s, stroke gestures as an interaction modality
have been explored in a wide range of research prototypes for different
application domains in the HCI research literature [25, 95, 128].

99

100 Introduction

While stroke gestures have been continually explored in the HCI
research literature, they only played a marginal role in HCI practice
during the personal computing revolution in the 1980s and 1990s. The
mouse and keyboard driven point-and-click style of Graphical User
Interfaces (GUI) interfaces, also referred to as WIMP (Windows, Icons,
Mouse, Pointer) interfaces, have been the dominant HCI paradigm in
office and home computing for decades. The vision of using stroke ges-
tures as an alternative way of interacting with computers, however,
never ceased to exist in the research literature or in industrial and com-
mercial efforts by companies and projects such as GO, the Apple New-
ton, the Palm Pilot, and the Windows Tablet. The spirit of a visionary
entrepreneur in this space is well captured by Jerry Kaplan’s tale of GO
as a start-up venture [54]. Financially backed by Silicon Valley’s best
known venture capitalist John Doer and his firm (KPCB), GO offered
a compelling vision of changing the fundamental user experience with
pen-based computing, but nonetheless failed to gain market traction.
In 1984, Casio released a wristwatch, the DB-1000, with a touchscreen
that enabled the user to enter names and phone numbers by drawing
them on the watch’s screen. Later the Palm Pilot featuring Graffiti, a
single stroke Roman letter-like gesture writing system, pioneered the
mobile PDA (personal digital assistant) market and made the gesture
user interface (UI) more mainstream. The success of the Blackberry
smartphones turned the trend toward touchscreen and gesture UIs back
to physical keyboards. Before Apple’s iPhone, touchscreen and stroke
gesture-based products remained on the fringe of personal computing.
There could be many reasons for the difficult expansion of user com-
puting from the keyboard and pointing device paradigm. One possible
factor is that hardware limitations at the time prevented ultra-mobile
devices from offering a truly good user experience. The other could be
that the WIMP interfaces were good enough for most users’ needs at
the time. The tendency for a “good enough” but sub-optimal technol-
ogy to persist in society has been theorized as path dependency by
economists such as Paul David [31], but debated by others [79].

Today, stroke gestures are becoming increasingly more relevant
to mainstream popular products such as the touchscreen-based
smartphones and tablets. This is due to both technology-push, the

101

development of new technology with little regard for current market
demands, and market-pull, the market need guiding new technology
development. Advances in hardware, including processing power,
memory capacity, bandwidth, touch sensors, and battery technology
have enabled handheld devices to provide a level of computing power
only possible in desktop computers a few years ago. High-quality touch-
screens have also begun to turn walls and tables into interactive com-
puter media. In the marketplace, the value of directly manipulating
objects with finger gestures on mobile devices and touch sensitive
surfaces is suddenly being realized by consumers and manufacturers
alike.

The stroke gestures used in today’s popular touchscreen products
tend to be relatively simple: sliding a document for panning; sliding a
virtual latch to unlock; swiping across an item to delete. These simple
gestures may be a solid foundation and the beginning of a new gesture
interaction era. Technologies and paradigms that start with simple and
incomplete functions often are more likely to succeed than those that
start with complex but powerful functions. As users gain more expe-
rience with gesture-based interaction, they may be prepared for more
complex and more powerful gesture functions in order to gain interac-
tion efficiency. On the other hand, simplicity may well be the very rea-
son for the success of the iPhone and other recent products. Researchers
and designers have to consider the cost of learning and either minimize
such cost or embed it in gradual use. Indeed, understanding and facil-
itating gesture learning is a theme of the current review.

Along with other colleagues in the HCI field, we have investigated
various aspects of stroke gestures as an interaction medium. This mono-
graph’s primary goal is to provide a synthesis, summary, and interpreta-
tion of some of our research work on stroke gestures in the past decade,
in a more accessible form and from a broader perspective than the origi-
nal papers. Secondarily, we also selectively review some of the most fun-
damental behavioral research on stroke gestures by other researchers
in the field. This monograph is not meant to be a complete review of
stroke gesture research. The vast body of literature existing today on
stroke gestures means that a complete review can easily turn into a cat-
alogue or annotations of papers with no coherence or synthesis. We have

102 Introduction

limited the scope of this monograph to stroke gestures as commands
and symbols. For gestures in sketching applications, Johnson and col-
league’s “Computational Support for Sketching in Design: A Review”
in Foundation and Trends in Human–Computer Interaction [51] pro-
vides an overview of the area. For early work on gesture research and
commercial efforts, the reader is referred to the book chapter on “Mark-
ing Interfaces” by Buxton [16]. The reader is also referred to Norman
and Nielsen’s critique of the “crisis” of gestural interfaces [92], in which
they address the many challenges in the current generation of gesture
interfaces, particularly the lack of consistency and discoverability.

The overall goal of the monograph is to provide a scientific foun-
dation for future research and design of stroke gesture interfaces. We
have aimed for a high enough level of abstraction so that researchers
and designers who are not necessarily specialized in gesture research
can understand the contents easily, while maintaining enough details
so that the main logic behind the development of the research issues is
supported.

The rest of this monograph starts with basic concepts, terminolo-
gies, and classifications of stroke gestures. We then briefly review a few
sample stroke gesture user interfaces and systems, to ground the sub-
sequent reviews of the more general and more abstract issues in stroke
gesture research and design. After a brief survey of some of the early
basic usability research on stroke gestures as an interaction medium, we
focus the main body of the review on some of the foundational human-
performance issues concerning stroke gestures in HCI including:

1. Measuring and modeling the motor control complexity of one
or a set of stroke gestures;

2. Visual similarities of gestures;
3. The effects of visual and auditory feedback on gesture

strokes;
4. The cognitive and memory characteristics of using stroke

gestures.

After that we switch the orientation of the review from concep-
tual and empirical understandings of stroke gestures to the dimen-
sions, rules, and guidelines in designing gesture systems. The focus of

103

these sections is on how learning new stroke gestures can be facilitated
in system design. We then deal with implementation issues in stroke
gesture interfaces, including the separation of commands from scope
selections, separation of stroke gestures from inking, the pros and
cons of different gesture recognition algorithms, and toolkits that help
programmers to design and implement stroke gestures in software appli-
cations. Finally, we summarize this monograph and raise a few key open
questions, unanswered or under-explored in the research literature.

2
Definition, Concepts, Characteristics, and the

Design Space of Stroke Gestures

In this section, we provide a more formal definition of stroke ges-
tures. Thereafter we discuss the stroke gesture design space along five
dimensions: analogue–abstract, command–text, order of complexity,
visual-spatial dependency, and implement and sensor types.

2.1 Definition

We broadly define stroke gestures as the movement trajectories of a
user’s finger or stylus contact points with a touch sensitive surface. A
stroke gesture can be produced by either a bare finger or an implement
(a pen, also known as a stylus), although there are important differ-
ences, both in user behavior and in sensing mechanisms, between the
two. A stroke gesture is usually encoded as a time-ordered sequence of
two-dimensional (x, y) points. Optionally, stroke gestures can also have
time stamps as the third dimension so the sampling points are encoded
as (x, y, t) if the temporal aspect of a gesture is to be preserved and
used. Furthermore, stroke gestures can have pressure (or, more cor-
rectly, surface contact force) as yet another dimension of control.

104

2.1 Definition 105

The pressure dimension can be used to control for example ink
width, as a brush pen will do. There can be various creative ways of
using this dimension although, in general, users’ ability to control and
maintain pen pressure on a surface tends to be quite limited in precision
[99, 129]. On the other hand, many users have highly developed skills for
manipulating the pressure of a stylus on a surface (such as in sketching)
and digitizers with 512 or 1024 levels of pressure are often in demand
by artists because of this preexisting skill.

The above definition of stroke gestures is limited to two-dimensional
surface stroke gestures. Two-dimensional (2D) surface stroke gestures
are a special, and especially powerful, case of hand gestures. Confining
motions to 2D surfaces literally lowers the dimensionality of gestures.
In comparison to gestures in three-dimensional space, stroke gestures
on surfaces are easier to sense, record, process and recognize by both
humans and machines, and yet still rich enough in the information
they carry. In fact, all human symbols and writing systems, including
the thousands of logographic Chinese characters, are products of stroke
gestures. Stroke gestures are less ambiguous than free-hand gestures
in three-dimensional (3D) space. An obvious but critical aspect of the
ambiguity of hand gestures in 3D space lies in demarcation, also known
as segmentation, which identifies the beginning and ending of a gesture
expression. The beginning and ending of 2D stroke gestures are quite
clear both to the machine sensor and to the human user’s propriocep-
tion. Once the finger or stylus touches the surface, the user instantly
feels that the stroke gesture has begun. This is a big advantage of
stroke gestures. In contrast, it is more difficult to express a gesture in
3D space with a clearly defined beginning or ending, regardless if the
user is using a bare hand or a wand. For such 3D gesture recognition,
complex algorithms [87] are required to continuously track, then
segment, usually imperfectly, user’s hand or body movements in 3D
space. In the case of games, however, much of the information on how
to segment and interpret a 3D gesture can be derived from the script
or dynamics of the game presented on the screen.

The nomenclature on touchscreen stroke gestures has not been
consistent in the literature. In HCI they are often simply called ges-
tures. However, this term is not ideal for two reasons. First, outside

106 Definition, Concepts, Characteristics, and the Design Space of Stroke Gestures

HCI, gestures more commonly refer to whole hand and body gestures.
Second, considering the clear difference between 2D stroke gestures and
the more general hand gestures in 3D space, the word gesture is not the
most appropriate for stroke-based interaction. However, since the term
gesture has been the de facto standard choice in the research literature
and in industrial practice, we continue to use it. Stroke gestures are
sometimes also called pen gestures [82], hand drawn marks [128], hand
drawn gestures [127] hand markings [39] or markings [63].

From an information theoretic point of view, stroke gestures are
a form of two-dimensional geometric signals from the user’s mind to
the computer that encode text or commands (messages). They are
transmitted through a channel with noise (due to inaccuracies in recall
and production), received by the computer, and decoded by a recognizer
into the messages intended by the user (Figure 2.1). The decoding
process may take place at the end of the stroke or incrementally during
the production of the stroke [8]. The capacity of this channel depends
on how many messages can be accurately transmitted. This in turn
depends on both the user’s ability and the computer’s algorithm to
accurately classify different stroke gestures.

Even limiting “stroke gestures” to what is outlined above, there is
still a vast conceptual space in which gestures may differ. We now focus
on the major dimensions of gesture differences.

User

intention

(Source)

Gesture
mapping

(Encoder)

Message

Channel

Noise
source
(Distortion)

Gesture
recognition

(Decoder)

Command or
text

(Destination)

Message
Stroke gesture

(received signal)

Gesture recall,
articulation and sensing

Touchscreen Human user Computer / Device

Fig. 2.1 Gesture input model from an information theoretic perspective.

2.2 Analogue versus Abstract Gestures 107

2.2 Analogue versus Abstract Gestures

Analogue gestures are those that mimic the physical or conventional
effects of the real world. An analogue gesture is analogous to what a
stroke gesture would do in the physical world or according to a cul-
tural convention. For example, a touch and slide gesture can cause
a document to pan, as a physical paper document would. Immediate
and animated feedback and “direct manipulation” (manipulation of an
“object”), often with effects based on physical simulation, come into
play when designing analogue gestures. On the other hand, abstract
(or symbolic) gestures are fundamentally arbitrary gestures that do
not resemble physical effects. For example, one may use an X sign to
close a document.

The analogue–abstract classification is a spectrum, not a dichotomy.
Gestures can be designed to resemble physical effects to a degree, often
only partially. They can also be designed to resemble users’ prior expe-
riences or conventions in different ways. The degree to which a gesture
is considered analogous can also be subjective and varies with an indi-
vidual user’s prior experience. For example, the question mark symbol
must be quite abstract looking when it is first introduced to a writing
system, but over time it looks more analogous to its semantics. For
another example, a Chinese person often believes Chinese characters
such as “laugh ()” versus “cry ()” and “walk ()” versus “stand
()” depict their meanings in a pictorial fashion, but when we tested
those Chinese character pairs with non-Chinese speakers, their correct
guess was no better than chance.

The more analogous gestures are to the user’s prior experience, the
easier they are to learn. On the other hand, the number of gestures
that are highly analogous to physical effects or conventions in any
given domain is limited. Analogous gestures may also be impractical
if they are overly complicated or ambiguous when the same gesture
has multiple possible effects and meanings. Abstract gestures free from
mimicking real-world forms can be made simpler and more efficient to
produce. For example, the Arabic numerals are abstract stroke gestures
that represent quantities. The symbol “9” is faster to draw and easier
to perceive than nine bars. Similarly, one may use a single finger hand

108 Definition, Concepts, Characteristics, and the Design Space of Stroke Gestures

gesture for the number one, two fingers for the number two, and five
fingers for the number five. Beyond that, it is difficult to make a ges-
ture that is analogous to the actual quantity. In some cultures, more
symbolic gestures are used to represent quantities greater than five (for
example, a closed fist for the number ten).

The history of the Chinese writing system also reflects the tradeoff
between analogous but complex gestures and abstract but simple
gestures. Early forms of many Chinese characters were highly picto-
rial but over time they have been simplified and made more abstract
to be more practical and more efficient.

One systematic middle design point on the analogue-symbolic spec-
trum is to leverage written language symbols. For example, the V-sign
hand gesture with the palm outwards is often used for victory since
Winston Churchill popularized it. For another example, drawing a
letter d can be used as a gesture for a delete action. Such stroke gestures
are fundamentally abstract yet familiar and conventional to the users.
However this design approach is not without challenges since a single
letter for an action can be too ambiguous. For example, the letter p

can mean print, paste, preview, page or picture. To use a whole word,
on the other hand, is inefficient. We will return to these issues later in
the monograph.

In a somewhat different context, Wobbrock, Morris and Wil-
son [120] lay out a gesture taxonomy that has similarities and differ-
ences to the dimensions discussed in this monograph. In particular, its
nature dimension describes gestures as abstract, symbolic, metaphor-
ical, or physical, which captures similar characteristics as the current
analogue–abstract dimension. We use the word abstract more broadly
as a quality. It is opposite to “analogue” in our classification.

2.3 Command versus Symbol Gestures

Stroke gestures can be used to issue commands or to enter text, or more
broadly, symbols and marks. Commands and text are two distinct types
of information. Text is the written form of natural languages. Com-
mands on the other hand are names of executable computing functions
issued by the user. Commands tend to be more artificial (designed) and

2.4 Order of Complexity of Stroke Gestures 109

less numerous than symbols and scripts (evolved, for the most part).
A computing system may have dozens, hundreds, or perhaps thousands
of commands. The number of words in a natural language, on the other
hand, can be tens of thousands or more.

Stroke gesture interface research has dealt with both commands
[25, 39, 63] and text [38, 96, 131]. “Natural” handwriting itself consists
of gesture marks. Partly because most of the world’s writing systems
were not created for efficiency [28], inventing novel forms of text entry
hence has been a very active topic of research [38, 59, 85, 96, 134].

Symbols and commands are also related in many ways. One can
always use symbols to enter commands. Conversely, command sys-
tems can sometimes be extended for text entry. For example, marking
menus, a gesture system primarily designed for commands [67], were
later extended as a way of entering letters [115]. ShapeWriter (also
known as SHARK) was initially designed as a gesture system for text
entry [59, 134] but later extended to deal with commands [60].

2.4 Order of Complexity of Stroke Gestures

Gestures can also be classified according to their order of complexity.
We may call touch points on a surface (without movement traces) zero-
order stroke gestures. A simple soft button tap [72] is a zero-order
gesture. Interestingly, landing points as zero-order gestures on a touch
surface can still carry different information according to the orientation
of the touching finger (Table 2.1) [46, 118].

We call gestures comprised of a single stroke first-order gestures.
Unistroke gestures constitute the essential elements of all stroke
gestures. They also have sufficiently broad applications by themselves.
They are therefore the focus of the current review. Within the
first-order stroke gesture class, the complexity of stroke gestures can
still vary greatly. We will deal with the measurement and modeling of
unistroke gesture complexity in the motor control complexity section
later in this monograph.

We call gestures with multiple strokes, drawn either sequentially or
in parallel (multi-touch), higher-order gestures. Parallel higher-order
gestures drawn with multiple fingers or multiple hands may offer both

110 Definition, Concepts, Characteristics, and the Design Space of Stroke Gestures

Table 2.1. The order of stroke gestures.

Single contact point Multiple contact points
Zero length stroke Zero-order gestures Zero-order multi-touch
Non-zero length stroke First-order gestures Higher-order gestures

(unistroke gestures)

physical and cognitive advantages in certain applications. For example,
the ability to grab two corners of a rectangle to rotate and move at the
same time is both fast and compatible with how people naturally view
this task [73]. However we limit the current review to first-order ges-
tures because of their dominance in research and practice and because
they form the building blocks of higher-order stroke gestures.

2.5 Visual-spatial Dependency

A critical design dimension of stroke gestures is whether and to what
degree the effects of the gestures are dependent on the location and size
at which they are drawn. When a gesture’s meaning does not change
with its location or scale, it is visual-spatially independent, or location-
and-scale dependent.

There are three types of advantages to visual-spatial independency.
First, it saves screen space. Consider the traditional point-and-click
style of graphical interfaces where icons or menu items are laid out spa-
tially, and each item takes up a certain amount of space. On the other
hand, different visual-spatially independent gestures can be drawn in
the same space. Second, with visual-spatially dependent user interfaces,
the user first needs to navigate, by visual search, scrolling, panning,
flipping (to a different screen), zooming or clicking (in the case of hier-
archical menus), to a particular object before activating it. In contrast,
visual-spatial independent gestures can be drawn anywhere to access
different functions directly without navigation. To borrow from com-
puter memory jargon, they become a “random access medium (RAM).”

Another advantage of visual-spatially independent gestures lies in
their reduced visual attention demand. Since they are location and scale
independent and the information is all expressed in the gesture’s rela-
tive shape itself, they help support head-up use, which is very important
in ultra-mobile situations.

2.5 Visual-spatial Dependency 111

On the other hand, visual-spatially dependent gestures have many
of their own advantages. First, they enable action-object coupling. The
action can be expressed by the gesture shape, but the object the action
applies to is specified by where the gesture is drawn. For example, an
X-shaped gesture on an email might delete that specific email. So the
X is serving double duty: it selects the email and specifies what to do
with it in a single action. Such action-object coupling increases user
efficiency, although at the cost of visual attention demand.

Second, visual-spatial dependency can be used for disambigua-
tion. For example, in the early Palm Pilot Personal Digital Assistants
(PDAs), text and digits are written into different boxes to avoid ambi-
guity. For another example, the ShapeWriter gesture keyboard uses
gestures both for words and for commands, but “gesture commands”
in ShapeWriter have to start from a special key (e.g. a Cmd key) in
order to be separated from word gestures.

Another form of visual-spatial dependency is object-context depen-
dency. If designed to be object-context dependent, the same gestures
can have a different meaning in different applications and on different
objects. For example, a straight-line movement can mean dragging an
icon, flipping a page, or deleting text, depending on which application
and what function the user navigates to and onto which object the user
applies the gesture.

Crossing-based interfaces are a form of a visual-spatial dependent
gesture interface. Gestures such as a straight line, a zigzag line, or a
circle do not carry much information. When used to cross different
graphical objects, however, they can in principle perform all actions
needed in interactive software design [4, 7].

In general, if gestures are designed to be visual-spatial dependent,
much can be gained in information capacity and understandability,
since part of the information transmitted when using these gestures
can come from the graphical objects on the screen, rather than the
shape of the gesture alone. Of course, visual-spatially dependent
gestures take valuable screen space, necessitate navigation, and require
user’s visual attention.

Visual-spatial dependency is also a continuum. Most visual-spatially
independent gestures are still restricted to a certain area of the

112 Definition, Concepts, Characteristics, and the Design Space of Stroke Gestures

screen and most visual-spatially dependent gestures, potentially even
crossing-based interfaces, can be relaxed according to the amount of
“white space” available in the task. As a simple example, a scroll ges-
ture must start on a scrollbar to distinguish itself from other actions
achieved via dragging but it can continue outside the bar. More impor-
tantly visual-spatial dependency can also be changed dynamically
according to the speed of the gesture and the level of user experience,
as we will see when we review marking menus and the ShapeWriter
gesture keyboard later in this monograph.

Visual-spatial independency and gesture complexity are closely
related. Simple gestures needs to be visual-spatially dependent to carry
rich meanings. At the extreme, tapping (a zero-order gesture) has to
be completely visual-spatially dependent to carry more than one bit
(on–off) of information. It can activate any number of applications on
a smartphone because the activation of these applications depends on
where (or which icon) the user taps. In contrast, more complex ges-
tures can carry different meanings independent of where the gestures
are drawn.

2.6 Implement and Sensor Type

Early gesture systems have focused on the digital stylus as the imple-
ment of articulation, to the extent that gesture interfaces were synony-
mous with pen-based interfaces. Stylus drawing involves more joints of
the hand and offers higher precision and dexterity than single finger
drawing. However, since the iPhone, more recent developments in com-
mercial products have shifted stroke gestures away from stylus drawing
to finger drawing. With a finger-based gesture system there is no device
acquisition time (the time to pull out and grasp the pen) so it is more
direct and more convenient to use. One certainly does not have to deal
with the problem of losing the stylus. On the other hand, the finger
obscures more screen surface and is less dexterous and less precise than
a stylus. See Hinckley et al. [44] for an example of how one system can
combine both.

Tu, Ren and Zhai [111] studied the differences and similarities
between finger and pen drawn gestures. They found that finger drawn

2.6 Implement and Sensor Type 113

gestures tended to be larger and faster than pen drawn gestures. Finger
and pen drawn gestures also differed in shape geometry as measured
by aperture of closed gestures and corner shape. Pen drawn gestures
and finger drawn gestures were similar in articulation time, indicative
angle, axial symmetry and proportional shape distance. Their findings
suggest that “finger friendly” systems should exploit global features
such as proportional shape distance when designing finger interfaces
and avoid local and detailed features.

It is possible to enable both finger and stylus operation on the same
device so that, for a small amount of imprecise gesturing, the hurried
user should be able to gesture with a bare finger. When more pro-
longed and more precise gestures are needed in applications such as
note taking or mark-up of digital documents, one should be able to
switch to a stylus. Whether a touchscreen will react to both finger and
stylus input depends on the type of touch sensor embedded. Capaci-
tive sensors, such as those in today’s iOS (iPhone/iPod/iPad) and most
Android phones, work only with fingers since they measure the capac-
itance change on the surface. Special styli with a large enough surface
area, rather than a pointing tip, have to be used in order to work with
capacitive sensors. However, a stylus without a sharp pointing tip loses
much of its advantage.

Inductive sensors, such as the Wacom sensors embedded in most
Windows Tablet PCs, work with digital styli in order to measure induc-
tance change. One advantage of inductive sensors is that they can sense
the stylus when it is near the sensing surface. This is sometimes referred
to as the hover state. See Buxton [18] for a more complete description
of this three-input state model. Analogous to moving a mouse before
clicking a button to trigger a command, the hover state enables systems
to separate the action of moving a pointer on the screen from the action
of triggering a command.

Resistive sensors, such as those found in Palm Pilot PDAs and old
Windows Pocket PCs, measure change of electrical resistance at the
contact point of the touch-sensing surface where two layers of mem-
brane are pressed together. This works better with a stylus since the
stylus tip on the surface forms a well-defined pressure point. It works
less well with fingers, particularly for stroke gestures. This is because

114 Definition, Concepts, Characteristics, and the Design Space of Stroke Gestures

when the user articulates a stroke gesture over a resistive sensor the
user usually has to maintain a certain force-level to keep the sensor acti-
vated. This task is particularly hard when the user is using a finger’s soft
tissue.

Touchscreen devices may also use optical or other types of sensors
that react to both stylus and finger touch, as used for example in
Microsoft Surface and the HP TouchSmart desktop computer. Some
recent PC products, such as the Lenovo X220 Tablet, embed both
pen and finger touch-sensitive layers in their screen so the user can
switch between pen and finger gestures. An interesting design space to
enable is the simultaneous use of the finger and the pen, with the pen
in the dominant hand for writing and drawing, and fingers for object
manipulation [44].

In summary, there are at least five dimensions of stroke gesture
differentiation: analogue–abstract, order of complexity, commands ver-
sus symbols, degree of visual-spatial dependency, and implement and
sensor type. These are just a few of the most important dimensions
relevant to this review. For the benefit of conceptual clarity and exper-
imental rigor, research tends to focus on one or two dimensions at a
time. However, when designing a practical system, it is important to
realize that all these dimensions need be considered in the context of
the total system design. Often these dimensions trade off against one
another and designers are faced with the difficult task of comprising and
prioritizing certain dimensions for a particular application domain.

3
Sample Gesture Systems

In order to better ground the conceptual issues to be reviewed later in
the monograph, this section briefly reviews a few concrete examples of
stroke gesture user interfaces.

3.1 The iPhone Gesture Interface

Most of the iPhone system-wide user interaction is through soft button
tapping, or zero-order gestures. There are only a few first-order stroke
gestures: slide to unlock (Figure 3.1), a straight stroke to scroll and
pan a document or a map, flip to the next photo, or invoke a soft
button (such as “delete” in case of a list of items). There is also one
second-order gesture, “pinch,” for zooming. Yet another type of zero-
order but more complex gesture is the “long press.” Press-and-hold for
a set period of time often is used as a way of invoking a menu for more
options.

Although small in number, these iPhone gestures, particularly
scrolling and panning, are used frequently, and hence are critical for
the iPhone’s overall user experience. The scrolling and panning ges-
tures are analogue gestures mimicking physical effects, therefore quite
easy to discover.

115

116 Sample Gesture Systems

Fig. 3.1 A slide gesture unlocks iPhone’s cover screen.

The small set of simple gestures does limit the number of functions
enabled and often precludes other stroke gestures. For example, a sim-
ple swiping gesture is typically used for scrolling/panning/flipping, but
it precludes the ability to for example drag an object and drop it into a
folder or a document. The swiping gesture for the unlock action would
not have been as obvious had it not been aided by an arrowhead and
animation as a “preview” of the gesture effect. On the iPhone, the user
can swipe over an item in a list, such as a contact or an email, among
a list of many, to invoke a menu option (e.g., delete). This is a more
abstract and less discoverable gesture.

Another interesting gesture design choice on the iPhone is the use
of temporally and spatially dependent stroke gestures for the on-screen
keyboard. If the user presses a letter key and pauses for one second, an
additional set of letters pops up and enables the user to slide to one of
the alternative letters (e.g., if the user taps-and-holds the letter key s

then the system proposes ß). This scheme allows a greater number of
characters with different diacritical marks. The downside is that this
feature is not easily discoverable by the casual user.

3.2 Graffiti and Unistrokes 117

3.2 Graffiti and Unistrokes

As simple as they may seem, Roman characters are not really easy for
humans to write nor are they easy for computers to accurately recog-
nize, for a number of reasons. Because each person has his own way of
shaping and joining letters, there is a high degree of variability in nat-
ural handwriting. Furthermore, the letters f , i, j, t, x, consist of two
strokes. As any second-order gestures, these letters create two major
disadvantages. First, they complicate the demarcation (or segmenta-
tion) of the beginning and ending of a character. The system would
have to use other spatial and temporal measures to determine whether
the production of a letter is complete. Second, it takes more time to
produce two strokes than one, and more importantly, since the second
stroke is referential to the first stroke (“dotting the i’s and crossing the
t’s”), it demands more visual attention.

Given this background, it is not surprising that attempts have been
made to design new ways of writing the Roman alphabets. In fact alter-
native forms of the alphabets have been repeatedly created in history
dating back to Roman times. A relatively recent attempt at inventing
an English alphabet is the Shavian script (named after George Bernard
Shaw). The challenge to novel alphabets, however, has always been the
difficulty of switching away from what millions of people have already
learned and practiced.

Motivated by the text entry challenge in pen-based computing,
Graffiti and Unistrokes are two attempts at alternative forms of the
Roman alphabets. Graffiti was a central feature in the early versions
of the Palm Pilot, a device that played a leading role in launching
PDAs, which have evolved into smartphones today. Unistrokes was the
result of a research project at Xerox PARC. Its creators, Goldberg and
Richardson, not only made an invention but also articulated a set of
compelling motivations and principles for single-stroke gesture design
[38]. Graffiti and Unistrokes made different choices in the degree of
novelty and optimization. Graffiti stayed quite close to the standard
form of the Roman alphabet (Figure 3.2). It is essentially a simplifica-
tion of the Roman alphabet. Unistrokes on the other hand offered much

118 Sample Gesture Systems

Fig. 3.2 Graffiti symbols resemble the standard Roman letters.

Fig. 3.3 Unistrokes symbols are more optimized.

greater potential in efficiency by designing completely new symbols
that had little resemblance to their standard Roman letter counterparts
(Figure 3.3). Users of Unistrokes would have to make a greater effort in
learning and memorizing these new symbols than Graffiti users. From
the two designs, we see the tradeoff between a set of gestures more anal-
ogous to people’s existing practice and a more abstract set of gestures.
We will review the efficiency difference between the two systems in
more depth later in the gesture complexity section of this monograph.

3.3 Crossing UI

As mentioned earlier, object crossing is a strongly location dependent
form of stroke gestures. The gestures used for crossing can be as simple
as unidirectional swiping strokes. The effect of the crossing gesture
depends on the object crossed. Potentially all buttons that are tradi-
tionally activated by a clicking action can be replaced by objects that
accept crossing as an activation mechanism. The popular notification
bar on Android phones is activated by a downward crossing gesture.

Crossing tasks can be well modeled just as pointing tasks can be
well modeled [4]. According to the models established by Accot and
Zhai [4], the time to cross a goal can be reliably predicted based on
the goal width and the distance to reach the goal. The gestures used
to cross an object can also be more complex and richer in semantics
than a simple unidirectional swiping gesture. For example, a system

3.4 Marking Menus 119

may assign a forward and backward swiping gesture to have different
effects (e.g., open and close).

Crossing-based gesture interfaces can be built to implement various
sophisticated functions. For example, Apitz and Guimbretière built an
entire drawing prototype based on crossing gestures [7]. The EdgeWrite
text input method [124] can also be viewed as a crossing interface, as
crossing in and out of each of its four corners determines the char-
acters entered. Crossing provided the theoretical basis for modeling
the trackball version of EdgeWrite, which has no physical edges [122].
Interestingly, the version of EdgeWrite with physical edges can reduce
or remove the need for visual dependency that is typically required of
crossing interfaces.

3.4 Marking Menus

Although still not widely practiced in mainstream products nearly 20
years after their initial publications, marking menus or self-revealing
pie menus [20, 48, 63, 64] were probably the first gesture UI designs
that embodied the important goal and principle of facilitating learning,
or novice to expert transition, that was well articulated by Kurtenbach
and Buxton [64].

A marking menu is a radial menu with two explicit modes based on
the user’s action speed (Figure 3.4). The menus are only displayed if
the user pauses for a moment. Novice users wait for the menu display
to pop up then make their gesture motion to select the target section.
Expert users who are more familiar with the menu layout, however, do
not have to wait for the menu display guidance to stroke ahead and
make the same gesture mark. Importantly the two modes share the
same motion for the same menu action. The delay in the menu pop-up
may encourage the user to move to the expert mode. Marking menus
work on radial menu layouts and use angle detection to determine what
commands to execute. No statistical pattern recognition is involved.

Marking menus are especially robust when they contain up to eight
items at each menu level. They can be nested with multiple levels, so the
gestures are compound marks with multiple inflection points. Since the
items selected in marking menus are determined by angular direction,

120 Sample Gesture Systems

(a) (b)

Fig. 3.4 Marking menus. Courtesy of Bill Buxton.

there can be ambiguities when multiple levels of selections happen to
be aligned in the same direction (e.g., up and up). Simple hierarchical
marking menus [139] address such a problem by selecting one level at a
time with a straight stroke, so a multi-level selection consists of a series
of straight strokes in different directions rather than a single stroke with
multiple inflection points. Hotbox [65] increases the breadth of mark-
ing menus by either combining marking menus with other interaction
techniques (e.g., a menu bar) or by differentiating items according to
the absolute or relative location of the stroke’s starting point. T-cube
extended marking menus from commands to text entry [115].

3.5 Word-gesture Keyboard

A word-gesture keyboard uses gesture strokes on a touch sensitive key-
board, rather than tapping points, to enter text or commands. For
each word in the lexicon, a stroke on the gesture keyboard that approxi-
mately connects all the letters in the word enters the word. For example,
a stroke connecting w-o-r-d returns the word word (See Figures 3.5–3.7
for a few examples).

A word-gesture keyboard, such as SHARK [59, 134], has the fol-
lowing three essential components. The first is a keyboard capable of
sensing gesture strokes. The keyboard also serves as a visual guide
since each word gesture is defined by connecting the word letters on

3.5 Word-gesture Keyboard 121

Fig. 3.5 A July 2003 screenshot of the SHARK word-gesture keyboard: the gesture repre-
sents the word “system” based on an ATOMIK layout.

Fig. 3.6 A screenshot of the SHARK word-gesture keyboard in 2005: the gesture represents
the word method based on a QWERTY layout.

the keyboard. The second component is a language model that repre-
sents the regularities and constraints of the language that the keyboard
is capable of expressing. Such a model can be a standard large list of
N -grams or at the least a lexicon that constrains a finite number of
permissible words. The third component is a pattern recognition sys-
tem that classifies each user-entered stroke gesture into a ranked list of
words according to the gesture’s matching distance to these words and
outputs the top-ranked candidate to a text field.

122 Sample Gesture Systems

Fig. 3.7 A gesture keyboard application in the iPhone Store released by ShapeWriter Inc.
in 2008. The gesture illustrated enters the word fun.

A gesture keyboard also supports the user’s transition from perform-
ing visually guided actions to performing the same movement patterns
by recall from memory. A beginner traces every word on the gesture
keyboard by sliding from letter to letter by visually locating each let-
ter key. Each time the same word trace is drawn, it is an opportu-
nity to encode that trace in the user’s procedural memory. For well-
practiced words, or common fragments of words, the user will be able
to recall their traces on the keyboard and hence rely more on memory
recall and less on visual guidance, to more rapidly produce the gesture
strokes. An experiment has shown that after on average 15 repetitions
per word, users could reach completely recall-based gesturing [131]. We
will more deeply review this experiment and other human-memory and
skill acquisition aspects of gesture keyboards later.

Importantly, the recognition algorithm design of gesture keyboards
should support both visually guided tracing and recall-based gesturing.
In general, this means the recognizer should be highly error tolerant to
imprecise productions of gesture details.

3.5 Word-gesture Keyboard 123

Unlike marking menus, a gesture keyboard does not have two dis-
tinct novice and expert modes. The transition from visually guided
letter tracing to recall-based stroke gesturing is continuous. The actual
user behavior is almost always a combination of the two components,
shifting from the former to the latter as the user gains more experience.
Also different from marking menus, gesture keyboards employ pattern
recognition based on language models and handle a very large number
(tens of thousands) of gesture entries.

SHARK (shorthand aided rapid keyboarding) was the first experi-
mental word-gesture keyboard published in the literature [134]. Later
the technology and paradigm were matured to a practical stage [59]
and released to the public by IBM through the IBM AlphaWorks web
site in November 2004. In 2007 it was extended to also handle com-
mands [60]. SHARK was renamed ShapeWriter and commercialized
and released on iPhone, Android and other platforms by ShapeWriter
Inc [137] for English, French, German, Spanish, and Swedish. Since
2007, multiple companies have adopted the gesture keyboard paradigm
with similar features.

There are many existing and potential algorithms to perform
gesture keyboard recognition. SHARK/ShapeWriter primarily relies
on two channels of gesture pattern recognition, one focusing on the
location of the user drawn gesture, from beginning to end, in relation
to the candidate word letters on the keyboard, and the other on the
overall shape of the gesture, independent of the gesture’s location and
scale. The details of this recognition algorithm have been presented
in [59]. We will review some of its key components later. One can also
find additional information in Zhai and Kristensson [135] regarding
ShapeWriter’s design principles. Zhai and Kristensson [136] provides a
retrospective synthesis of the SHARK/ShapeWriter project.

It is quite possible to develop much more flexible and more
error-tolerant gesture keyboards in the future. A key design question
still unresolved is the gesture keyboard’s layout, be it the familiar
QWERTY layout, or the more efficient ATOMIK [133], or some other
layout specifically optimized for gesture keyboards. This choice again
poses the difficult trade off between short-term ease of learning and
long-term performance.

4
The Usability of Stroke Gesture as an

Interaction Medium: Early Research Issues

This section reviews some of the early, basic and empirical stud-
ies on why stroke gestures are a usable interaction medium. Serious
attempts at understanding stroke gestures as an interaction medium
began shortly after the emergence of graphical user interfaces (GUI).
Gesture interfaces were expected to be even more direct and more nat-
ural than the point-and-click style of direct manipulation [127]. The
most comprehensive empirical work was probably done by Gould and
Salaun [39] and Wolf and Morrel-Samuels [126, 127], both from the IBM
T. J. Watson Research Center. These studies attempted to address a set
of basic questions concerning stroke gestures as a control medium for
common user computing tasks, particularly text and graphical editing.

One of their central questions was: How consistent are different
users in creating or recalling stroke gestures for the same commands
such as move, delete, and insert? Both the Gould and Salaun study
and the Wolf and Morrel-Samuels study used paper and pencil tasks
and asked participants to draw marks on paper to express commands
such as delete, move, and replace. Both found a high degree of consis-
tency in users’ choice of text or graphics editing marks. People tend

124

125

to use a circle for “scoping,” an arrow for moving, an arrowhead for
destination and an X mark for deleting. The high degree of consistency
was considered strong support that gesture marks were a “natural” way
of interaction. With little training, users were expected be able to use
these gestures in a consistent manner.

Recently, Wobbrock et al. [120] studied user agreement in their
creation of gestures for tabletop computers. They asked 20 partici-
pants who did not have prior experience with gesture interfaces to
intuitively come up with gestures for 27 functions (referents). They
used a computational score of agreement to measure cross-user consis-
tency in gesture expectation. Fewer unique gestures used for the same
function by a greater number of participants yielded a higher agree-
ment score for the function. If all users used the same gesture for the
function, it received a score of 1. They found 7 functions had higher
than 40% agreement scores, the rest less than 40%. Functions move a
little and move a lot received a score of 1; duplicate, rotate, selection
group, insert, and select single received a score between 0.6 and 0.4 for
single hand gestures. Functions such as undo, accept, help, reject, next,
and cut received less than 0.2.

There can be several counter-arguments and caveats against the
natural consistency principle in gesture user interfaces. First, the types
of tasks and functions that received high agreement and consistency
in these studies were spatial, and the actions commanded were very
similar to their physical effects. In other words, these were analogue
gestures. It could be the affordances (in the original sense, as by Gib-
son [37]) in the experimental tasks, such as moving an element from one
location to another, that required the participants to draw highly con-
sistent gesture marks. In fact, Experiment 5 in Gould and Salaun [39]
used various physical toys or toy tasks that required versions of select,
delete, copy, and replace actions. As a side note, this experiment in
some sense pointed to the advantages of two-handed interaction and
tangible user interfaces. Both later became major interests of research
in HCI.

Second, the number of analogue gesture commands of this nature is
limited, which means the capacity of such gesture marks is small. They

126 The Usability of Stroke Gesture as an Interaction Medium

are also limited to relatively simple analogue actions. This is evident
in the study of Wobbrock, Morris and Wilson [120]. When the com-
mand becomes more complex and more abstract, such as “replace all
instances of colour with color,” or “print this document,” the “natu-
ral” consistency of user’s choice of gestures is likely to decrease. This
reinforces the fact that UI naturalness is a relative concept. It has to
do with the amount of prior experience, including experience in the
physical world, to which the user can relate the current task.

Third, although the gesture marks chosen by the participants in
the early studies were consistent to a high degree, they were not nec-
essarily unique. For example in Experiment 1 of the Gould and Salaun
study, there were always two or three gesture marks used for the same
command. Some used a circle for scoping, others did not. Some used
an X, and others used a pigtail proofreader’s mark, for deletion. Some
used an arrowhead to indicate the destination, but others expected the
motion itself to indicate where the gesture started and where it ended.
Interestingly, in Experiment 2 of Gould and Salaun, participants were
asked and able to find another alternative gesture mark for the same
command.

Despite these caveats, the point that users tend to be quite
consistent in their ways of using gestures analogous to physical actions
was convincingly demonstrated in the early empirical studies of Gould
et al. The number of gestures of this type might be small, but they
may cover a disproportional number of instances of action, hence
they should always be taken advantage of as much as possible in UI
design.

These early studies attempted to prove that the stroke-based gestu-
ral interface enabled users to enter commands faster than their typing-
based lexical counterparts. Based on data reported in the literature
at the time, the average time to execute a text editing operation was
20 to 35 seconds. In Experiment 1 of Gould and Salaun of drawing
editing marks on paper, the average time was 15.9 seconds. This was
increased by 25% to 19.8 seconds when the task was carried out with
a stylus on a tablet that was separated from the display. When the
same stroke-drawing task was done in a “clumsy” mouse-and-display

127

configuration (and with tasks actually executed), the average time was
further increased to 21.1 seconds. Gould and Salaun [39] concluded that
“It remains to be seen whether, with the eventual implementation of
a hand marking command language, hand marking will maintain this
advantage.”

5
The Motor Control Complexity

of Stroke Gestures

Laws and models that capture robust phenomenal or behavioral
regularities play a fundamental role in the physical sciences. In the
user interface field, “laws of action” that model user motor control
behavior on the computer screen have also achieved considerable
success (See Zhai, Accot and Woltjer [132] for a brief review). These
empirical laws capture the regularities in pointing [35], crossing [4]
and path steering [1, 2, 3]. A logical follow-up to this line of work
is to extend this family of laws of action to stroke gestures. Just as
Fitts’ law could relate pointing time to a simple “index of difficulty”
based on the geometry of the pointing task, ideally a quantitative
relationship can be established between gesturing time and simple
characteristics of a gesture stroke. Such a law would help the design
and evaluation of existing or future gesture interfaces by quantitatively
predicting their time efficiency without running extensive user studies.

However, in comparison to visual feedback-based control tasks, to
which the existing laws of actions apply well, stroke gesture production
is an inherently more complex behavior that involves planning, memory,
and more importantly a certain degree of open-loop execution.

As a theoretical conjecture, a “law of gesturing” should reveal that
the production time of a stroke gesture should be proportional to the

128

5.1 Viviani’s Power Law of Curvature 129

entropy in the stroke produced. The more varied, less predictable, more
complex (hence higher in entropy) a stroke is, the more time it should
take to produce it. The challenge is to reduce such a conjecture to
simple computational forms relating to the stroke’s geometry. To date
no explicit model that can produce a law of gesturing exists.

However, elemental laws and “computational” models concerning
the production of stroke gestures do exist. This section reviews three
of them.

5.1 Viviani’s Power Law of Curvature

Viviani and colleagues [116, 117] investigated human handwriting and
drawing behavior in terms of instant movement velocity as a function
of curvature, and proposed a power-formed model. A simple version of
their formula is that at a given point on the written/drawn trajectory,
the velocity is

V = KRβ, (5.1)

where V is the instant (tangential) velocity of movement; R is the
radius of curvature (R = 1/C, where C is the curvature), and K and
β are constants of the model.

The model, known as the power law of curvature, indicates that
the larger curvature the trajectory has at a given point, the slower
the pen motion will be at that point. This model has been tested in
different settings, including drawing trajectories with or without visual
guidance [117].

Motivated by the need to model “sloppy” selection gestures, Lank
and Saund [71] combine the power law of curvature, which models the
structure of a gesture, and the steering law [1, 2, 3], which models
trajectory constraint, to devise a compound model that describes both
the structural and constraint properties of a gesture.

5.2 Isokoski’s Line Segments Model

Isokoski proposed a model for stroke gestures that used the approx-
imate number of straight line segments in a gesture as a predictor
of complexity, correlating to production time [50]. An underlying

130 The Motor Control Complexity of Stroke Gestures

Fig. 5.1 Viviani’s power law of curvature.

assumption is that drawing a straight-line segment takes a constant
amount of time, regardless of the length of the segment. The model’s
best correlation result was R2 = 0.85 on Unistroke characters [38], and
it achieved R2 between 0.5 and 0.8 for other gesture sets.

This model provides useful quick predictions, with the attractive
merits of simplicity and ease of application. However, defining the num-
ber of straight-line segments needed to approximate a curved gesture
is ambiguous. Furthermore, it does not provide an estimation of the
magnitude of the actual production time.

5.3 Cao and Zhai’s CLC Model

The CLC model by Cao and Zhai [22] decomposes any stroke gesture
into three classes of gesture elements: curves, line segments, and corners
(CLC), as is illustrated in Figure 5.2. In the CLC model the total pro-
duction time of a gesture is computed as the sum of all time durations
necessary to produce all gesture segments:

T =
∑

T (line) +
∑

T (corner) +
∑

T (curve). (5.2)

curve

line

linecorner

Fig. 5.2 Decomposition of a gesture.

5.3 Cao and Zhai’s CLC Model 131

r

α

Fig. 5.3 Circular arc.

Each element of the CLC model is computed by a lower-level model as
discussed in the following sections.

5.3.1 Smooth Curve

The production time of smooth curves can be derived from Viviani’s
power law of curvature. Integrating the instant velocity variable in
Viviani’s power law of curvature results in:

T (curve) =
1
K

∫ S

0
R(s)−βds, (5.3)

where

s is the curve length between the starting point and the current point;
R(s) is the radius of curvature at s;
S is the total curve length (0 ≤ s ≤ S);
T (curve) is the total production time.

K and β are constants reflecting the performance of the individual
person and device used. In Cao and Zhai’s experiment, they were mea-
sured at K = 0.0153, β = 0.586, where s was represented in mm and
T represented in ms.

A special case of smooth curves is an arc with a constant radius r

and a sweep angle α (Figure 5.3). The total length of the arc is S = αr.
The total production time is then:

T =
1
K

∫ S

0
R(s)−βds =

1
K

∫ αr

0
r−βds =

1
K

(αr)r−β =
α

K
r1−β. (5.4)

132 The Motor Control Complexity of Stroke Gestures

5.3.2 Straight Line

The production time T as a function of the length L of a straight-
line segment could potentially take various forms: a constant, a linear
relationship T (line) = aL + b, or a non-linear relationship T (line) =
mLn. Empirical data collected from producing straight lines of various
lengths in various orientations within specified precision best matched
the following power-form nonlinear model

T (line) = mLn, (5.5)

where m and n are constants reflecting the performance of the individ-
ual and the device. For the group of individuals and device tested in
Cao and Zhai [22] m and n were measured at 68.8, and 0.469, where L

was represented in mm and T represented in ms.
The following linear model, with a nonzero intercept, also matches

empirical data well, although not as well as the power model
(Figure 5.4):

T (line) = a + b L, (5.6)

where a was measured at 203 ms and b at 4.24 ms/mm .

Fig. 5.4 Linear and power model of line segment production.

5.3 Cao and Zhai’s CLC Model 133

5.3.3 Corner

A gesture corner is an abrupt change in direction (with a zero radius).
Since, by this definition, a corner is a single point, producing a corner
per se takes zero or a negligible amount of time. The cost of a cor-
ner production lies in stopping one segment of the gesture and starting
another. As is demonstrated in the empirical work of Cao and Zhai [22],
the presence of a corner implicitly affects the production time by break-
ing one stroke segment into two, causing acceleration and deceleration
in movement. For example, drawing two straight lines with lengths L1

and L2 connected by a corner takes a longer time than drawing one
straight line with length L1 + L2.

5.3.4 The Total Model

Since the cost of a corner is only implicit, the CLC model therefore
simplifies to summing the production durations of all curve segments
and all line segments:

T =
∑

T (line) +
∑

T (curve). (5.7)

Or

T =
∑

i

mLn
i +

∑
j

1
K

∫ s

0
Rj(s)−βds. (5.8)

The four constants m, n, K, and β should depend on the individuals
and devices used. They are expected to be in the neighborhood of the
values reported earlier (m = 68.8, n = 0.469, K = 0.0153, β = 0.586).

5.3.5 Verifications, Validity, and Applications
of the CLC Model

Cao and Zhai empirically tested their models. Figures 5.5 and 5.6 show
samples of component gestures and total gestures used in their experi-
ment, respectively.

Cao and Zhai’s study shows high correlations between the model
predictions and empirical measurements, with greater than 0.9 R2 value
in all cases. Typically in Fitts’ law-type models, the correlation coef-
ficient is the measure of validity and the best-fit parameter values, in

134 The Motor Control Complexity of Stroke Gestures

Straight Line Arc Corner

Fig. 5.5 Component gestures tested.

Polyline Arbitrary

Fig. 5.6 Total gestures tested in Cao and Zhai [22].

this case m, n, K, and β, can be used to characterize the individuals
or the devices tested. The CLC model can be used as an evaluation
tool in the same fashion. However we should note that while R2 values
reflect the goodness of fit in variance between an empirical measured
random variable with a prediction (such as time predicted by a model),
it is not a be-all-and-end-all metric. It does not predict the magnitude
match between two variables.

Another type of CLC application is to predict and compare the per-
formance of one set of gestures against another in magnitude, under
fixed m, n, K, and β parameters. This is a more stringent applica-
tion of the model than purely correlation-based applications with free
parameters. For example we might be interested in knowing the pro-
duction time difference between one set of symbols against another. Or
we might be interested in one set of alphabet letters such as Roman
letters against another, such as Graffiti. In those cases the m, n, K, and
β parameters have to be set at values as close to the target users and
device as possible. If these parameters do not match the target users
and device, there will be errors in the absolute values of prediction,
although the relative order of the comparison may still be correct.

5.4 Applications of the CLC Model 135

Cao and Zhai found two causes of errors in absolute value prediction.
One was the underestimation of time with unfamiliar and little prac-
ticed gestures. CLC only models the motor control execution time. It
does not include online visual perception, planning and decision mak-
ing when producing unfamiliar gestures. The actual production time
of these unfamiliar gestures could therefore be longer than the model
prediction. The second type of magnitude error was the overestimation
of familiar or well-practiced gestures. With well-practiced gestures not
only could the visual perception, planning and decision making com-
ponents be reduced to be negligible, but even the motor control aspect
of two or multiple elements of a gesture also tended to be linked into
one action, that is, a greater amount of “chunking” behavior tended to
occur. For example although the canonical shape of the Arabic num-
ber 2 has a sharp corner at its bottom-left portion, a quickly written
copy of it may round off the corner and hence gain higher speed. Chunk-
ing behavior in producing familiar gestures means that the actual pro-
duction of these gestures can be more rapid than the model prediction
based on the canonical shape. This overestimation can be corrected if
desired, by modeling the actual shape with rounded corners that are
in fact curves.

5.4 Applications of the CLC Model

Recall that we earlier reviewed Unistrokes [38] and Graffiti as two
novel symbol sets, and alluded to the issue that although Unistrokes
may require more learning than Graffiti, it may be more efficient than
Graffiti once learned. With the CLC model, we now can quantitatively
estimate the motor production difference between the two sets of ges-
tures. To that end Cao and Zhai [22] first calibrated the CLC model to
the five participants they tested and fixed the parameters of the model
as follows (in ms):

T =
∑

i

88L0.394
i +

∑
j

1
0.0193

∫ s

0
Rj(s)−0.566ds. (5.9)

They then computed time predictions Tp for each gesture sample from
Unistrokes and Graffiti. Weighted by the letter frequencies reported

136 The Motor Control Complexity of Stroke Gestures

in Mayzner and Tresselt [86], they then calculated the mean gesture
production time for Unistrokes at 622 ms and Graffiti at 1125 ms. The
ratio between Unistrokes and Graffiti was 0.553:1.

They further collected experimental data from the five partic-
ipants repeatedly writing Unistrokes and Graffiti symbols. Due to
the possibility of chunking (see the second type of error discussed
earlier) the experimental mean times per gesture, weighted by letter
frequency, were 365 ms and 591 ms for Unistrokes and Graffiti respec-
tively, both significantly lower than the model predictions. However
the ratio between the two gesture sets, 0.618:1, was close to that of the
model’s 0.553:1.

Later Castellucci and MacKenzie [23] conducted a separate empir-
ical study of Unistrokes and Graffiti involving 20 participants and 10
sessions of tests, each session involved 15 phrases of text entry. Proba-
bly due to the much longer learning time, the average gesture durations
were 284 ms and 459 ms for Unistrokes and Graffiti respectively, even
lower than those values measured in Cao and Zhai [22], but the ratio
between the two gesture sets, 0.620:1, was still very close to the model
prediction.

To review another sample application of the CLC model, recall
that an unresolved question concerning the performance of gesture key-
boards is the keyboard layout. The QWERTY layout is very familiar to
computer users, but word gestures defined on them tend to zigzag back
and forth. In contrast, gestures defined on an optimized layout, such as
the ATOMIK, tend to be isotropic — moving in all directions with equal
probability. Leaving the potential memory and accuracy advantages
aside, are these more isotropic word gestures faster to produce than the
zigzag QWERTY gestures? Cao and Zhai [22] tested the CLC model on
ShapeWriter gestures defined on both the traditional QWERTY lay-
out and the optimized ATOMIK layout [133]. They selected gestures
for the 24 most frequently used words in spoken English and computed
time predictions Tp for each gesture sample on both keyboard layouts.
These predicted values were then compared with empirical data col-
lected from users repeatedly drawing these gestures. The model pre-
dictions and empirical data correlated well, with an R2 value of 0.96.

5.4 Applications of the CLC Model 137

Both the model and the empirical data indicated that ATOMIK ges-
tures were more efficient than the QWERTY gestures.

In summary, the CLC model provides an approximation and simpli-
fication of the actual user performance. The straightforward application
of the CLC model may give predictions in the right direction between
two designs, but it could either over or underestimate the absolute
values of gesturing time. This in part depends on the amount of prac-
tice the user has. For well-practiced gestures, the user inevitably cuts
corners at the joints between elements of the normative gesture tem-
plates and “chunks” them into one continuous curve stroke, resulting
in a faster production than the model predicts. One could either view
this as a weakness of the model, or apply the model with more sophis-
tication than simply summing up the elements. One could use smooth
curves to replace the sharp corners in the templates, as proposed in
Cao and Zhai’s discussion section of their report [21]. To what degree
the corrections should be applied depends on the level of practice and
chunking of the individual user and needs to be validated in further
investigations [21].

Overall, motor control modeling of stroke gestures is still at a rel-
atively primitive stage but the existing models are already useful as a
research and design tool.

6
Characterizing Visual Similarities

of Stroke Gestures

The last section reviewed motor control complexity as a foundation for
gesture design. With the guidance of models presented there, one may
be able to design the most efficient set of gestures for a given application
from a motor execution point of view. However, a gesture set solely
designed for motor efficiency could be very unusable if the gestures are
all similar to one another. It is rather logical to assume (although no
systematic empirical proof can be found in the literature) that gestures
in a given system or alphabet that are more distinct from each other
are less prone to confusion. This raises the question of how the human
visual system judges gesture similarities and differences. Long et al. [82]
did a comprehensive study to investigate such a question. They studied
all gesture features drawn from Rubine’s recognizer [100] and features
identified from the authors’ own observations. These features include
such properties as initial angle, angle of the bounding box, distance
between first and last point, total angle, etc.

Importantly, they found the following features, mostly related to
size or scale, NOT important:

• Size of bounding box
• Total length

138

139

• Total angle traversed/total length
• Area of bounding box
• Log (area)
• Total angle/total absolute angle.

Through multidimensional scaling (MDS), they found the following
five compressed dimensions and their correlating features (in decreasing
importance) in gesture similarity visual perception.

• Dimension 1: Curviness, Angle/distance
• Dimension 2: Total absolute angle, Log(aspect)
• Dimension 3: Total length/Size of bounding box, Cosine of

initial angle
• Dimension 4: Cosine of angle between first and last points,

Cosine of initial angle, Sine of initial angle, Distance between
first and last points, Angle of bounding box

• Dimension 5: Aspect, Sharpness, Cosine of initial angle, Total
Angle

Through a regression analysis, Long et al. derived a model that
correlated with experimental data at 0.74 R2 value.

Understanding visual similarities is critically important to a ges-
ture recognizer and gesture set design. However, no stronger models on
visual similarity have been developed since Long et al.’s work.

7
The Role of Feedback in Gesture Interfaces

Another fundamental issue in gesture interface design is if and how
feedback should be provided. Basic gesture visual feedback in the form
of digital ink is rather straightforward to display, yet its impact is not
obvious. On one hand one can argue that such feedback assures the user
that the gesture produced meets the user’s expectation and helps the
user to produce stroke gestures more accurately. On the other hand,
one can also argue that visual feedback draws the user’s attention but
is too late to help the user correct the gesture.

7.1 Visual Gesture Feedback

Andersen and Zhai conducted a systematic and baseline experimental
study evaluating the impact of visual feedback on gesture production
[5]. Their entire experiment included a factorial combination of visual
and auditory feedback conditions. For ease of comprehension we first
review the impact of visual feedback here.

The experimental task was to reproduce a set of 20 (classes of) ges-
tures of varying complexity according to their respective templates, the
canonical forms of the gesture classes. The participants were asked to

140

7.1 Visual Gesture Feedback 141

write with a digital stylus on a digitizer tablet as accurately as possible
in a normal writing speed. The target template gestures were first pre-
sented on a screen and the reproduced gestures were recorded. Using the
recordings, the stroke gestures were measured and analyzed in multiple
ways according to gesture size, gesture speed, aperture, shape distance,
and directional difference. In the visual feedback condition, the system
displayed the ink traces as the participants produced the stroke ges-
tures. The impact of such feedback, in comparison to no feedback, is
as follows:

Size, as defined by the area of the bounding box of the gesture, was
significantly influenced by visual feedback. With visual feedback, the
average size of a gesture was about 4.5 cm2. Without visual feedback,
the average size of a gesture was about 7.5 cm2. Figure 7.1 shows
examples of gestures produced with and without visual feedback in the
experiment. Such an effect has been previously observed in the hand-
writing literature. For example van Doorn and Keuss demonstrated
that handwriting without visual feedback was larger than with visual
feedback [113].

Speed. The average movement speed (movement length per unit time)
also changed significantly with visual feedback conditions. With visual
feedback, the average speed was 6.2 cm/sec, lower than the average
speed of 7.8 cm/sec without visual feedback.

Completion time. While visual feedback tended to have a large effect
on gesture size (smaller with visual feedback) and drawing speed
(slower with visual feedback), it had a statistically significant but

Fig. 7.1 Multiple trials of gestures produced with (left) and without (right) visual feedback.

142 The Role of Feedback in Gesture Interfaces

magnitude-wise much smaller effect on gesture completion time. The
average completion time used to produce a gesture was 1.23 sec with
visual feedback and 1.32 sec without visual feedback. With visual feed-
back the slower speed and smaller gesture tended to compensate for
each other, resulting in a completion time similar to (although still
shorter than) the completion time without visual feedback.

Aperture. In the experiment, half of the gestures were closed between
the beginning and ending of the gestures (e.g., a square). In actual
production the distance between the beginning and the ending points,
called aperture, may not be zero. Without visual feedback, returning
to the beginning point is, not surprisingly, much harder. It requires
accurate reproduction of the order, direction, as well as the relative
proportions of the individual segments in a gesture (see Figure 7.1
for examples). Indeed, in the experiment, visual feedback helped to
reduce the average gap between the beginning and the ending points
to about 60% of the average gap in the no-feedback condition. Aperture
reflects the same type of referential ability to cross the t’s and dot the
i’s, as in handwriting research [107]. Being able to accurately cross a
referential point is perhaps the most important positive role of visual
feedback.

Shape distance. In addition to size, speed, and referential features such
as aperture, it is also informative to know how visual feedback impacts
the overall shape of the gesture produced relative to the target tem-
plate gesture. One measure of shape difference is proportional shape
distance (PSD) d. To calculate d, both the template and the drawn
gesture are normalized to the same size and each of them is sampled
into a fixed number of equidistant points. d is then calculated as the
mean distance between the corresponding sampling points in the drawn
gesture and in the template. Such a measure is sensitive to the overall
shape proportion, but not to local features. We will review PSD as a
gesture recognition feature later in the section “Gesture Recognition
Algorithms and Design Toolkits.”

As measured by PSD, visual feedback made no statistically signifi-
cant difference to shape distance. An important implication here is that
if the gesture recognizer relies on a gesture’s overall shape and ignores

7.2 Audio and Other Forms of Gesture Feedback 143

referential features, then visual feedback would have little impact on
recognition accuracy.

Directional difference. Another measure calculated in Andersen and
Zhai’s experiment was directional difference. This measure compares
only directional differences in all corresponding segments of the two
stroke gestures (the template and the drawn gesture) and discards
the extent (length) of each segment. To compute such a measure, the
gestures first needed to be segmented based on inflection points (see [5]
for details). The experimental results showed no statistical difference
with and without visual feedback in this measure either.

In summary, visual feedback has a large impact on gesture size and
on referential features such as the aperture of the closed gestures. It has
a small impact on completion time, but no significant impact on the
overall shape or segment direction accuracy. These findings point to dif-
ferent aspects of stroke gesture production. Fundamentally, the spatial-
temporal patterns of a gesture recalled and reproduced from memory
(inside-out) are largely open loop and articulated without much feed-
back modulation. It is important to take advantage of such aspect of
gesture production so that information input based on gestures can be
achieved eyes-free, a key point emphasized in the design of Unistrokes
[38]. On the other hand, if referential features that require more of a
closed-loop control behavior (“crossing the t’s”) and if the size of the
stroke gestures is important, visual feedback can be very useful.

7.2 Audio and Other Forms of Gesture Feedback

7.2.1 Auditory Gesture Feedback

There are compelling reasons to believe auditory feedback can play a
potentially interesting role in the use of stroke gestures. In comparison
to absolute judgment of sound quantities such as pitch or loudness,
the human auditory modality is more sensitive to relative rhythm and
patterns [26]. For example, although it was difficult to tell which tones
corresponded to which digits in the old modem dialing experience, one
could often tell if the entire sequence was correct based on the overall
melody. Considering that stroke gestures are spatial or movement

144 The Role of Feedback in Gesture Interfaces

patterns, it might be beneficial to couple these movement patterns with
sound feedback. A related experience is the toy, “Simon,” in which the
sound pattern may help the player memorize the previous sequence
of keys. Tight coupling between sound and kinesthetic patterns is
most evident in musical activities such as dancing and instrument
playing. It is difficult to imagine dancing without sound patterns
(music). In the case of many musical instruments, the kinesthetic
spatial movements of the musicians and the temporal sound patterns
produced are inseparable. Wouldn’t it be interesting, at least as an
option, to turn a stroke gesture interface into some form of musical
instrument that is similar but hopefully less eerie than the Theremin?
However, one should be mindful that musical skills are acquired over
intense and longitudinal practice. That great amount of practice is
usually unacceptable to user interfaces.

There is a vast design space of auditory feedback and there are many
ways of mapping a gesture to any particular design. A basic goal should
be to make the auditory feedback both informative and pleasant. To
be informative means the feedback should indicate the shape of the
gesture in real time. As the gesture changes direction or speed, the
user should be able to tell the difference from the auditory feedback.
Often a discriminative signal may not be pleasant to listen to. A simple
design, for example, is to map the x and y coordinates of the gesture
movement to the amplitude and frequency of a continuous complex
tone. While such a design produces rather informative signals, it is
unpleasant to listen to. To make it more pleasant, more complex sound,
such as musical tones or the sound of different musical instruments
could be used, although such a design may not be as responsive to
instantaneous changes of gesture and hence less informative.

One lesson learned in Andersen and Zhai’s exploratory study [5] was
that auditory feedback of stroke gestures tended to be overshadowed
by visual-spatial memory. To obtain a baseline performance impact,
we designed an experiment in which 20 gestures were reproduced with
visual or auditory feedback. The auditory feedback was made as dis-
criminatory as possible through a complex tone. The vertical position
of the pen tip was mapped to the fundamental frequency of the tone: a
higher tone was played if the gesture moved to a higher y position. The

7.2 Audio and Other Forms of Gesture Feedback 145

horizontal position of the pen tip was mapped to the number of over-
tones, creating more pure tones on the left and richer tones on the right.
In addition, jitter, that is, random frequency variations of each partial,
and inharmonicity were used to further increase perceptual difference
in the horizontal x dimension.

In Andersen and Zhai’s experiment, amplitude was mapped to the
speed of the pen, so that a fast pen speed created a loud tone. This also
had the effect of making the sound less intrusive when the pen was at
a stop, which can be important for a practical realization of auditory
gesture feedback.

Another perceptual parameter used to encode the position of the
pen was the perceived direction of the stereo sound source. The direc-
tion of the pen position relative to the starting point would determine
the direction of the sound source in the horizontal plane. If the pen was
moved to the left of the starting point, the complex tone was perceived
as coming from the left, whereas when it was moved above the starting
point, the tone was perceived as coming from the front.

With such an auditory feedback signal carefully designed to
make different spatial patterns discriminatory in the auditory space,
Andersen and Zhai measured and analyzed the same aspects of gestures
as in the visual feedback conditions reviewed in the last subsection. The
main effects of audio feedback, in comparison to visual feedback, are
summarized as follows.

Size. While gestures produced with visual feedback were much smaller
than without, gestures produced with audio feedback were only slightly
smaller than without.

Speed. While the average movement speed (movement length per unit
time) with visual feedback was significantly slower than without, audi-
tory feedback did not have a statistically significant effect on speed
although the mean was slightly lower with auditory feedback as well.

Completion time. Recall with visual feedback gestures tended to be
smaller in size and slower in speed. These two effects compensated for
each other, resulting in a gesture completion time with visual feedback
similar to but still shorter than without visual feedback. In the case of
audio feedback, the completion time was not significantly influenced.

146 The Role of Feedback in Gesture Interfaces

Aperture. One of the strong effects of visual feedback was on the accu-
racy of closing the aperture of the closed gestures. Audio also had a
similar effect, although to a much lesser extent.

Shape distance. Like visual feedback, audio feedback had no measurable
effect on the accuracy of the overall shape produced.

Directional difference. Like visual feedback, audio feedback had no
impact on this measure.

In summary, audio feedback had effects to a much smaller extent on
those aspects of gestures where visual feedback had large effects. These
include gesture size and aperture. Where visual feedback failed to have
any impact, such as a gesture’s overall shape, auditory feedback did
not have any impact either.

Andersen and Zhai’s study did not lend support to auditory feed-
back’s contribution to learnability, retention, or in-process correction,
which they set out to investigate [5]. It was realized that the type of
learning involving in playing music instruments and dancing would take
much longer time than acceptable UI learning time. Their investiga-
tion also showed a strong spatial pattern dominance. People tended to
remember the spatial patterns rather than the auditory patterns. Over-
all their investigation on audio feedback reinforced the understanding
that gesture production is largely “open-loop,” recalled and reproduced
from memory (inside-out), and feedback would be too slow to modu-
late the production except in cases where there are reference points
“crossing t’s”) that need to be addressed.

However, guiding the gesture production process is not the only
possible use of auditory feedback. It is much easier to use auditory
feedback to inform the user about the product, or result, of the gesture
articulated. Similar to touch-tone phone sounds, auditory feedback of
gestures could potentially help the user recall gestures or at least let
the user notice right away if a gesture is ill-articulated. An even more
obvious type of product feedback of gestures, with which we experi-
mented, is to pronounce (in appropriate situations) the ShapeWriter
gesture keyboard’s output word so that the user does not have to visu-
ally check if the correct word is entered. Similarly, auditory feedback
can also be used to pronounce the result of a pie menu selection [140].

7.2 Audio and Other Forms of Gesture Feedback 147

7.2.2 Haptic Feedback

In addition to visual and audio feedback, it is also possible to pro-
vide haptic feedback to stroke gesture production. One can feel the
difference between writing with a fountain pen on paper and writing
with a ballpoint pen on a hard surface. When we discussed such issues
with designers at touchscreen device makers, we learned that device
makers pay attention to the material used for the pen tip for better
feel of the digital stylus. It is conceivable that various vibrato-tactile
feedbacks can be further provided via relatively simple technology to
create virtual frictions on the touchscreen. The impact of haptic feed-
back on gesture, however, is yet to be systematically studied in the
literature.

When the touchscreen is capacitive, the haptic experience of finger
gesturing on the smooth screen tends to vary from one individual to
another. Although we know of no formal studies, our own observation
is that dry finger skin tends to slide on smooth surfaces more easily, but
moist skin tends to be sticky on smooth screens. This is rather evident
when operating a touchscreen device immediately after washing one’s
hands.

Conceivably, haptic feedback can at least provide anchor points on
the touchscreen. For example a touchscreen may give haptic feedback
if a few reference points are crossed, very much like the role of raised
dots on selected keys on physical keyboards. For special applications of
touchscreens, it is also possible to superimpose physical templates over
the touch surface to assist the user in eyes-free operation [19].

The original version of EdgeWrite [124] is an interesting example
of exploiting haptic assistance in gesture production. It is a text entry
method for handheld devices designed to provide stability of motion for
people with motor impairments. Its special alphabet leverages the phys-
ical edges for greater stability in text entry. A user enters a modified
version of Roman letters by traversing the edges and diagonals of the
square hole of a plastic fixture mounted on a PDA device. Although
the EdgeWrite letters differ in visual appearance from the standard
Roman letters, the two sets have quite similar kinetic movement pat-
terns, which makes EdgeWrite easier to learn [124].

148 The Role of Visual Feedback in Gesture Interfaces

Electrovibration is an intriguing mechanism to implement haptics
without mechanical actuators. Like stereoscopic displays that can cre-
ate synthetic 3D imagery to human eyes, electrovibration can create a
synthetic texture perception to the human finger [14].

7.3 Feedback and the Esthetic, Subjective, and Emotional
Experience of Gesture Interfaces

Drawing stroke gestures is a fun experience for most people. This
advantage should be exploited in product design. Most children enjoy
doodling and drawing from a very young age. The continuous motion of
drawing gestures is arguably more enjoyable than the discrete motion
of typing.

In addition, designers of gesture interfaces can do more to make
the esthetic, subjective, and emotional experience of a gesture inter-
face more pleasing, engaging, and fun. The importance of designing for
emotional appeal was well articulated in Norman’s book on the subject
[93], which notably was published well before the wild market success
of the Apple iPhone, which has a strong emotional appeal.

However not much is known about how to make an interface more
fun to use. Design of feedback, either visual or auditory, might be one
important contributing factor. Many researchers working on sketch-
ing UI have developed various graphics techniques to “beautify” hand-
drawn digital ink after it is drawn into known geometric shapes such
as squares and circles [11], and 3D objects [49, 130].

There are documented techniques in cartoon animation that have
been explored in making fun user interface applications [24]. For exam-
ple an object that prefaces forward movement with a small and quick
contrary movement, or an object that comes to a stop and vibrates into
place, would appear more fun, more engaging and more lively than oth-
erwise.

However, making an interface more fun can conflict with the goal of
fast performance. For example in the Tablet PC version of ShapeWriter,
we implemented stroke animation that morphs the approximate gesture
drawn by the user into the template as recognized by the system [59]
(Figure 7.2), similar to the effect of making hand drawn CAD lines into

7.2 Esthetic, Subjective, and Emotional Experience of Gesture Interfaces 149

(a) (b) (c)

(d) (e) (f)

Fig. 7.2 The gesture animation in ShapeWriter: (a) the approximate gesture w-a-t-c-h-i-n-g
is being drawn; (b) gesture is near completion; (c) immediately after finger lift, the ideal
trace (straight lines), the actual trace drawn, and the word as recognized are displayed; (d,
e) the actual trace is morphed toward the ideal trace; (f) the animation completes.

perfect shapes in SketchPad according to its built-in rules and mod-
els [108]. The stroke animation in ShapeWriter not only informs the
user as to how much he or she has deviated from the ideal trace of the
recognized word, but also makes the interface more lively [59]. On the
other hand, the animation process may slow down the user and take
the user’s attention away from entering the next word, which is often
what the user wants to focus on. Although the user can always choose
not to look at the animated feedback and forge ahead, there was still a
question whether the animation gives the user a more complex impres-
sion than necessary. No systematic empirical study has been reported
on the effects of animated gesture strokes.

The Android version of ShapeWriter made a compromise between
the aim of teaching the user via animated feedback and fast perfor-
mance. As soon as the user lifts his or her finger, the ideal trace of
the recognized word was displayed immediately, without intermediate
animation steps. This still gave an apparent snapping motion from the
actual trace to the ideal trace, which may potentially teach the user
the ideal shape and make the UI livelier.

150 The Role of Visual Feedback in Gesture Interfaces

Auditory feedback also has the potential to make stroke gestures
more fun and more engaging. Andersen and Zhai [5] presented an
experiment on “writing with music” in which they coupled stroke
gestures with various audio feedback such as music and continuous
tones. They evaluated a number of subjective dimensions such as
“terrible-wonderful” and “dull-stimulating” under different auditory
feedback conditions. On the dimension of “dull-stimulating,” musical
feedback was rated significantly better than both silence and a continu-
ous tone. On the “terrible-wonderful” dimension, however, the musical
and silent conditions were rated equally high, both significantly better
than the continuous tone. Although the results show significant statis-
tical differences between the tested conditions, it was also clear that
there were large individual differences between the tested users. This
indicates that auditory feedback should be made optional in practical
systems, allowing the user to turn on and off or adjust the feedback
provided.

8
Memory and Cognitive

Aspects of Stroke Gestures

In addition to motor control execution and perceptual feedback of
stroke gestures, cognitive functions related to stroke gestures, particu-
larly learning and memory, are also very important to user interaction.
We can find much anecdotal evidence that humans are good at remem-
bering spatial patterns in comparison to, say, remembering sequences of
numbers or symbols. For everyday life, we encounter, recognize and use
spatial patterns ranging from letters and symbols, to routes to work and
other places. For people who use logographic writing systems such as
the Chinese script, being able to recognize thousands of visual-spatial
patterns is a necessity for basic literacy.

Little gesture interface research to date has been linked to more
general human memory research, which distinguishes memory into
declarative memory and procedural memory [112]. Declarative memory
is about knowledge and facts and is explicit. Procedural memory on
the other hand is about skills and how to do things, particularly
body control. Procedural memory is unconscious or implicit. Stroke
gestures are likely to involve both declarative and procedural memory
and possibly shift from the declarative side to the procedural side,
falling below conscious awareness as learning progresses. Similarly,

151

152 Memory and Cognitive Aspects of Stroke Gestures

motor control and learning research suggests that voluntary actions
are initiated by a conscious goal, but the perceptual-motor integration,
sequencing, spatial representation and movement dynamics are outside
of awareness [119]. Procedural memory and motor skills are typically
long lasting. Skills such as bicycling or skiing, once learned, are hardly
ever forgotten [103].

8.1 Gesture’s Comparative Advantage
to Lexical Commands

Before menu-driven perceptually-based graphical user interfaces (GUI)
became dominant, memory recall-based lexical commands, such as
DO, SET, and JUSTIFY, were the main form of HCI in command
line interfaces. It was therefore logical to compare and contrast the
cognitive properties of gestural versus lexical commands. Morrel-
Samuels [89] draws on a body of social and cognitive psychology
literature to argue that in comparison to lexical commands, gestural
commands, consisting of hand markings such as a circle, a cross or an
arrow, “should be faster to use, more memorable, and more likeable.”
Borrowing from Ekman and Friesen’s work [34] on hand movements,
Morrel-Samuels separated stroke gestures into two groups: emblematic
gestures with a specific meaning capable of being translated into words
(e.g., an X gesture for delete) and illustrative gestures for pointing,
demarcation, or emphasis (e.g., circles, braces, arrows). He postulated
five advantages of gestural commands:

1. Gesture commands are terse in that they are already at the
very minimum in complexity.

2. They are common in that different people tend to use the
same gesture (e.g., X) for certain function (e.g., delete).

3. They are less ambiguous than words.
4. Gestures are strongly represented in human memory hence

gestural commands can be more fluent (fewer pauses) than
lexical commands.

5. Emblematic gestures are iconic in that the meaning and
shape of gestures are not arbitrary.

8.2 Learning Stroke Gestures is Easier than Learning Keyboard Shortcuts 153

Note the types of gestures considered by Morrel-Samuels was much
narrower and smaller in capacity (the number of possible gestures
matching the criteria given) than what is intended in today’s user inter-
faces, but many of the arguments may still hold true.

Other researchers have identified and applied different cognitive
insights and principles pertinent to gestures in HCI. For example,
Buxton uses the notion of chunking and phrasing as key to organiz-
ing and structuring the interaction process [17]. The proprioception
involved in gesture control, such as muscle tension, can facilitate chunk-
ing and phrasing. Gesture research projects such as GEDIT [62] and
Scriboli [43] further articulated and demonstrated gesture’s potential
to integrate object selection and action into one continuous chunk of
interaction.

Today, search-and-click type perceptually-based GUI interfaces con-
tinue to be the dominant form of HCI. However the lack of efficiency
in this paradigm is also evident. Take the current generation of smart-
phones as a recent example, applications and functions are laid out
as separate icons with labels on the touchscreen. This makes it rather
easy to select a specific function the user wants to activate, by visually
searching for and then touching on a particular icon. However, as the
user accumulates more applications, the number of icons exceeds what
one or two screens can accommodate, making it more tedious and time
consuming to select an application. The situation calls for some form of
faster recall-based means of accessing functions. The medium of recall
can be either words (which requires typing) or gestures. The recent
work of Li [74] on Android phones, which allows the user to gesture
the first letters of names for retrieval has already begun to address the
shortcomings of browsing-based mobile UI design.

8.2 Learning Stroke Gestures is Easier than Learning
Keyboard Shortcuts

A recent experiment by Appert and Zhai demonstrating the cognitive
advantage of stroke gestures is in the area of command shortcuts [10].
Keyboard command shortcuts, such as Ctrl-C for copy, are a memory
recall-based, faster alternative means of accessing computing functions

154 Memory and Cognitive Aspects of Stroke Gestures

to the menu-driven GUI interaction. For touchscreen devices without a
physical keyboard, gestures could play a similar, or even stronger, role
as a recall-based alternative to icon selection. Furthermore, Appert and
Zhai’s experiment demonstrated that people were about 200% better
at mastering gesture shortcuts than keyboard shortcuts.

Their experiment tested people’s speed of learning stroke gesture
versus keyboard shortcuts. While both hot keys and gestures can be
designed to be mnemonic, the experiment deliberately mapped a set
of menu items to arbitrary gestures and arbitrary hot keys in order to
establish an unbiased baseline comparison (Figure 8.1). In each trial,
the experiment required its participants to select an item in one of
the menus attached to the menu bar, either through menu navigation
or through shortcuts. The shortcuts, as hot keys or as stroke gestures
(depending on the experimental condition), were displayed beside the
corresponding menu items (Figure 8.2). The participants were asked to
remember and use as many shortcuts as possible. If they didn’t remem-
ber the shortcuts, they could use the menu to select the command or
look up the shortcuts in the menu. There were five menus (recreation,
fruits, vegetables, office, and animals) with each menu containing 12

ICON Keys Gesture ICON Keys Gesture

Shift+W Ctrl+W

Shift+D Ctrl+D

… … … … … …

Fig. 8.1 Examples of keyboard and gesture shortcuts to arbitrary concepts.

None Warm-up (day 1)

Keyboard Test (day 1)

Stroke Test (day 1)

Both Re-Test (day 2)

Fig. 8.2 Shortcut conditions tested in [10].

8.2 Learning Stroke Gestures is Easier than Learning Keyboard Shortcuts 155

menu items in the experiment. In varying repeating frequency, 14 of
the total of 5 × 12 = 60 items appeared to the participants as target
commands to be activated. The rest of the 60 items were also assigned
shortcuts and served as distracters.

After two blocks of warm-up trials in which only menu naviga-
tion was used to activate commands, each participant went through
four blocks of 60 trials in each condition (gesture shortcuts versus
keyboard shortcuts). The order of the conditions was balanced across
participants.

The results of the experiment strongly supported the learning and
memory advantage of gesture shortcuts over keyboard shortcuts. In
terms of completion time, defined as the total time elapsed (in ms) from
presentation of the command icon to completion of the correct com-
mand, on average the gesture condition was significantly faster than the
keyboard condition (F1,13 = 36, p < 0.0001). As shown in Figure 8.3(a),
while the completion time in both conditions decreased with the num-
ber of repetitions and given enough practice both would reach a similar

T
im

e
(i

n
m

s)

Shortcut within Item Frequency

stroke shortcuts

keyboard shortcuts

Shortcut within Item Frequency

E
rr

or
s

stroke shortcuts

keyboard shortcuts

(a) (b)

Fig. 8.3 Completion time (a) and error per trial (b) as a function of the number of times
a command was repeated in each of the four testing blocks of trials. Both keyboard short-
cuts and gesture stroke shortcuts improved with practice, but gesture shortcuts performed
significantly better than keyboard shortcuts in both time and error measures particularly
with a moderate amount of practice. Adapted from Appert and Zhai [10].

156 Memory and Cognitive Aspects of Stroke Gestures

floor, the stroke gesture condition decreased much faster than the key-
board condition, indicating faster learning of gestures.

Error rate, defined as the number of times the participants entered a
wrong shortcut before entering a correct one, was significantly lower in
the stroke gesture condition than the keyboard condition. In the stroke
gesture condition, 19% of the trials contained at least one error with
participants trying 0.32 gestures on average before entering the right
one. In the keyboard condition, the percentage of error trials was 22%
with 0.49 attempts on average before actually triggering the right com-
mand. Figure 8.3(b) shows error per trial as a function of the number
of times a command was repeated in each of the four testing blocks.

In terms of recall, defined as the number of times the participant
was able to activate the right command with a shortcut without open-
ing the menu and without any error, the stroke gesture condition
also performed significantly better than the keyboard. As shown in
Figure 8.4(a), the recall rate improved over practice in both conditions
(and both would reach a near perfect ceiling eventually), but the ges-
ture condition improved faster than the keyboard condition.

Shortcut within Item Frequency

R
ec

al
l

stroke shortcuts

keyboard shortcuts

100

75

50

25

0

stroke shortcuts

keyboard shortcuts

menu

S0
1

S0
2

S1
3

S1
2

S1
1

S1
0

S0
9

S0
8

S0
7

S0
6

S0
5

S0
4

S0
3

S1
4

(a) (b)

Fig. 8.4 Recall and reuse: (a) The ratio of correct recall as a function of the number of times
a command was repeated in each of the four testing blocks of trials. (b) The percentage of
gesture stroke shortcuts, keyboard shortcuts and menu selection used by each participant
in the second day re-test. Adapted from Appert and Zhai [10].

8.2 Learning Stroke Gestures is Easier than Learning Keyboard Shortcuts 157

Even stronger results in favor of gesture shortcuts were obtained
in the data collected in a re-test session. On the second day of the
experiment, the participants were told to complete two more blocks
of tests as quickly as possible by using the method of their choice for
each trial of command activation. Importantly the participants were
not told what would be in the second day’s experiment so that they
would not consciously rehearse the shortcuts during the break between
the two days. Although there were individual variations, on average
significantly more stroke shortcuts than keyboard shortcuts were used
(p < 0.0001). The overall mean percentages of use for the three tech-
niques were: 77.7% gesture shortcuts, 20.3% keyboard shortcuts, 2%
menu. In other words, given an equal amount of practice in the previ-
ous day and free choice, gesture shortcuts were used nearly four times
(3.82 times precisely) as often as keyboard shortcuts. Figure 8.4(b)
shows the percentage of gesture stroke shortcuts, keyboard shortcuts,
and menu selection used by each participant in the second day re-test.

As a final test, the participants were asked to draw or write down
both gesture and keyboard shortcuts as they remembered them, next
to the list of 14 target commands that appeared in the experiment. The
result again shows that people’s ability to remember stroke gestures was
much stronger than their ability to remember hot key combinations.
Averaged across the participants, 11.6 gesture shortcuts were correctly
answered and, in contrast, only 4 keyboard shortcuts were correctly
answered. In other words, the participants did 190% better with gesture
shortcuts than with keyboard shortcuts in the second-day re-test.

The results of Appert and Zhai indicate a clear inherent cogni-
tive advantage of stroke gestures in comparison to key combinations.
Stroke gestures, even when they are arbitrarily assigned to a command,
tend to give richer perceptual cues to the user, to form an association
between the shape of the gesture and the meaning of the command. For
example when a circle was assigned as fish, a participant “thought of
this stroke as fish because the shape’s stroke makes me think about a
pond.” For another example, “I associated this stroke with a jump and
I see karate as a sport where people jump.” For yet another example,
when an upward straight stroke was arbitrarily assigned to the object
“bat”, the user may make the association of a bat flying upwards.

158 Memory and Cognitive Aspects of Stroke Gestures

More theoretically, human memory research has suggested that elabo-
ration, more levels of encoding and deeper processing help memory [29].
The spatial and iconic information in a stroke may better enable users
to imagine (encode) an association between the gesture and its corre-
sponding commands in a more elaborate fashion, and hence help their
learning performance.

In summary, the experiment shows that gesture shortcuts can offer
significant advantages over keyboard shortcuts in terms of memory and
learning.

Note again that in the experiment of Appert and Zhai they chose
a baseline comparison in which functions were assigned arbitrary
gestures and arbitrary hot keys. Both were deliberately deprived
of mnemonic design. Notwithstanding the findings in the study, in
practice one can (and should) design both gestures and hot keys with
analogue or mnemonic properties when possible. One simple way of
making hot keys mnemonic is to use letters in a function’s name as
a shortcut. For example Ctrl-C is for copy. But this approach has
limited capacity: i.e., Ctrl-v, not Ctrl-p, is for paste. This approach
can also apply to gestures. Li’s gesture search [74] allows the user to
keep writing letters in the word until the desired function (an app, a
setting menu, or a contact name) appears in a short list for selection.

8.3 People’s Ability to Learn and Memorize Stroke Gestures

The last section reviewed an experiment that demonstrated that
people’s ability to learn gestures, even if arbitrarily mapped to seman-
tics, was superior to learning key sequences. This section reviews an
experiment that shows people’s capacity to memorize gestures was
only limited by their speed of learning, which could be as high as
15 gestures per 45 minutes of practice in an experimental set-up and
training scheme.

Zhai and Kristensson [134] provided such an empirical measurement
of the number of novel stroke gestures people could learn in a limited
amount of time on a word-gesture keyboard. How well people can learn
a new skill partly depends on the methods with which they practice

8.3 People’s Ability to Learn and Memorize Stroke Gestures 159

the new skill. Zhai and Kristensson used a revised version of the
ERI (expanding rehearsal interval) method, which gradually increases
the time interval between repetitions of the same task [68]. We will
describe the ERI method in some detail in the section “Providing
game-based training” later.

In Zhai and Kristensson’s study, participants were asked to learn
and memorize as many word gestures as possible on an experimental
word-gesture keyboard (SHARK) in four 45 to 60 minute sessions. The
word gestures in the experiment were defined on the ATOMIK key-
board layout [133], which was new to the participants so all gestures
tested were novel. The gesture keyboard recognition algorithm used in
the experiment was scale and location independent (albeit for a rela-
tively small vocabulary).

For each practice trial, a target word was presented to the
participant, who was asked to draw the gesture of that word in a blank
window without any visual memory assistance. If the gesture was cor-
rectly recognized as the target word, the trial was a success. The target
word would be rescheduled for practice with an increased interval. A
new practice trial with a new word from the practice queue would
be presented to the participant. If the gesture was not recognized as
the target word, the participant could make another attempt at draw-
ing the correct gesture. If the participant could not recall the gesture
for the target word, or if the target word had never been practiced
before, the participant could learn it (for a new word) or relearn it (for
a forgotten word) by displaying the ATOMIK keyboard, together with
the ideal gesture drawn in dotted lines connecting the letters in the
word (Figure 8.5). The participants could copy or draw the word ges-
ture anywhere on the keyboard in any scale, and practice the gesture
as many times as they wanted to explore the tolerance of acceptable
shapes for the word before moving onto the next target word.

Session 1 of the study was a 40-minute practice session only. Ses-
sions 2, 3, and 4 consisted of two parts. Part one was a test session of
words the participant had practiced in previous sessions, lasting from 6
to 20 minutes. There was a minimum period of one day between a test
and the previous practice session. Part two was 45 minutes of practice

160 Memory and Cognitive Aspects of Stroke Gestures

Fig. 8.5 Users’ ability to learn gestures was tested on a novel (ATOMIK) gesture keyboard
layout.

(including a five minute break in the middle). Session 5, the last session,
was a final test session only.

In test sessions, words were presented in a random order. The par-
ticipants were given at most two chances to correctly recall and write
a word gesture in a blank window without any visual assistance.

The results of the experiment showed that all six participants could
learn to draw correctly recognizable word gestures for any word pre-
sented to them, if practiced enough times. Typically it took 7 to 15
practice trials to fully memorize a word gesture.

As shown in Figures 8.6 and 8.7, participants were able to cor-
rectly write more words in each learning session, on average about 15
more words per session. In the final test, on average they correctly pro-
duced 48.83 (between 62 and 39) words in their first attempt, and 58.67
(between 77 and 49) words if counting the second attempt when the
first failed. Interestingly, the number of new words learned per session
was nearly constant (Figure 8.7).

Although the Zhai and Kristensson study was in a particular context
(word-gesture keyboard) and with a specific learning regimen (ERI),
it showed one data point regarding people’s ability to learn arbitrary
gestures. The participants in the experiment were able to master 50
to 60 gestures in four test sessions with no signs of slowing down, a

8.3 People’s Ability to Learn and Memorize Stroke Gestures 161

Fig. 8.6 Total number of words correctly written in test sessions.

Fig. 8.7 More words learned in each session.

rather large number for most gesture systems. Even for text input,
which requires thousands or tens of thousands of words, 50 to 60 words
is still a very large number given the Zipf’s law effect that a small
number of common words covers a disproportional number of instances
of input. For less common words, the common word fragments (and
corresponding gesture parts) already mastered could still improve user’s
overall performance.

9
Gesture Design

The previous sections reviewed the basic theoretical and empirical
issues in people’s cognitive, perceptual, and motor control abilities
in dealing with stroke gestures. We now turn to some of the mecha-
nisms that can be potentially used in practical gesture system design.
Although ultimately design is a creative process, the following basic
principles should be applied or at least be considered in gesture design.
None of these principles, however, is straightforward and they certainly
are not necessarily compatible with each other. In fact, balancing these
conflicting factors according to the overall product design goal may well
be the key to the success of gesture-based user interfaces.

9.1 Making Gestures Analogous to Physics or Convention

For ease of learning, gestures should be designed to be analogous either
to the physical effects of the real world or to well-known conventions
and stereotypes. For example, an upward gesture can be used for vol-
ume up; a question mark gesture for help, a left to right gesture for
next or forward etc.

162

9.1 Making Gestures Analogous to Physics or Convention 163

In cognitive linguistics, it has been argued that real-world physi-
cal concepts, such as up and down, are deeply reflected in the way
we express our thoughts [52]. While the number of gestures that can
be designed in such a way may be limited, particularly when other
dimensions discussed in the rest of this monograph also have to be
considered, it is quite possible to find enough of them for a particular
application, such as in a mobile music player [97]. Most gestures on the
current generation of smartphones are analogue or direct manipulation
gestures.

In the case of gesture-based text input, the strongest conventions
are various existing writing systems, or “natural” hand writing scripts.
These writing systems are natural only in the sense that people have
already learned them and they have evolved in various cultures for
hundreds or thousands of years. However because they are not designed
for efficiency they are often inefficient as a text entry method. To write
a word in English takes 4 to 5 letters on average and each letter involves
at least one stroke. A Chinese word consists of one or more Chinese
characters and each traditional Chinese character consists of about
nine strokes on average (http://technology.chtsai.org/charfreq/). The
simplified Chinese characters need fewer strokes but they are still rather
complex.

Hence the dilemma of following a convention (which means natu-
ral handwriting-based on, for example, the Roman alphabet) or aban-
doning a convention for a new set of more efficient gestures, such as
Unistrokes [38]. A promising solution is to bridge experience from a
familiar convention to a more efficient behavior, which we will address
in the following sections.

There can also be a middle ground between following conventions for
ease of learning and making new designs for other considerations. Graf-
fiti largely follows the Roman letters with simplification and reduction
in strokes, so the new gesture set is easier to recognize, faster to write,
but still not too difficult to learn and remember. Similarly EdgeWrite
[124] approximates the Roman letters in kinematic motion but defines
gestures along the edges of a physical square to assist people with motor
control disability.

164 Gesture Design

9.2 Making Gestures Guessable and Immediately Usable by
Involving End Users Input in Design

As one of the design goals, gestures should be guessable and immedi-
ately usable by new users. Applying the previous design principle of
making gestures analogous to physical effects and cultural conventions
is one way of achieving these goals. Involving end users in defining
gestures is another.

There is a body of literature on guessability and immediate usability
of gesture interfaces. As reviewed earlier in this monograph, some of the
earliest empirical work on stroke gestures focused on users’ tendency
to use the same gesture for a given function [39, 127]. If most users
would intuitively guess/expect the same gesture for a given function,
such a gesture would be immediately usable by most users with little
learning.

Immediate usability is important to user adoption of gesture sets
hence it has been studied for various systems. For example MacKenzie
and Zhang [84] tested the immediate usability of Graffiti. Koltringer
and Grechenig tested the immediate usability of Graffiti 2 and the
virtual keyboard [56]. Wobbrock and Myers presented a design process
for maximizing the guessability of a gesture set [121]. They applied
such a process to redesign the final EdgeWrite alphabet to increase its
immediate usability to a level on par with Graffiti.

Wobbrock et al. [120] used the same guessability-maximization
method for designing gestures on tabletop touchscreens. The basic idea
of their method was to present study participants with the functions
that needed gestures and then ask them to make gestures to accomplish
those functions. The final gesture set was selected to maximize users’
agreement and resolve conflicts.

On the other hand, user-defined gestures tend to have high agree-
ment on only a small number of gestures that are analogous to their
physical effects or cultural conventions including user’s previous PC
experience. This is quite evident in the empirical results of Wobbrock
et al. [120]. User-defined gestures may not be unique to one function
and such gestures therefore need to be object-context dependent to
remove ambiguity. In sum, while involving end users is a desirable and

9.3 Making Gestures as Simple as Possible 165

often necessary phase of design, the entire gesture interface design often
cannot be left to the users alone.

9.3 Making Gestures as Simple as Possible

For efficiency reasons, stroke gestures should be made as simple as pos-
sible. From the motor control complexity models of stroke gestures, we
learned that the time to produce familiar gestures strongly depends on
these gestures’ complexity. Tools such as the CLC model can estimate
quantitatively the complexity of a gesture stroke and give a good predic-
tion of the gesture’s production time, at least relative to other gestures.

For any given application or product, typically a set G of N gestures
is needed {Gi, i = 1, . . . ,N}. For example, a letter-level writing system
like English needs at least 26 symbols. Fortunately the frequency of the
members in a set can often be estimated from existing usage data, which
means we can derive the individual probabilities pi for the member i.
Since it is possible to estimate the time ti to draw gesture Gi, then the
mean efficiency of using gesture set G is simply:

t =
N∑

i=1

piti. (9.1)

This would allow the designer to quickly evaluate two or more sets of
alternative gestures from a motor efficiency point of view. Note that
one can either tweak the shape of each gesture or move simpler ges-
tures to represent more frequent commands, to optimize according to
Equation (9.1).

9.4 Making Gestures Distinct

Gestures in a set should be as different from each other as possi-
ble. Well-separated gestures, by definition, increase error tolerance,
recognition accuracy, and potentially help the user to remember
them better. The visual similarity work of Long et al. [82], reviewed
earlier in this monograph, can potentially guide designers to design
well-separated gestures. However, doing so without assistance is often
difficult because the distance measure between gestures is recognizer
dependent and human imagination to create different shapes is often

166 Gesture Design

limited. Indeed, in the study of Long et al. [80], participants were asked
to obtain the best recognition accuracy they could by designing a set of
stroke gestures for Rubine’s recognition algorithm. No participant was
able to go beyond a 95.4% recognition rate. A typical problem they
observed is that participants tend to add strokes that are too similar
to those already defined. A design toolkit that provides interactive
assessment of the gesture set is often necessary. We will return to this
issue in the gesture toolkit section.

More generally, members of a gesture set should be distinct, com-
plementary, and coherent as a set, to support the user’s higher-level
tasks. Locally optimizing one gesture for each function at a time, or
letting the user self-define them may not be good enough.

9.5 Making Gestures Systematic

One of the classic rules of good design is to project a clear conceptual
model to the user, so there is a systematic view for the user to work
with. This also applies in gesture design. Word-gesture keyboards, such
as ShapeWriter, are systematic in the sense that the gesture for any
word always follows the simple rule of traversing letters in the word on
a keyboard. The keyboard is the mnemonic map, or crib sheet, for pro-
ducing any gesture. For example the gesture for the word “word” follows
the trace w-o-r-d. For any command, the corresponding gesture starts
from a special key such as Cmd and traverses the name of the command.
For example the gesture for the command copy is Cmd-c-o-p-y. [60].

It is often difficult to generate all gestures from a single system-
atic rule. Word-gesture keyboards such as ShapeWriter also have an
exception to the simple rule of traversing letters to gesture all words.
Uncommon names of people and places, technical jargon and acronyms
may not be stored in ShapeWriter’s default lexicon. For words that are
not stored in the lexicon (i.e., OOV — out of vocabulary), their corre-
sponding gestures are undefined. One would need to type such words
once, add them into the lexicon, and gesture them the next time.

Other systematic design of gestures includes Quikwriting [96].
Although the gestures defined in Quikwriting tend to be more complex
than ShapeWriter and Quikwriting does not involve pattern recognition

9.6 Making Gestures Self-revealing 167

as ShapeWriter does, it is another systematic way of defining gestures
for word entry.

Both gesture keyboards and Quikwriting provide a constant visual
support (e.g., the keyboard) that occupies screen real estate. It is
possible to dynamically reveal the visual support, which we discuss in
the next section.

9.6 Making Gestures Self-revealing

When the gesture for a command is not intuitive or guessable from a
system, it is important to make it self-revealing or discoverable.

There are a number of approaches to make gestures self-revealing.
One is some form of “crib sheet.” As described in Kurtenbach and
Moran [66], in the Tivoli system if the user does not know which ges-
tures are available or how to gesture a command, the user can press
down the stylus and wait for a crib sheet to display available com-
mands and their corresponding gestures. Similarly, the “gesture short-
cuts” described earlier in this article use pull-down menus as the crib
sheet [10]. One can select a menu item, but the same menu also dis-
plays a gesture shortcut to that command, to encourage the user to
learn and memorize the faster alternative [10]. Bragdon and colleagues
proposed to turn a traditional toolbar into a form of gesture crib sheet
called GestureBar [15]. Clicking on a tool in GestureBar does not actu-
ally invoke the command but rather opens a window that displays an
animation of the gesture for this command and an area for the user
to practice. This dynamic crib sheet is more forceful toward the use
of gestures than the static pull-down menu since it compels the user
to exclusively use gestures by disabling the default toolbar behavior.
Another mechanism is the “highlighter hints” used in InkSeine, which
help reveal gestures that are drawn on top of a particular portion of a
user interface [45].

Marking menus, or radial menus with delayed display [20, 48, 63, 64],
are inherently self-revealing. The user gestures the command if the user
remembers it. If not, the user presses down the pen and waits for the
delayed radial menu to guide the stroke gesture.

A recent and interesting attempt is to make a dynamic guide to
gestures. As crib sheets and marking menus do, the OctoPocus guide

168 Gesture Design

[13] displays the set of possible gestures in response to the user’s hesi-
tation. With OctoPocus, the set of displayed gestures is reduced to the
gesture candidates that match only the partially completed stroke ges-
ture already drawn. As the user draws further, the content of the guide
is continuously updated according to the user’s input. The implementa-
tion of this kind of dynamic guide requires a recognizer for incomplete
gestures. This is especially challenging when the system allows users
to draw gestures in varying scale. To address this problem, Appert
and Bau [8] proposed an algorithm to estimate the scale of an incom-
plete gesture and showed how to use it to implement a dynamic guide,
which supports scale independence. Note that gesture systems such as
EdgeWrite use a fixed scale so incremental recognition can be used with
less ambiguity. EdgeWrite displays incrementally recognized results
including in-stroke word completion as revealing feedback [123, 124].

Gesture keyboards such as ShapeWriter are also self-revealing in
the sense that a gesture is constructed from elements (letter keys) con-
stantly displayed on the screen. The extent of relying on the keyboard
guidance in producing a gesture is at the user’s discretion. If the user
does not know or forgets a gesture for a word or a command, the user
traces the word by going from letter to letter on the keyboard.

9.7 Supporting the Right Level of Chunking

A very important potential advantage of gestures lies in “chunking” —
grouping task elements into a larger inseparable whole. For example,
with word-gesture keyboards such as ShapeWriter, the user may ini-
tially view and draw each segment of the stroke gesture toward each
letter in a word as a separate act. Over time, the user may view and
draw the total shape of an entire word’s gesture without separating it
into segments. For longer words, the trace that links common word frag-
ments, such as t-i-o-n, may be chunked together first. Although chunk-
ing is a fundamental human behavior, stroke gestures may facilitate
such a behavior faster than typing key sequences because of the kines-
thetic characteristics of gesturing. To make a stroke gesture, the dis-
tinctive state of maintaining pressure or contact with the surface may
encourage the user to treat the process as a whole [17].

9.8 Supporting Progression from Ease to Efficiency 169

It is not assumed that gesture systems should always impose the
greatest chunks of information possible on the user to process. While
larger chunks of information being entered with a single gesture stroke
may be efficient from a motor control point of view, this may impose
an increasingly higher cognitive and learning burden on the user. For
example, it is technically possible to use single strokes in a word-gesture
keyboard to enter a whole phrase rather than a single word. In fact
a greater degree of error tolerance can be achieved at a phrase level
because the larger the language unit is, the more constrained and more
distinct it is. However it could be too cognitively demanding to draw
a whole phrase without a break. Furthermore, when an error is made,
the whole phrase has to be corrected and rewritten, so the cost of error
is also higher.

The issue of supporting the right level of chunking also faces the
design of marking menus. The original marking menus used zigzag com-
pound gesture marks for hierarchical menus selection [64]. For higher
accuracy and speed reasons, it is also possible to use several straight
strokes instead of a larger compound mark to invoke a command [139].
The long-term memory and chunking implications of the two choices,
however, are unclear.

9.8 Supporting Progression from Ease to Efficiency

Chunking is a means toward efficient interaction. When designing
gesture systems, efficiency is an important consideration, but it is also
important to make a gesture system easy to learn. Ease (of learning)
and efficiency are both critical and desirable qualities of a good user
interface.

Unfortunately the ease and the efficiency of a user interface are often
at odds with each other since the cognitive factors influencing ease and
efficiency are different.

From a user perspective, an easy-to-learn interface should be human-
visual recognition-based or display driven. A pull-down menu is an
example of an easy-to-learn interface. With such an interface, the user
should be able to recognize and select an action from the available choices
displayed. It is fundamentally an outside-in, closed-loop, controlled, and

170 Gesture Design

attention-demanding cognitive process. Such a process tends to be slow,
but it requires little a priori memory of the action procedure.

In contrast, an efficient interface should be recall-based or mem-
ory driven. A keyboard shortcut is an example of an efficient interface.
With such an interface, the user needs to execute the action procedure
recalled from the user’s memory. This is fundamentally an inside-out,
open-loop, automatic, and low attention cognitive process. Such a pro-
cess tends to be fast, but requires memory previously acquired through
practice. All highly skilled performances, ranging from fast typing to
sports, are of this kind.

For consumer products, interfaces designed only for ease of use tend
to triumph over interfaces designed only for efficiency (i.e., high per-
formance). There may be a bias toward short-term savings of learn-
ing at the cost of long-term loss in efficiency. This is very similar to,
and in fact a version of, the human decision bias in facing alternative
“prospects” [53]. When it comes to gaining, people tend to take the
safer but less rewarding bet. When two alternative interfaces are avail-
able in the same system, users tend to choose and stay on the easy to
learn but less efficient path. It is therefore desirable to design strate-
gies to shift users from the easy path, such as the pull-down menus, to
the efficient path, such as keyboard shortcuts [41]. However research
shows the effective strategies tend to be quite heavy-handed/forceful.
For example, disabling menu execution and making menus effectively
crib sheets is one such strategy [41].

A solution to the ease versus efficiency conflict is to design
“progressive user interfaces,” which provide a progression path from
ease to efficiency. In other words, the users should be able to start
from visual recognition-based, display driven, and controlled behavior
to recall-based, memory driven, and automatic behavior.

Cognitive psychology research shows that the key to the progression
from a controlled and high-attention cognitive process to an automatic
and low-attention process lies in consistent mapping between stimu-
lus and response [105, 104]. However consistency in mapping is often
lacking in UI design. For example, for the same task of printing a docu-
ment, the keyboard shortcut response, Ctrl + p (recall-based) involves
a behavior that is completely different from the menu-driven response

9.8 Supporting Progression from Ease to Efficiency 171

(recognition-based) that novice users are used to. In contrast, marking
menus and gesture keyboards afford the same action patterns regard-
less of whether the action is driven from visual guidance or from past
memory. The consistency in movement facilitates the transition from
recognition to recall, from an outside-in, controlled and closed-loop
process to an inside-out, automatic and open-loop process.

However, consistent mapping is only a general principle. The specific
user interface mechanisms can still vary greatly. One important issue
that is still not well understood is how hard the interface should “push”
the user to shift from recognition to recall.

Marking menus, for example, choose to push the user to make that
switch by introducing a delay in the pie menu pop-up. Such a time cost
may encourage the user to actively recall the gesture action from past
memory rather than waiting for visual guidance from the menu display.
On the other hand, gesture keyboards such as ShapeWriter, leave the
degree of visual guidance from the keyboard relative to the degree of
gesture recall from memory completely at the user’s will. The user can
choose to look more or less from the keyboard for guidance.

Cockburn and colleagues [27] specifically studied the notion
of “no-pain no-gain hard lessons” UI design. They conducted two
experiments, one with soft keyboard tapping and one with learning
gestures on a keyboard. Both of them required the user to scratch
off the “frost” that covers the user interface as a penalty of looking
at the UI for visual guidance, hence forcing the user to perform as
much recall as possible. While such an interface did improve users’
spatial memory of a soft (tapping) keyboard, it was simply too hard
for learning gestures on a keyboard.

The idea of supporting both novice and expert users, and bridging
the two as smoothly as possible, has gone beyond marking menus and
SHARK/ShapeWriter gesture keyboards to other gesture methods. For
example, with EdgeWrite, users can make character-level unistrokes,
but while those strokes are being made, word completions are shown
in the four corners of the writing area. An experienced user can make
a pigtail loop and then select those corners as part of a single stroke.
EdgeWrite calls this “fluid in-stroke completion shorthand,” or Fisch,
in homage to SHARK [123].

172 Gesture Design

9.9 Providing Game-based Training
with Expanding Rehearsal

One strategy to make learning new gestures more fun and engaging
is to embed these gestures in game playing. The Graffiti letter writ-
ing system, which was central to the initial success of the Palm Pilot
PDA, came with a practice game called Giraffe. ShapeWriter, as was
released in the iPhone App Store and Android Market, embedded a
balloon popping game that Kristensson and Zhai previously researched
[61]. This game stands apart from other typing tutor-style games in
two aspects. First, it uses the Expanding Rehearsal Interval (ERI) to
optimize learning (more on this below). Second, if the user pressed an
Auto button, the game would demonstrate how to articulate a particu-
lar stroke gesture for a word. The benefits of this kind of observational
practice have been demonstrated in the psychomotor literature [55].
While a game could make practice more fun, the use of psychological
theories and methods in the game design can potentially make learning
more efficient and effective (Figure 9.1). There are a variety of theo-
ries, models and insights on how people learn and remember skills in
the literature of skill acquisition [98, 102] and human memory [12].

Fig. 9.1 A balloon popping game embedded in a version of Android ShapeWriter. The user
has to draw a correct gesture to pop the balloon carrying the target word, to gain points.

9.9 Providing Game-based Training with Expanding Rehearsal 173

A compelling method from that literature is the expanding rehearsal
interval (ERI) method [68].

A central issue in traditional training methods is whether the dis-
tribution of practice repetition should be massed or evenly distributed.
The ERI method is neither totally massed nor evenly distributed.
Rather, it optimizes the schedule of practice by increasing the inter-
val between repetitions.

The original ERI method increases rehearsal internally at a fixed
rate. For example, it may double the time interval each time an item
is practiced. Software driven ERI schedules can be adaptive to actual
learning performance [131, 138]. For example, the interval of rehearsal
for a particular gesture can expand only if the learner recalls the gesture
correctly. Otherwise, the interval can stay the same or even shrink if
the learner repeatedly fails to recall a gesture.

In Zhai and Kristensson’s initial experiment on gesture keyboard
learning [134], the ERI procedure worked roughly as follows. In each
cycle of rehearsal of a particular word, the participant was asked to
draw the gesture of that word without displaying the keyboard to the
user. This forced the user to actively retrieve the gesture from memory.
Research has shown that active retrieval is a key to memory retention
[102]. The word that matched the user’s gesture was then displayed
to the user. If correct, the word would be rescheduled to appear at
an interval twice the current value. The user could go on to the next
word or practice the current word a few more times before moving on.
If the participant could not recall or draw the word gesture correctly,
the rehearsal interval would keep its current value.

The ERI scheduling program maintained two lists of words: a word
list containing all words to be learned and a rehearse list keeping all
words that had been rehearsed at various intervals. Each word in the
rehearse list had its own timer, counting down from its current rehearsal
interval value. The algorithm that managed the ERI scheduling worked
as follows:

1. If the rehearse list is empty, pick a new word from the word
list and initialize it with a rehearse interval of 30 sec and put
it in the rehearse list.

174 Gesture Design

Fig. 9.2 The ERI traces of a few sample words by one participant in Zhai and Kristensson’s
experiment.

2. Pick the word from the rehearse list that has the earliest
rehearse time according to the value left in its timer.

3. If the timer is below 30 sec, present the word to the user.
Otherwise pick a new word from the word list and present it
to the user.

4. If the user draws the correct gesture of the target word,
return it to the rehearse list with a doubled rehearsal inter-
val, else return it with an unaltered rehearsal interval, Go
to 2.

As shown in Figure 9.2, in some cases the participant could keep
up with the ERI expansion and correctly draw the word gesture every
time (See “other” for example), suggesting that the expansion rate as
described in the procedure was just right or conservative. In other cases
(see “was” for example), the participant missed a step or two, suggest-
ing the expansion rate might be on the aggressive side. Overall, while
the Zhai and Kristensson [134] study showed ERI could be effectively
adapted to one gesture learning application, its relative efficiency in
comparison to other systematic learning methods, or the absence of
them, still needs further investigation.

10
The Separation of Command from Scope
Selection and Stroke Gesture from Inking

When stroke gestures are used as commands, they can serve different
types of purposes. One is to express the action to be applied, such as
“delete” or “move.” The other is to select or scope the object(s) the
action is to be applied to, by for example a lasso gesture that encircles
a group of icons. Occasionally it is also necessary to specify the target
location (such as “move these words there”).

The computer system has to be able to separate selection gestures
from command gestures, if they are drawn in different strokes. If they
are drawn in the same stroke, the system has to delimit the stroke into
selection and command segments.

There are many ways to achieve this separation. One is to design
different stroke gestures for selection and for command, which can be
difficult because the selection stroke gesture (e.g., a lasso) needs to be
flexible in shape in order to enclose different objects to be selected.
Another is an explicit mode switch by for example pressing on a but-
ton so that the same gesture stroke can continue to the command
phase from the selection phase. One can always use a tool palette to
switch modes. This is similar to regular drawing or graphics software
that changes the cursor’s mode depending on which button in the tool
palette was clicked on.

175

176 Separation of Command from Scope Selection and Stroke Gesture from Inking

To save the round trip of going to a tool palette outside the main
operating area, it is also possible to pop up a soft button, a menu,
or “a handle” at the end of the selection stroke [63]. Hinckley and
colleagues [43] proposed using a pigtail, a small circle at the end of the
selection lasso, as a delimiter to switch from selection to commands,
which were issued through a marking menu. Such a design enables both
selection and command to be chunked as one continuous gesture hence
becoming potentially more efficient for proficient users. Another way
to achieve selection and command in a single continuous gesture is to
pause for a set period to delimit the two phases in the same stroke.

Hinckley and colleagues studied a pigtail, time-out (pause), handle,
and physical button as delimiters in a comparative experiment. They
found that time-out is slow, not surprisingly given a set time threshold
has to be passed in order to continue the stroke; button is error prone
due to the need to synchronize the button click with the gesture phase
change; handle and pigtail (in another design iteration) were on par
with each other in performance. Pigtail was slightly faster in repeated
trials, presumably due to the greater degree of chunking. However most
of their participants preferred the pop-up handle technique in their
study.

For sketching applications, there is also a need to switch between
the command gesture mode and the inking (drawing) mode. Li and
colleagues [76] did a comprehensive study on methods of switching
between the two modes. They found that pressing a button with
another hand offered the fastest performance and was most preferred in
comparison to pressing the button on the stylus, pressing and holding
the stylus tip on the screen to wait for a mode change, pressing the pen
tip to a different force level, and flipping the stylus to the eraser head
side, as alternative mode-switching mechanisms.

Note that, in many cases, where the gesture is drawn specifies the
object. For example if a gesture X (delete) is drawn on a specific icon,
that icon will be deleted. In other words, object selection can sometimes
be implicit and hence free of additional shape complexity to the gesture
per se. Importantly, selection and commands are naturally separated
in these cases.

11
Gesture Recognition Algorithms

and Design Toolkits

This section reviews two major aspects of stroke gesture interface imple-
mentation. One is the design and development of gesture recognition
engines and the other is the assignments and linking of stroke gestures
to software functions.

11.1 Recognition Algorithms

In principle, gesture recognition is pattern recognition that has been
studied via a wealth of approaches and methods for decades. Several
excellent introductions to the field exist [33, 101, 110].

Single stroke gesture recognition was a critical part of early hand-
writing recognition systems. In the 1950s to 1960s such systems used
various coding schemes, such as zone coding [32] or chain codes [36] to
first encode both the user’s input and the stroke gesture templates into
digit sequences, and then perform recognition by matching the tem-
plate whose digit sequence is identical (or nearly identical) to the digit
sequence of the user’s input [91]. This is essentially the same approach
as hashing. The benefit of this approach is that it is very computation-
ally efficient. The downside is that it is not very robust to noise and
distortion.

177

178 Gesture Recognition Algorithms and Design Toolkits

The currently practiced methods of stroke gesture recognition
belong to two broad categories. One is data training-based methods and
the other is template matching methods descended from early hand-
writing recognition research.

Data-training approaches comprise machine learning methods such
as neural networks, hidden Markov models or covariance matrices.
These approaches represent a stroke gesture as an n-dimensional vector
and use a training set to partition the n-dimensional space into multiple
gesture classes. One method that has gained particularly popularity in
HCI research is the recognizer proposed by Rubine [100]. The Rubine
recognizer encodes a gesture as a vector of 13 features and uses a covari-
ance matrix to partition this 13-dimensional space. Rubine’s recognizer
has been used in many gesture research projects [47, 70, 80, 90]. The
quality of training is critical for the Rubine’s recognizer, or for any other
data-training algorithm. To make the recognizer accurate, it must be
trained with a rather large set of examples diverse enough to reflect
variance across users and contexts of use. It is often difficult to capture
naturally occurring variances in conscious articulation of gestures in the
laboratory. Training-based recognizers may also be difficult to debug
because it is hard for a designer to get a clear mental model of what
happens in a black box trained with data encoded in an n-dimensional
space.

More recently, template matching-based approaches have regained
research attention and applications in stroke gesture recognition
[10, 59, 75, 125, 131]. Template-based methods that compute the dis-
tance between a user’s gesture input and a list of gesture templates are
conceptually simple. They were largely abandoned in natural hand-
writing recognition because the explicit templates may not capture
the great amount of variance in people’s different writing styles, which
evolved over time, although elastic matching can stretch portions of a
stroke in order to handle the natural variations in handwriting [109].

In most stroke gesture applications, the gesture sets are often well
defined, either by the designer or by the end users. There are indeed
clear templates to these gestures. Gestures defined on word-gesture
keyboards also have well-defined templates — the stroke connecting
letters in the word on the given keyboard layout. ShapeWriter [134]

11.1 Recognition Algorithms 179

first applied elastic template matching in its early prototypes but later
used proportional shape distance (PSD) as a basic component of a more
complex multi-channel recognition system [59].

Later, PSD was adopted, generalized and expanded in the $1 rec-
ognizer [125], which was in turn extended to the $N, a multistroke rec-
ognizer built upon the $1 [6]. Li further improved the $1 recognizer by
measuring the angular difference between the input gesture vector and
the template gesture vector [75], which enabled a closed-form solution
for the best orientation match between the input and the template ges-
tures. The sampling rate requirement for a PSD-based recognizer can
be quite low. It has been shown that for a small gesture set (e.g., 30),
six sampling points per gesture was sufficient [114].

The main steps involved in PSD-based template matching are:
(1) Sampling both the input gesture and the template gestures into
a fixed number of points. (2) (Optionally) translate, scale, and rotate
the input gesture relative to the template gestures to minimize their
distances. (3) Compute a distance metric between the input gesture
and the template gestures. (4) Rank the template matching results
according to the distance metric and output the label of the top ranked
template.

Appert and Zhai [10] performed an experiment involving a set of
16 gestures, which is small but sufficient for many applications. They
showed that a PSD template-matching recognizer yielded the following
results: Participants made 7.4% errors on the first attempt using a
mouse. Among these failed trials, 73% of them were corrected with
the second attempt, 10% with the third attempt, and the remaining
17% with the subsequent attempts. When using a digital pen on a
tablet computer, only 3% of the trials failed with the first attempt, of
which 76% were corrected with the second attempt, 7% with the third
attempt, and the remaining 17% with the subsequent attempts. Most
of the errors were made with the three gestures that had small details
(e.g., 3 and 13 in Figure 11.1). Removing these gestures from the data
collected, the remaining errors were 0.001% among the mouse trials
and 0% among the pen trials. Overall, their experiment shows that a
PSD template-matching recognizer can work perfectly well for a small
gesture set that does not involve very detailed features.

180 Gesture Recognition Algorithms and Design Toolkits

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Fig. 11.1 Gestures used in Appert and Zhai’s [10] experiment.

Wobbrock, Wilson and Li empirically compared PSD template
matching with elastic template matching and Rubine’s recognizer and
found that the results of PSD template matching were nearly iden-
tical to those of elastic template matching and superior to Rubine’s
recognizer for the same gesture set [125].

It is optional to make template matching rotation, scale or location
independent. In terms of the recognition process, this means whether
the user-drawn gesture is transformed in orientation, scale, or location
to match the templates before the similarity between the input and
the templates is computed. These choices depend on the application.
For example some applications may require a left to right stroke to be
assigned to a different function (aka a gesture label or class) than a
right to left stroke, whereas in other applications a straight line stroke
may mean the same regardless of orientation.

In one implementation of word-gesture keyboards, Kristensson
and Zhai [59] used both scale and location independent template
matching (called the shape channel) and scale and location dependent
template matching (called the location channel). The goal was to
accommodate both beginners and advanced users. Beginners are likely
to look closely at the letters on the keyboard and draw word gestures
accordingly, whereas advanced users are likely to remember some
and parts of the gestures and draw gestures more according to their
shapes. The weights of the two channels can be dynamically adjusted
according to the user’s gesture speed. Faster gestures are more likely
produced by shape recall, hence more compatible with the shape
channel. Conversely, slow gestures are more likely produced by letter
tracing, hence more compatible with the location channel. Note that
the speed measured there was relative to the target word’s tapping

11.2 Stroke Gesture Toolkits 181

speed as predicted by Fitts’ law [35]. Surpassing Fitts’ law prediction
was interpreted as more shape-recall based.

When the number of templates is very large, for example in ges-
ture keyboards, it is impossible to thoroughly compute the user’s input
against all templates. Pruning techniques that reject templates that are
far away from the user’s input, based on coarse and simple features, can
be used to reduce the number of templates to a smaller set for com-
plete matching calculation. For example, a simple pruning technique
is to downsample both the user’s input and the templates of stroke
gestures into a very few sampling points and then discard templates
whose distance to the user’s input is larger than a set threshold.

As shown in the Appert and Zhai experiment [10], PSD template
matching tends to be insensitive to small details. For example, a small
pigtail as part of a larger gesture is very noticeable to human per-
ception, but does not make a big difference to PSD template match-
ers. A future research direction would be to combine training-based
methods with template matching in order to take advantage of both
approaches, particularly when a large body of high-quality representa-
tive training data are available.

Gesture recognition can be either post hoc (recognizing a gesture
after it is completely drawn) or incremental (recognizing a gesture as
it is drawn in real time). The latter is more challenging but sometimes
necessary to provide real-time feedback or forward projection during
gesture production.

11.2 Stroke Gesture Toolkits

Software toolkits have greatly decreased the programming effort and
reduced the cost of implementing conventional graphical interfaces.
Today, menu-based interfaces can be relatively easily developed thanks
to the support of toolkits such as Java Swing, Qt, and Cocoa. However
programming with these toolkits uses standard widgets. A standard
widget is a graphical component that is location (or visual-spatially)
dependent. It only responds to mouse or keyboard events on the
widget. As we discussed earlier, gestures may or may not be visual-
spatially dependent. Often it is desirable to have visual-spatially inde-
pendent gestures that can be drawn anywhere on the screen. In

182 Gesture Recognition Algorithms and Design Toolkits

order to ease gesture interface programming, several research toolk-
its have been proposed to support different stages of the development
process.

First, gesture interface toolkits can embed recognition algorithms
to save the developer’s effort since implementing recognition algo-
rithms requires specialized expertise. ArtKit [42], Garnet [69] and later
SATIN [47], iGesture [106] and SwingStates [9] all contain a Rubine rec-
ognizer. They all encapsulate the recognizer in a modular and flexible
way so that it can be replaced by another recognizer without modifying
the whole toolkit. Most of them define a recognizer as an object that
takes a stroke as input and outputs an ordered list of gesture classes.
ArtKit uses the concept of a recognition object, which is a combination
of a recognition algorithm and a particular gesture class that computes
a binary output. iGesture takes a combination of recognizers to com-
pute the n-best list. All these toolkits provide pre-processing and seg-
mentation functions that turn raw gesture input into higher level stroke
events. In other words they extend the standard GUI input vocabulary
so that toolkit users can deal with stroke events rather than low-level
2D sampling points.

Second, gesture toolkits can include a training and design support
environment for interactive gesture design and experimentation. The
users of the toolkits can perform fast trial-and-error design iterations
in the environment. With Quill in SATIN [81], the management console
in the iGesture framework [106] or the SwingStates’ training application
[9] it is possible to define mappings between strokes and commands and
test recognition accuracy by drawing in a dedicated area with immedi-
ate recognition results. If the accuracy is not satisfactory, some toolk-
its propose alternative recognition algorithms (iGesture, SwingStates),
advise the users on making the gestures more different based on recog-
nition performance (Quill) or edit gesture examples for data-training
algorithms. Potentially, tools like these can also embed motor control
complexity models and visual similarity models so the developers can
quickly evaluate more ramifications of the stroke gestures selected.

In addition to stroke-to-command mapping and recognition engine
selection and tuning, gesture toolkits also need to support the design
and implementation of gesture interface features such as ink render-

11.2 Stroke Gesture Toolkits 183

ing, feedback, and previews to enable gesture discovery. SATIN is a
good example of a more general purpose toolkit in that regard. It is
intended to support a wide range of informal ink-based applications
so it does not pre-program many specific behaviors but rather offers
flexibility in how ink is processed. In contrast, The Stroke-Shortcut
Toolkit (SST) [10] is intended to support adding gesture stroke-based
shortcuts to commands of a Java Swing graphical interface. Because
of its narrower focus, SST reduces to the very minimum the amount
of programming needed to add gesture shortcuts to Java applications.
Here we review SST in some detail.

Users of SST can invoke the Design Shortcuts environment on any
Java Swing interface. Figure 11.2 shows this application, which has
a “gesture stroke dictionary” on its left panel, the set of shortcuts
added to the Java Swing interface on the middle panel, and a testing
area on the right panel (Figure 11.2(a)). To define a new gesture, the
developer clicks on the “+” button displayed to the right of a gesture

(a) The Design Shortcuts Environment
in SST

(b) Testing shortcuts in their
real context

Fig. 11.2 The SST stroke gesture toolkit.

184 Gesture Recognition Algorithms and Design Toolkits

stroke in the dictionary. This pops up the list of commands found in the
attached Java Swing interface. The developer can now pick one of these
commands in the list and use the testing area to assess the recognition
accuracy. If the Java Swing interface runs at the same time (and this
is achieved by a simple line of code), shortcuts are also added to the
interface so they can be tested in their real context (Figure 11.2(b)).
The developer has little more to do to implement stroke shortcuts in
her application. Ink feedback, stroke morphing and help techniques for
end users (e.g., stroke previews in menu items and tooltips) can also
be added with a single line of code.

An interesting feature in SST is the guidance provided to define
mappings between stroke shape and command name. Figure 11.2(a)
shows the gesture stroke dictionary that contains an initial set of
nine predefined strokes for the developer to choose from. With these
predefined strokes, the developer can already define a large set of ges-
ture commands by combining several of these strokes and/or applying
geometrical transformations to them. One can use the transformation
buttons displayed on top of each gesture to rotate or mirror (horizon-
tally or vertically) a gesture before adding it to the set of shortcuts. One
can also select several strokes to build a new gesture that is the con-
catenation of the selected strokes. Compared to starting with a “blank
page,” providing a set of primitive strokes and a set of operations on
these primitives afford a structured design space that can be system-
atically explored. Developers can also draw a stroke and add it to the
gesture stroke dictionary.

12
Evaluation of Stroke Gesture Interfaces

The role of evaluation and the ways of conducting it within the field of
HCI is often discussed and debated among researchers and practition-
ers [40, 77, 94, 131]. In our view, evaluation of interactive systems in
general is always essential but rarely definitive. As a result the evalua-
tion methods can and should be varied and broadly defined. Evaluation
is often narrowly viewed as simple empirical user studies involving a
group of users to perform a task and measuring the speed or accuracy
of the users as a function of the design choices. However evaluation can
and should take many of the following forms, all with pros and cons and
all should be applied and interpreted according to application context.

• Conceptual analysis. Why the system is good or bad, what
features and effects does it have or not have?

• Mathematical analysis. Some aspects of a system, such as the
amount of movement the user has to make, the mean time to
generate an output, can often be mathematically calculated
with the help of well-established empirical laws.

• Actual use by designers and developers. Often known as “eat
your own dog food.” This could uncover many unexpected

185

186 Evaluation of Stroke Gesture Interfaces

problems, but they are also limited to the designers’ and
developers’ own experiences and biases.

• Trial users and log analysis.
• Lab experiments, producing both performance and question-

naire results.
• In-context observations and field studies.

There are a number of particularly difficult challenges in evaluat-
ing stroke gesture interfaces. One reason is that the speed-accuracy
tradeoff function in stroke gesture production is not well understood
or modeled. For example a 10% less precise stroke gesture is faster to
produce, but we do not have models to predict how much faster. Typ-
ically participants are expected to perform an experimental task “as
fast as possible and as accurately as possible” so they operate at their
own speed-accuracy tradeoff point. However without a speed-accuracy
tradeoff model it is often difficult to interpret experimental results. For
example if System A were measured 10% faster but 5% less accurate
than System B, we could not infer if A were still faster than B if it
were held at the same accuracy level at which System B performed. A
simplified but certainly incomplete approach to stroke gesture evalua-
tion is to aim imprecision at a “reasonable” level, such as 10% error, as
measured by, for example, PSD distance, and ask the participants to
perform near that set level of imprecision. Speed measured under such a
condition might be more comparable and meaningful than speed mea-
sured with floating and varied imprecision. How to more completely
evaluate stroke gesture interface against speed-accuracy tradeoff is still
an open topic.

Another particular challenge to stroke gesture interface evaluation
is learning. Performance is surely a function of learning, which typi-
cally follows a power law curve. Classic manual-skill studies show how
humans could continuously improve, with decreasing increment from
one trial to the next and eventually approach a machine or system
limit [30]. Ideally we should observe and measure participants’ learning
curve over a long period of time, producing initial (e.g., first half hour
of use) performance, and practically saturated ceiling performance, and
the time period from one level of performance to another. Often this is

187

impractical with complex systems (e.g., gesture keyboards, which may
take weeks or months of time, if not more, for a user to become pro-
ficient with thousands or tens of thousands of gestures). There are a
number of incomplete but still informative approaches to evaluate per-
formance as a function of learning. To measure initial performance can
be informative in and of itself. To complement it with an empirically
estimated ceiling performance is even better, although the learning time
from one performance level to another would still be missing.

One way to empirically estimate ceiling performance is as follows.
Pick a small set of representative or high frequency stroke gestures and
ask participants to repeatedly produce them until their performance is
“saturated.” Then calculate the mean ceiling performance based on the
results of these gestures weighted by their frequency. This approach was
used in [57] to evaluate the ceiling performance of the gesture keyboard
ShapeWriter.

13
From Research to Adoption

Although stroke gesture research has had a long history, mainstream
applications of gesture UI have been sporadic. The types of stroke ges-
tures in the current generation of smart phones are still relatively simple
and limited. This section analyzes the barriers and possible solutions
to realizing stroke gesture interface’s full potential.

13.1 Qwertynomics and the “Workstation” Hardware

The path dependence theory of socio-technical system development,
also known as Qwertynomics [31], argues that a sub-optimal solution,
once taken hold, cannot be replaced with optimal solutions. Prime
examples of Qwertynomics include the QWERTY keyboard as opposed
to the Dvorak simplified keyboard and VHS as opposed to the Beta
videotape format. Although this argument has been debated [78], users’
existing skills and familiarity with the current technology, and an eco-
system that evolved around the practice, do form barriers for new tech-
nologies to overcome. In HCI, the display, keyboard and mouse-based
“workstation” format has repelled other alternatives in the past two
decades. For the most part, PCs and laptops in such a format have

188

13.2 Learning 189

been good enough for quite some time. However, such a format is par-
ticularly unsuited to gesture interface. Drawing on a desktop or laptop
screen for a sustained period of time is often fatiguing and less conve-
nient than mouse pointing.

However the IT industry and the HCI field have long realized that
the form of interacting with computers and information would move
beyond the basic desktop [88]. Indeed, over the past few years, new
touchscreen-based products have taken off rapidly, enabling gesture-
based interaction methods.

13.2 Learning

Touchscreen hardware alone is not a sufficient reason to adopt gesture-
based interaction beyond the very basic gestures such as scrolling, pan-
ning, and zooming. In fact, menu selection adapted to a finger friendly
size and format is likely to remain the most basic interaction method,
for the simple reason that these visual recognition-based actions require
little learning.

However, visual recognition-based interaction does suffer from effi-
ciency drawbacks. This is particularly acute when the screen is small.
For example flipping through a large number of pages to look for one
function is barely acceptable. Gesture interaction offers higher efficiency
and larger capacity on a limited screen space. As we have discussed,
it is very important to make gesture interface “progressive,” from an
easy start to an eventually higher performance.

13.3 Backward Compatibility

A more controversial issue is to make UIs “backward compatible” with
more traditional menu-driven UIs. Providing gesture shortcuts to tra-
ditional menus and buttons is one such method. For example to enable
or disable the 3G network on the iPhone one has to quit the current
application, find “Settings” on the home screen, tap it, find and tap
on “General,” find and tap on “Network,” and tap the on/off switch
there. After that the user has to press the home button, and find and
tap the application to return. If there is a gesture-shortcut alternative,

190 From Research to Adoption

at least the more advanced user would not have to take the multi-step
navigation approach. Importantly the gesture alternative should not
get in the way of novice users. Similarly, word-gesture keyboard users
should always be able to use the traditional hunt and tap approach,
one letter at a time. When the user-realized gesture-based “shape writ-
ing” is more efficient or preferable, the user can start to gesture on the
keyboard without even switching modes.

14
Summary and Conclusions

We have reviewed and synthesized a body of research on stroke ges-
ture interfaces. The synthesis is primarily focused on our own research
but we also touched on the work of many other researchers. In this
concluding section, we summarize key concepts and observations, main
take-away conclusions, and forward-looking calls to actions.

First, stroke gestures fall into a multiple dimensional design space.
The dimensions we identified include analogue versus abstract stroke
gestures, stroke gestures representing symbols (particularly text) versus
commands, order of complexity of stroke gestures, degree of visual-
spatial dependency, and implementation (finger versus stylus) and its
associated sensor type. Each gesture system, such as the Apple iOS
interface, the Graffiti text entry method for Palm devices, marking
menus and the SHARK/ShapeWriter word-gesture keyboard, com-
prised a subspace in this multiple dimensional design space.

Although still limited, there is a body of scientific knowledge that is
beginning to address the human factors and cognitive issues of stroke
gestures, ranging from the motor control, to the visual, and to the
memory aspects of human performance. Early basic human factors and
usability studies on stroke gestures identified consistent patterns across

191

192 Summary and Conclusions

users, in gestures they would anticipate for simple functions, such as
move and delete. An important gesture performance topic is modeling
a gesture’s complexity so gestures or a set of gestures can be quantita-
tively optimized. The models that may apply here range from counting
the number of line segments that can approximate a gesture to the
CLC model that breaks down a gesture into curves, lines and corners,
each modeled by a lower order model.

On the visual side, research has identified key computation fea-
tures that can characterize the visual similarities of stroke gestures to
users. Research has also shown that visual feedback has impact on some
aspects of gestures such as size and closure (or, more generally, refer-
ential features), but not on global features such as the overall shape
distance. Audio feedback has even less of an impact on the process of
articulating gestures but it can help to inform the product of a gesture
hence reducing the visual demand of a gesture interface. Both visual
and audio feedback can potentially enhance the subjective and emo-
tional aspects of gesture experience.

In comparison to point-and-click graphical interfaces (or tapping —
zero order gestures on touchscreens), gestures interfaces can be, option-
ally, made visual-spatially independent. Such independency means
different functions can be activated with differently shaped gestures in
the same place (or anywhere), resulting in three advantages — space
saving, direct/random access to a large number of functions, and low-
ered visual attention demand — all may be desirable on a mobile device.
The challenge, however, is how users can learn and memorize such ges-
tures. We have shown that in one study users could learn 15 gestures
on an unfamiliar word-gesture keyboard per 40 minutes of practice.
We have also shown that 200% more gestures than keyboard shortcuts
were memorized with the same amount of practice. Gestures, even if
arbitrarily defined, afford the user the opportunity to elaborate and
more deeply encode their assigned meaning than keyboard shortcuts
do. Furthermore, in contrast to the visual icons vs. keyboard short-
cuts dichotomy, it is possible to design gesture interfaces that use the
same motor control patterns between a visually guided process and a
memory recall-driven process. Such motor control constancy facilitates

193

skill progression. Marking menus and word-gesture keyboards are two
examples of this.

There is a wide range of design principles for creating stroke ges-
ture interfaces. These include making gestures analogous to physical
effects or cultural conventions, gestures simple and distinctive, defining
stroke gestures systematically, making them self-revealing, supporting
chunking, and facilitating progress from visually guided performance to
recall-driven performance. We also discussed how to support learning
via game-based training programs and highlighted the usefulness of the
expanding rehearsal interval algorithm for this purpose.

There are important implementation aspects of stroke gestures. We
outlined the issues involved in separating commands from scope selec-
tion, and inking from stroke gesturing. We gave an overview of recog-
nition algorithms and approaches for classifying stroke gestures, and
toolkits that can aid implementers and designers.

As in any research field, research in gesture interfaces does not
always impact mass products and the society. We raised three types
of challenges that the research field faces in translating research results
into products. First, the Qwertynomics effect helps conventional tech-
nologies that are “good enough” to prevail. The dominance of icon- and
selection-based interfaces is likely to continue as a result. Second, user
learning, even if paid off rather quickly in efficiency, remains a hurdle
to gesture interface adoption. Third, gesture interfaces may need to be
backward compatible with pointing or tapping types of interfaces.

Finally, gesture interfaces need to be evaluated with various
evaluation methods, such as conceptual analysis, mathematical
analysis, controlled experiments, and studies of logs and actual deploy-
ments. It is important each design choice is evaluated in its application
context.

Through this survey we have demonstrated that stroke gestures
have a deep and fundamental role in both user interface research and
in consumer product development. Contribution from research to prac-
tice can span a wide range. At one end of the spectrum is addressing
basic human performance questions, such as developing accurate mod-
els of the motor complexity of stroke gestures. At the other end, the

194 Summary and Conclusions

research field can contribute better engineering solutions, such as new
recognizers, toolkits and systems.

We see many opportunities and challenges open for future research.
By way of example, we name only the following four call-to-action top-
ics. First, a strong model of stroke gesture complexity would contribute
both theoretically and practically to the field. It could either be sim-
pler than existing models or have a closed form, rather than being a
combination of algorithms or equations for different types of strokes
or stroke segments. Most likely it should reflect some form of entropy
measure of the stroke gestures. Second, a model of the capacity, den-
sity and bandwidth of stroke gesture systems is currently lacking. Such
a model could aid us in understanding the speed-accuracy tradeoff in
stroke gesture interfaces, or, more broadly, the gain and cost in using
machine intelligence in user interfaces. Third, we need deeper theoret-
ical, empirical, and comparative studies in a variety of settings about
the methods and approaches, to help users adopt and learn advanced
gestures. These methods include crib sheets, marking menus, tracing-
to-gesture progressions, as in ShapeWriter-like systems, and potential
other designs. Fourth and more generally, we need to understand more
deeply human memory and the skill acquisition mechanisms involved
in gesture interaction.

Acknowledgments

We thank Ben Bederson, the editor-in-chief of Foundations and Trends
in Human–Computer Interaction, for initiating the idea of writing this
review and for his suggestions as to its scope and emphases. We thank
FnT editor James Finlay for his patient and persistent support, encour-
agement, and “nagging” without which we could not have done this
work. Most of the original research that laid the foundation of this
current synthesis was conducted at the IBM Almaden Research Center
where we were Research Staff Member, graduate intern, postdoctoral
fellow, visiting researcher, and graduate intern, respectively. The sci-
entific atmosphere, helpful and insightful colleagues, and management
support for basic research there made this work possible. We are also
grateful to our current respective employers and colleagues for their
support. We are indebted to three outstanding colleagues in the gesture
interface research field, Ken Hinckley, Jacob O. Wobbrock, and Yang
Li, who made extensive, constructive, and insightful comments, crit-
icisms and suggestions throughout this monograph. This monograph
was revised multiple times according to these comments, some of which
were quite directly incorporated into the final version. Of course we
authors are solely responsible for the errors, omissions, limitations and
debatable positions that remain in this work.

195

References

[1] J. Accot, “Les Tâches Trajectorielles en Interaction Homme-Machine — Cas
des tâches de navigation,” Unpublished Ph.D. Thesis, Université de Toulouse
1, Toulouse, France, 2001.

[2] J. Accot and S. Zhai, “Beyond Fitts’ law: Models for trajectory-based HCI
tasks,” in Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems (CHI), pp. 295–302, 1997.

[3] J. Accot and S. Zhai, “Performance evaluation of input devices in trajectory-
based tasks: An application of steering law,” in Proceedings of the ACM Con-
ference on Human Factors in Computing Systems (CHI), pp. 466–472, 1999.

[4] J. Accot and S. Zhai, “More than dotting the i’s — foundations for crossing-
based interfaces,” in Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI), pp. 73–80, Minneapolis, Minnesota, USA, 2002.

[5] T. H. Andersen and S. Zhai, “Writing with music: Exploring the use of audi-
tory feedback in gesture interfaces,” ACM Transactions on Applied Perception,
vol. 7, no. 3, pp. 1–24, 2010.

[6] L. Anthony and J. O. Wobbrock, “A lightweight multistroke recognizer for user
interface prototypes,” in Proceedings of Graphics Interface (GI), pp. 245–252,
Ottawa, Ontario, Canada, 2010.

[7] G. Apitz and F. Guimbretière, “CrossY: A crossing-based drawing applica-
tion,” in Proceedings of the Annual ACM Symposium on User Interface and
Software Technology (UIST), pp. 3–12, 2004.

[8] C. Appert and O. Bau, “Scale detection for a priori gesture recognition,” in
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 879–882, Atlanta, Georgia, USA, 2010.

196

References 197

[9] C. Appert and M. Beaudouin-Lafon, “SwingStates: Adding state machines to
Java and the swing toolkit,” Software Practice and Experience, vol. 38, no. 11,
pp. 1149–1182, 2008.

[10] C. Appert and S. Zhai, “Using strokes as command shortcuts: Cognitive ben-
efits and toolkit support,” in Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI), pp. 2289–2298, Boston, MA, USA,
2009.

[11] J. Arvo and K. Novins, “Fluid sketches: Continuous recognition and morphing
of simple hand-drawn shapes,” in Proceedings of the Annual ACM Symposium
on User Interface Software and Technology (UIST), pp. 73–80, San Diego,
California, USA, 2000.

[12] A. Baddeley, Human Memory — Theory and Practice. Boston: Allyn and
Bacon, Revised ed., 1998.

[13] O. Bau and W. E. Mackay, “OctoPocus: A dynamic guide for learning gesture-
based command sets,” in Proceedings of the ACM Symposium on User Inter-
face Software and Technology (UIST), pp. 37–46, Monterey, CA, USA, 2008.

[14] O. Bau, I. Poupyrev, A. Israr, and C. Harrison, “TeslaTouch: Electrovibration
for touch surfaces,” in Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST), pp. 283–292, New York City, New York,
USA, October 3–6 2010.

[15] A. Bragdon, R. Zeleznik, B. Williamson, T. Miller, and J. J. LaViola, “Ges-
tureBar: Improving the approachability of gesture-based interfaces,” in Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 2269–2278, 2009.

[16] B. Buxton, “Marking interfaces,” Chapter 13 of “Human Input to Computer
Systems: Theories, Techniques and Technology,” http://www.billbuxton.
com/inputManuscript.html. Unpublished manuscript, 2010.

[17] W. Buxton, “Chunking and phrasing and the design of human-computer dis-
logues,” in Proceedings of the IFIP World Computer Congress, pp. 475–480,
Dublin, Ireland, 1986.

[18] W. Buxton, “A three-state model of graphical input,” in Proceedings of
Human-Computer Interaction (INTERACT), pp. 449–456, Amsterdam, The
Netherlands, 1990.

[19] W. Buxton, R. Hill, and P. Rowley, “Issues and techniques in touch-sensitive
tablet input,” Computer graphics, Proceedings of SIGGRAPH, vol. 19,
pp. 215–224, 1985.

[20] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman, “An empirical com-
parison of pie vs. linear menus,” in Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI), Washington, D.C., USA, 1988.

[21] X. Cao and S. Zhai, “Modeling human performance of pen stroke gestures,”
Research Report No. RJ10392. San Jose, CA: IBM Research Report RJ10392,
2006.

[22] X. Cao and S. Zhai, “Modeling human performance of pen stroke gestures,” in
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), San Jose, CA, USA, 2007.

198 References

[23] S. J. Castellucci and I. S. MacKenzie, “Graffiti vs. unistrokes: An empirical
comparison,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), pp. 305–308, Florence, Italy, 2008.

[24] B.-W. Chang and D. Ungar, “Animation: From cartoons to the user inter-
face,” in Proceedings of the ACM Symposium on User Interface Software and
Technology (USIT), Atlanta, Georgia, USA, 1993.

[25] S. Chatty and P. Lecoanet, “Pen computing for air traffic control,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Vancouver, British Columbia, Canada, 1996.

[26] E. Clarke, “Rhythm and timing in music,” in Chapter 13: The Psychology of
Music, pp. 473–500, Academic Press, 1999.

[27] A. Cockburn, P. O. Kristensson, J. Alexander, and S. Zhai, “Hard lessons:
Effort-inducing interfaces benefit spatial learning,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI), San Jose,
California, USA, 2007.

[28] F. Coulmas, The Writing Systems of the World. Oxford: Blackwell, 1989.
[29] F. Craik and R. Lockhart, “Levels of processing: A framework for mem-

ory research,” Journal of Verbal Learning and Verbal Behavior, vol. 11,
pp. 671–684, 1972.

[30] E. R. F. W. Crossman, “A theory of acquisition of speed-skill,” Ergonomics,
vol. 2, no. 2, pp. 153–166, 1959.

[31] P. A. David, “Clio and the economics of QWERTY,” American Economic
Review, vol. 75, pp. 332–337, 1985.

[32] T. L. Dimond, “Devices for reading handwritten characters,” in Proceedings of
Eastern Joint Computer Conference of American Federation of Information
Processing (EJCC), pp. 232–237, 1957.

[33] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York:
John Wiley & Sons, 2001.

[34] P. Ekman and W. Friesen, “Hand movements,” Journal of Communications,
vol. 22, pp. 353–374, 1972.

[35] P. M. Fitts, “The information capacity of the human motor system in control-
ling the amplitude of movement,” Journal of Experimental Psychology, vol. 47,
pp. 381–391, 1954.

[36] H. Freeman, “On the encoding of arbitrary geometric configurations,” IRE
Transactions on Electronic Computers, vol. 10, no. 2, pp. 260–268, 1961.

[37] J. J. Gibson, The Ecological Approach to Visual Perception. Boston: Houghton
Mifflin Company, 1979.

[38] D. Goldberg and C. Richardson, “Touch-typing with a stylus,” in Proceedings
of the ACM Conference on Human Factors in Computing Systems (INTER-
CHI), pp. 80–87, Amsterdam, The Netherlands, 1993.

[39] J. D. Gould and J. Salaun, “Behavioral experiments on handmarkings,” ACM
Transactions on Information Systems, vol. 5, no. 4, pp. 358–377, 1987.

[40] S. Greenberg and B. Buxton, “Usability evaluation considered harmful (some
of the time),” in Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), pp. 111–120, Florence, Italy, 2008.

References 199

[41] T. Grossman, P. Dragicevic, and R. Balakrishnan, “Strategies for accelerating
on-line learning of hotkeys,” in Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI), pp. 1591–1600, San Jose, California,
USA, 2007.

[42] T. R. Henry, S. E. Hudson, and G. L. Newell, “Integrating gesture and snap-
ping into a user interface toolkit,” in Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST), pp. 112–122, 1990.

[43] K. Hinckley, P. Baudisch, G. Ramos, and F. Guimbretiere, “Design and anal-
ysis of delimiters for selection-action pen gesture phrases in Scriboli,” in Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 451–460, 2005.

[44] K. Hinckley, K. Yatani, M. Pahud, N. Coddington, J. Rodenhouse, A. Wilson,
H. Benko, and B. Buxton, “Pen + touch = new tools,” in Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST), pp. 27–
36, 2010.

[45] K. Hinckley, S. Zhao, R. Sarin, P. Baudisch, E. Cutrell, and M. Shilman et al.,
“InkSeine: In situ search for active note taking,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI), pp. 251–260,
San Jose, California, USA, 2007.

[46] C. Holz and P. Baudisch, “Understanding touch,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI), pp. 2501–2510,
Vancouver, Canada, 2011.

[47] J. I. Hong and J. A. Landay, “SATIN: A toolkit for informal ink-based
applications,” in Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST), pp. 63–72, San Diego, California, USA,
2000.

[48] D. Hopkins, “The design and implementation of pie menus,” Dr. Dobb’s Jour-
nal, vol. 16, no. 12, pp. 16–26, 1991.

[49] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A sketching interface for
3D freeform design,” in Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics and Interactive Techniques, 1999.

[50] P. Isokoski, “Model for unistroke writing time,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI), pp. 357–364,
Seattle, Washington, USA, 2001.

[51] G. Johnson, M. D. Gross, J. Hong, and E. Y.-L. Do, “Computational sup-
port for sketching in design: A review,” Foundations and Trends in Human-
Computer Interaction, vol. 2, no. 1, 2008.

[52] M. Johnson, The Body in the Mind: The Bodily Basis of Meaning, Imagina-
tion, and Reason. University of Chicago Press, 1990.

[53] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under
risk,” Econometrica, vol. 47, no. 2, pp. 263–292, 1979.

[54] J. Kaplan, Startup: A Silicon Valley Adventure. New York: Penguin, 1996.
[55] R. M. Kohl and C. H. Shea, “Pew(1966) revisited: Acquisition of hierarchical

control as a function of observational practice,” Journal of Motor Behavior,
vol. 24, no. 3, pp. 247–260, 1992.

200 References

[56] T. Költringer and T. Grechenig, “Comparing the immediate usability of Graf-
fiti 2 and virtual keyboard,” in Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems (CHI), pp. 1175–1178, Vienna, Aus-
tria, April 24–29 2004.

[57] P. O. Kristensson, “Discrete and continuous shape writing for text entry and
control,” Ph. D. Thesis, Linköping University, Sweden, 2007.

[58] P. O. Kristensson and L. C. Denby, “Continuous recognition and visualiza-
tion of pen strokes and touch-screen gestures,” in Proceedings of the Eighth
Eurographics Symposium on Sketch-Based Interfaces and Modeling (SBIM),
pp. 95–102, New York, NY, USA: ACM, 2011. Doi=10.1145/2021164.2021181
http://doi.acm.org/10.1145/2021164.2021181.

[59] P. O. Kristensson and S. Zhai, “SHARK2: A large vocabulary shorthand writ-
ing system for pen-based computers,” in Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST), pp. 43–52, 2004.

[60] P. O. Kristensson and S. Zhai, “Command strokes with and without preview:
Using pen gestures on keyboard for command selection,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI), pp. 1137–
1146, San Jose, CA, USA, 2007.

[61] P. O. Kristensson and S. Zhai, “Learning shape writing by game playing,” in
Extended Abstracts of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 1971–1976, San Jose, CA, USA, 2007.

[62] G. Kurtenbach and B. Buxton, “GEdit: A test bed for editing by contiguous
gestures,” SIGCHI Bulletin, vol. 23, no. 2, pp. 22–26, 1991.

[63] G. Kurtenbach and W. Buxton, “Issues in combining marking and direct
manipulation techniques,” in Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST), pp. 137–144, 1991.

[64] G. Kurtenbach and W. Buxton, “User learning and performance with mark-
ing menus,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), pp. 258–264, 1994.

[65] G. Kurtenbach, G. W. Fitzmaurice, R. N. Owen, and T. Baudel, “The hot-
box: Efficient access to a large number of menu-items,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI), Pitts-
burgh, Pennsylvania, USA, 1999.

[66] G. Kurtenbach and T. P. Moran, “Contextual animation of gestural com-
mands,” Eurographics Computer Graphics Forum, vol. 13, no. 5, pp. 305–314,
1994.

[67] G. Kurtenbach, A. Sellen, and W. Buxton, “An empirical evaluation of
some articulatory and cognitive aspects of marking menus,” Human-Computer
Interaction, vol. 8, no. 1, pp. 1–23, 1993.

[68] T. K. Landauer and R. A. Bjork, “Optimum rehearsal patterns and name
learning,” in Practical Aspects of Memory, (M. M. Gruneberg, P. E. Morris,
and R. N. Sykes, eds.), pp. 625–632, London: Academic Press, 1978.

[69] J. A. Landay and B. A. Myers, “Extending an existing user interface toolkit to
support gesture recognition,” in Proceedings of INTERACT ’93 and CHI ’93
Conference Companion on Human Factors in Computing Systems, pp. 91–92,
Amsterdam, The Netherlands, 1993.

References 201

[70] J. A. Landay and B. A. Myers, “Interactive sketching for the early stages of
user interface design,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 43–50, Denver, Colorado, USA, 1995.

[71] E. Lank and E. Saund, “Sloppy selection: Providing an accurate interpreta-
tion of imprecise selection gestures,” Computers and Graphics, vol. 29, no. 4,
pp. 490–500, 2005.

[72] S. Lee and S. Zhai, “The performance of touch screen soft buttons,” in Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 309–318, 2009.

[73] A. Leganchuk, S. Zhai, and W. Buxton, “Manual and cognitive benefits of
two-handed input: An experimental study,” ACM Transactions on Computer-
Human Interaction, vol. 5, no. 4, pp. 326–359, 1998.

[74] Y. Li, “Gesture search: A tool for fast mobile data access,” in Proceedings
of the ACM Symposium on User Interface Software and Technology (UIST),
pp. 87–96, 2010.

[75] Y. Li, “Protractor: A fast and accurate gesture recognizer,” in Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI),
pp. 2169–2172, Atlanta, Georgia, USA, 2010.

[76] Y. Li, K. Hinckley, Z. Guan, and J. A. Landay, “Experimental analysis of mode
switching techniques in pen-based user interfaces,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI), pp. 461–470,
Portland, Oregon, USA, 2005.

[77] H. Lieberman, The Tyranny of Evaluation, CHI Place Essay. 2003. Retrieved
2/5, 2010 http://web.media.mit.edu/∼lieber/Misc/Tyranny-Evaluation.html.

[78] S. Liebowitz and S. E. Margolis, “Typing errors,” Reason Magazine, http:
//reason.com/9606/Fe.QWERTY.shtml, 1996.

[79] S. J. Liebowitz and S. E. Margolis, “The fable of the keys,” Journal of Law
and Economics, vol. 33, no. 1, pp. 1–25, 1990.

[80] A. C. Long, J. A. Landay, and L. A. Rowe, “Implications for a gesture design
tool,” in Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 40–47, 1999.

[81] A. C. Long, L. A. Landay, and L. A. Rowe, “Those look similar! Issues in
automating gesture design advice,” in Proceedings of the Workshop on Per-
ceptive User Interfaces (PUI), pp. 1–5, Orlando, Florida, USA, 2001.

[82] A. C. Long, L. A. Landay, L. A. Rowe, and J. Michiels, “Visual similarity of
pen gestures,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), pp. 360–367, 2000.

[83] G. Lucchese, M. Field, J. Ho, R. Gutierrez-Osuna, and T. Hammond, “Ges-
tureCommander: Continuous touch-based gesture prediction,” in Extended
Abstracts of the ACM Conference on Human Factors in Computing Systems
(CHI EA), pp. 1925–1930, New York, NY, USA, 2012. DOI=10.1145/
2212776.2223730 http://doi.acm.org/10.1145/2212776.2223730.

[84] I. S. MacKenzie and S. X. Zhang, “The immediate usability of Graffiti,” in Pro-
ceedings of Graphics Interface (GI), pp. 129–137, Kelowna, British Columbia,
Canada, 1997.

202 References

[85] J. Mankoff and G. D. Abowd, “Cirrin: A word-level unistroke keyboard for
pen input,” in Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST), Technical Note, pp. 213–214, 1998.

[86] M. S. Mayzner and M. E. Tresselt, “Tables of single-letter and digram
frequency counts for various word-length and letter-position combinations,”
Psychonomic Monograph Supplements, vol. 1, no. 2, pp. 13–32, 1965.

[87] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Transac-
tions on Systems, Man and Cybernetics — Part C: Applications and Reviews,
vol. 37, no. 3, pp. 311–324, 2007.

[88] T. P. Moran and S. Zhai, “Beyond the desktop metaphor in seven dimensions,”
in Beyond the Desktop Metaphor — Designing Integrated Digital Work Envi-
ronments, (V. Kaptelinin and M. Czerwinski, eds.), pp. 335–354, The MIT
Press, 2007.

[89] P. Morrel-Samuels, “Clarifying the distinction between lexical and gestural
commands,” International Journal of Man-Machine Studies, vol. 32, no. 5,
pp. 581–590, 1990.

[90] M. W. Newman, J. Lin, J. I. Hong, and J. A. Landay, “DENIM: An informal
web site design tool inspired by observations of practice,” Human-Computer
Interact, vol. 18, no. 3, pp. 259–324, 2003.

[91] W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graph-
ics. New York: McGraw-Hill, 1979.

[92] D. Norman and J. Nielsen, “Gestural interfaces: A step backwards in usabil-
ity,” Interactions, vol. 17, pp. 46–49, 2010.

[93] D. A. Norman, Emotional Design: Why We Love (or Hate) Everyday Things.
Basic Books, 2003.

[94] D. R. J. Olsen, “Evaluating user interface systems research,” in Proceedings
of the ACM Symposium on User Interface Software and Technology (UIST),
pp. 251–258, Newport, Rhode Island, USA, 2007.

[95] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Halasz, “Tivoli: An
electronic whiteboard for informal workgroup meetings,” in Proceedings of
INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing
Systems, pp. 391–398, Amsterdam, The Netherlands, 1993.

[96] K. Perlin, “Quikwriting: Continuous stylus-based text entry,” in Proceedings
of the ACM Symposium on User Interface Software and Technology (UIST),
Technical Note, pp. 215–216, 1998.

[97] A. Pirhonen, S. Brewster, and C. Holguin, “Gestural and audio metaphors as
a means of control for mobile devices,” in Proceedings of the Conference on
Human Factors in Computing Systems (CHI): Changing Our World, Changing
Ourselves, 2002.

[98] R. W. Proctor and A. Dutta, Skill Acquisition and Human Performance.
Thousand Oaks, CA: Sage, 1995.

[99] G. Ramos, M. Boulos, and R. Balakrishnan, “Pressure widgets,” in Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI),
pp. 487–494, Vienna, Austria, 2004.

[100] D. Rubine, “Specifying gestures by example,” in Proceedings of the ACM
SIGGRAPH Conference on Computer Graphics and Interactive Techniques,
pp. 329–337, 1991.

References 203

[101] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice
Hall, 2nd ed., 2002.

[102] R. A. Schmidt and R. Bjork, “New conceptionalizations of practice: Common
principles in three paradigms suggest concepts for training,” Psychological
Science, vol. 3, no. 4, pp. 207–217, 1992.

[103] R. A. Schmidt and T. D. Lee, Motor Control & Learning: A Behavioral
Emphasis. Human Kinetics, 5th ed., 2011.

[104] W. Schneider and R. M. Shiffrin, “Controlled and automatic human infor-
mation processing: I. detection, search, and attention,” Psychological Review,
vol. 84, no. 1, pp. 1–66, 1977.

[105] W. Schneider and R. M. Shiffrin, “Controlled and automatic human informa-
tion processing: II. perceptual learning, automatic attending and a general
theory,” Psychological Review, vol. 84, no. 2, pp. 127–190, 1977.

[106] B. Signer, M. C. Norrie, and U. Kurmann, “iGesture: A Java framework for
the development and deployment of stroke-based online gesture recognition
algorithms,” Technical Report ETH Zurich, TR561, 2007.

[107] M. Smyth and G. Silvers, “Functions of vision in the control of handwriting,”
Acta Psychologica, vol. 66, pp. 47–64, 1987.

[108] I. E. Sutherland, “Sketchpad: A man-machine graphical communication sys-
tem,” MIT Lincoln Laboratory, Technical Report No. 296, 1963.

[109] C. C. Tappert, “Cursive script recognition by elastic matching,” IBM Journal
of Research & Development, vol. 26, no. 6, pp. 756–771, 1982.

[110] C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the art in on-
line handwriting recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 8, 1990.

[111] H. Tu, X. Ren, and S. Zhai, “A comparative evaluation of finger and pen
stroke gestures,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), pp. 1287–1296, 2012.

[112] E. Tulving, “Introduction to memory,” in The New Cognitive Neurosciences,
(M. S. Gazzaniga, ed.), pp. 727–732, Cambridge, MA: MIT Press, 2nd ed.,
2000.

[113] R. van Doorn and P. Keuss, “The role of vision in the temporal and
spatial control of handwriting,” Acta Psychologica, vol. 81, pp. 269–286,
1992.

[114] R.-D. Vatavu, “The effect of sampling rate on the performance of template-
based gesture recognizers,” in Proceedings of the International Conference on
Multimodal Interfaces, pp. 271–278, Alicante, Spain, 2011.

[115] D. Venolia and F. Neiberg, “T-cube: A fast, self-disclosing pen-based alpha-
bet,” in Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 265–270, 1994.

[116] P. Viviani and T. Flash, “Minimum-jerk, two-third power law, and isochrony:
Converging approches to movement planning,” Journal of Experimental Psy-
chology: Human Perception and Performance, vol. 21, no. 1, pp. 32–53,
1995.

[117] P. Viviani and C. Terzuolo, “Trajectory determines movement dynamics,”
Neuroscience, vol. 7, no. 2, pp. 431–437, 1982.

204 References

[118] F. Wang, X. Cao, X. Ren, and P. Irani, “Detecting and leveraging finger orien-
tation for interaction with direct-touch surfaces,” in Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST), Victoria, BC,
Canada, 2009.

[119] D. B. Willingham, “A neuropsychological theory of motor skill learning,” Psy-
chological Review, vol. 105, pp. 558–584, 1998.

[120] J. O. Wobbrock, M. R. Morris, and A. D. Wilson, “User-defined gestures for
surface computing,” in Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI), 2009.

[121] J. O. Wobbrock and B. A. Myers, “Gestural text entry on multiple devices,”
in Proceedings of the ACM SIGACCESS Conference on Computers and Acces-
sibility, pp. 184–185, Baltimore, MD, USA, 2005.

[122] J. O. Wobbrock and B. A. Myers, “Trackball text entry for people with motor
impairments,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), pp. 479–488, 2006.

[123] J. O. Wobbrock, B. A. Myers, and D. H. Chau, “In-stroke word completion,”
in Proceedings of the ACM Symposium on User Interface Software and Tech-
nology (UIST), pp. 333–336, Montreux, Switzerland, 2006.

[124] J. O. Wobbrock, B. A. Myers, and J. A. Kembel, “EdgeWrite: A stylus-based
text entry method designed for high accuracy and stability of motion,” in Pro-
ceedings of the ACM Symposium on User Interface Software and Technology
(UIST), pp. 61–70, 2003.

[125] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries, toolkits
or training: A $1 recognizer for user interface prototypes,” in Proceedings
of the ACM Symposium on User Interface Software and Technology (UIST),
pp. 159–168, Newport, Rhode Island, USA, 2007.

[126] C. G. Wolf, “Can people use gesture commands?,” ACM SIGCHI Bulletin,
vol. 18, no. 2, pp. 73–74, 1986.

[127] C. G. Wolf and P. Morrel-Samuels, “The use of hand-drawn gestures for
text editing,” International Journal of Man-Machine Studies, vol. 27, no. 1,
pp. 91–102, 1987.

[128] C. G. Wolf and J. R. Rhyne, “Gesturing with shared drawing tools,” in Pro-
ceedings of INTERACT ’93 and CHI ’93 Conference Companion on Human
Factors in Computing Systems, Amsterdam, The Netherlands, 1993.

[129] J. Yin, X. Ren, and S. Zhai, “Pen pressure control in trajectory-based inter-
action,” Behaviour & Information Technology, vol. 29, no. 2, pp. 137–148,
2010.

[130] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “SKETCH: An interface for
sketching 3D scenes,” in Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics and Interactive Techniques, 1996.

[131] S. Zhai, “Evaluation is the worst form of HCI research except all those other
forms that have been tried,” CHI Place Essay, Retrieved 2/5, 2010 from http:
//www.almaden.ibm.com/u/zhai/papers/EvaluationDemocracy.htm, 2003.

[132] S. Zhai, J. Accot, and R. Woltjer, “Human action laws in electronic virtual
worlds — an empirical study pf path steering performance in VR,” Presence,
vol. 13, no. 2, pp. 113–127, 2004.

References 205

[133] S. Zhai, M. Hunter, and B. A. Smith, “Performance optimization of virtual
keyboards,” Human-Computer Interaction, vol. 17, no. 2, 3, pp. 89–129, 2002.

[134] S. Zhai and P.-O. Kristensson, “Shorthand writing on stylus keyboard,” in
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 97–104, Fort Lauderdale, Florida, USA, 2003.

[135] S. Zhai and P. O. Kristensson, “Introduction to shape writing,” IBM Research
Report RJ10393, also as Chapter 7 of I. S. MacKenzie and K. Tanaka-Ishii
(eds.), Text Entry Systems: Mobility, Accessibility, Universality, Morgan Kauf-
mann Publishers, pp. 139–158, 2006.

[136] S. Zhai and P. O. Kristensson, “The word-gesture keyboard: Reimagining
keyboard interaction,” Communications of the ACM, vol. 55, no. 9, pp. 91–101,
2012.

[137] S. Zhai, P. O. Kristensson, P. Gong, M. Greiner, S. A. Peng, and L. M. Liu
et al., “Shapewriter on the iPhone: From the laboratory to the real world,”
in Extended Abstracts of ACM Conference on Human Factors in Computing
Systems (CHI) (Design Practice), pp. 2667–2670, Boston, MA, USA, 2009.

[138] S. Zhai, A. Sue, and J. Accot, “Movement model, hits distribution and learning
in virtual keyboarding,” in Proceedings of the ACM conference on Human
Factors in Computing Systems (CHI), pp. 17–24, Minneapolis, Minnesota,
USA, 2002.

[139] S. Zhao and R. Balakrishnan, “Simple vs. compound mark hierarchical mark-
ing menus,” in Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST), Santa Fe, NM, USA, 2004.

[140] S. Zhao, P. Dragicevic, M. Chignell, R. Balakrishnan, and P. Baudisch, “Ear-
pod: Eyes-free menu selection using touch input and reactive audio feedback,”
in Proceedings of the ACM Conference on Human Factors in Computing Sys-
tems (CHI), pp. 1395–1404, San Jose, California, USA, 2007.

