
HAL Id: hal-00765076
https://inria.hal.science/hal-00765076

Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing a space-protocol: from specification,
simulation to experimentation

Marc Andreu, Michèle Haziza, Claude Jard, Jean-Marc Jézéquel

To cite this version:
Marc Andreu, Michèle Haziza, Claude Jard, Jean-Marc Jézéquel. Analyzing a space-protocol: from
specification, simulation to experimentation. Proc. of the Fifth International Conference on Formal
Description Techniques, Oct 1992, Perros-Guirrec, France. �hal-00765076�

https://inria.hal.science/hal-00765076
https://hal.archives-ouvertes.fr


Analyzing a Space-protocol: from Specification, Simulation to
Experimentation 1

Marc Andreua, Michèle Hazizaa, Claude Jardb and Jean-Marc Jézéquelb

aMatra-Marconi-Space, ZI du Palays, F-31077 Toulouse, FRANCE

bIrisa/CNRS, Campus de Beaulieu, F-35042 Rennes, FRANCE

Abstract

The space industry demands that software components, like the others, draw
near the “zero-default” quality. It is now acknowledged that fulfilling this goal for
complex programs like distributed applications or communication protocols, requires
the use of formal specifications and of computer-aided verification tools. This paper
describes an evaluation led by the aerospace company Matra-Marconi-Space in
cooperation with Irisa (an academic research center) on the interest and suitability
of formal methods and related technologies in this context. This evaluation involves
an actual Matra-Marconi-Space specific space protocol (SDM+), the use of
formal methods based on the FDT Estelle, and an experimentation tool called
Echidna (made at Irisa) to simulate and prototype protocols on real distributed
systems. We describe here this evaluation process along with the main conclusions
we drew on it.

Keyword Codes: I.6.4; C.2.2; F.4.3
Keywords: Model Validation and Analysis; Network Protocols; Formal Languages

1 Introduction

For particular systems, software failures can have catastrophic consequences. In the space
area for example, a simple bug can endanger the success of the whole mission, even induces
a satellite crash.

Consequently, the space industry demands that software components, like the others,
draw near the “zero-default” quality. It is now acknowledged that fulfilling this goal for

1This work was partly funded by Matra-Marconi-Space via a research contract with Irisa



complex programs like distributed applications or communication protocols, requires the
use of formal specifications and of computer-aided verification tools.

Finally, it is not surprising that Matra-Marconi-Space, which spends a lot of time
to design specific protocols for space applications, has become particularly interested in
the so-called formal description techniques, and wanted to evaluate formal methods and
related technologies on its own problems.

Contacts were established with Irisa, which proposed its know-how in the Estelle [2]
technology, and was interested in the industrial evaluation of its prototyping tool, named
Echidna [6, 5]. So a contract was made allowing Matra-Marconi-Space to launch
such an evaluation on one of its proprietary space protocol called SDM+.

This paper describes this evaluation process, involving both methodology and technology.
Section 2 presents the evaluation context: the SDM+ protocol, the methods and the
tools used. In section 3, we describe the first stage of our approach: the formalization
and modeling of the protocol, as well as its validation through intensive simulations. The
second stage, described in section 4, refers to the use of parallel computers to prototype
and experiment the protocol. In section 5, we present the main points made through the
evaluation process, and we conclude giving some prospects.

2 The context of the evaluation

2.1 The SDM+ space-protocol

SDM
+ is a system of selective dissemination of satellite information protected via a

ground feedback path (using Transpac, the X25 french public network): some front-
end receivers (called active front-end receivers and denoted FE in the following) can
ask a front-end emitter (denoted FR in the following) to retransmit some badly or non-
transmitted messages. Massive repetition requests are avoided through the use of a pilot
FR (denoted PFR in the following) directly connected to the FE and anticipating normal
FR repetition requests, which are delayed. A parameter sets the maximum number of
authorized retransmissions, thus giving some kind of security level.

Satellite broadcast is done via the SDM network developed by Matra-Marconi-Space

and operated by Polycom. Figure 1 shows the general architecture of the system.

2.2 Modeling, simulating and experimenting

Once a model of a protocol has been produced, it can be validated through different
methods. Validation tools vary widely in their forms and their abilities, but they always
requires as input a formal description of the distributed algorithm (or protocol). They
output data on properties of the algorithm under consideration that can be viewed with
some confidence level.

The designer may attack his/her algorithm by three complementary techniques. One can
think about formal checking of properties, for example by analyzing the state space of



Receiver
Front-End(FR)

Receiver
Front-End(FR)

MGT

1

N

(FE)

SDM

Receiver
Front-End

(Pilot)

(Network Management) TERMINALS

USER

(PFR)

Front-End

Emitter
Polycom

Channels

X25

Polycom

Channels

PUBLIC NETWORK

APPLICATION

APPLICATION

Figure 1: The SDM
+ protocol architecture

the protocol. This gives a definite answer about validity, but existing methods can only
easily be applied to analyzing simplified models of the considered protocol. This forces the
distributed algorithm to be described at a high abstraction level, so its formal verification
lets widely open the problem of property preservation during its refinement course.

Another mean is protocol simulation. This kind of simulation is usually centralized and
permits to observe and control numerous aspects. It can deal with more refined models of
the algorithm and can efficiently detect errors on a subset of the possible algorithm behav-
iors. The main difficulty is to formally describe and simulate the execution environment.
This is generally very simplified, because it wouldn’t be realistic (nor interesting) to take
into account all the parameters of a real system, as for example, the exact influence of
message size on transmission delays, or the action durations (which are not computable
without execution).

A usual way is also to develop a prototype implementation, along with special purpose
programs for observation and testing. Here, the execution environment is obviously the
real one. But beyond the large effort of development implied, the protocol behavior is
hardly observable and largely depends on implementation conditions. Indeed, it may
closely depend on implementation choices (e.g. non-determinism resolution), and so it is
difficult to generalize the possible behaviors from the observation.

It appears that these approaches are more complementary than in competition, and that
an advised designer would try to use all of them. To help him, Irisa proposes an inter-
mediate technique, (called experimentation) between random simulation and prototype
implementation that consists in experimenting on parallel computers.

Experimentation aims at observing the algorithm execution in a real environment (i.e.
on a real distributed system) while allowing the larger subset of possible behaviors to
occur. Some environmental parameters are produced by the parallel computer and the



system observation provides information on the efficiency and quality of the protocol. If
this distributed system is general enough in providing a controlled environment, we will
be able to transpose some aspects of the experimental behaviors onto any other system,
more or less modulus the experimentation machine. Various experiments running on the
Intel iPSC hypercube have confirmed this point of view [1].

Another advantage of experimentation on parallel machines is that we can fully use the
power of such machines, to make it feasible the validation of large distributed algorithms
made of a few thousand processes. However special techniques must be used to perform
distributed observation and measure acquisition.

This concept is provided by the Echidna tool, developed by Irisa and designed for the
experimentation of distributed softwares.

In order to promote the technique, this tool has been applied to the SDM protocol de-
veloped at Matra-Marconi-Space. This “reverse engineering” approach allowed us to
conduct the study while bearing in mind two objectives.

The first one is a blind study to check the model and tool validity (do they permit to
trace the already identified errors?). In this case, Echidna is used as an Estelle spec-
ification tool then as a simulation/validation tool. These functionalities are not specific
to Echidna (other tools are available and even more performing to that end) but are an
indispensable step in the development and validation process of a model.

The second objective was to study Echidna as a tool for experimenting with parallel
computers (for which it has been designed). During the first phase, we tried to qualify
the model in use as well as its distributed operation; in the following phases, we studied
the SDM protocol itself.

2.3 The Echidna tool

Within the Echidna project, the following tools have been built to provide some kind of
continuity between simulation and implementation on parallel machines:

• an Estelle compiler —restricted to the so-called static subset of the language.
The Estelle language [2, 3] can be rapidly described as being based on a model
of communicating state machines extended with the Pascal programming language.
It includes the whole of the Pascal language, but encapsulates it in elements which
make Estelle a genuine language for the expression of parallel behaviors. Three
main characteristics should be noted:

– A specification is made up of several modules. Estelle makes it possible to
specify accurately the interfaces between each of them.

– The behavior description of each module is precise enough to ensure that the
behavior of the specification is unambiguous, or that any ambiguities in it
(non-determinism) are explicit.

– The concept of typing (type definition and instance creation) from the Pascal
language is extended to parallel objects such as modules, channels, etc. Some
of them are parameterizable.



• distributed runtime kernels for Intel Hypercubes iPSC/1 and iPSC/2, for Trans-
puters based FPS-T40 and Telmat T-nodes, for networks of Sun workstations (with
TCP/IP) and for PCs.

• a set of software tools to observe the behaviors of the distributed algorithm under
experimentation (global time builder, non intrusive trace, auto-recording of events,
etc.)

• facilities to interface an Estelle program with its environment

• a windowed interactive source level debugger, available on SUN workstations.

Echidna has been already used to compare various versions of protocol prototypes, in
terms of efficiency, resource management, etc., and to measure real time related perfor-
mances. It can also be used to discover unexpected situations, like macroscopic effects of
subtle perturbations.

It can come into play at different phases of protocol development like descrip-
tion/specification/checking with the interactive simulation and graphic interface, and
during the experimentation and observation phase with embedded functions permitting
to obtain traces. With an additional instrumentation, it is possible to validate some kind
of properties (by building trace checkers) and to have an idea —at least qualitatively—
of the system performances (test automation and curve plotting).

It is necessary to keep the following points in mind concerning this experiment and es-
pecially when it comes to interpreting the simulation results. We study a model of the
protocol and not the protocol itself; consequently, the results must be considered as quali-
tative indications (curve shapes). Lastly, the conclusions may depend on the experimental
set-up: target computer, simplified representation of the environment, etc. The model
has to be qualified when necessary. Some limitations are also imposed by the chosen
method of formal description: Estelle is hardly adapted to the expression of real time
constraints and to broadcasting communication.

3 Protocol modeling and validation

3.1 Modeling SDM+ in Estelle

We restricted our study to the internal protocol of data transfer. We won’t be dealing
with the network management aspects (FE-MGT dialogue) nor with flow control on the
emitting application function of the retransmission flow as performed by FE. This leaves
us with a real size protocol whose complexity is still manageable in such a project aimed
at evaluating a method and a tool.

From the SDM documents and some already described state machines (work carried out
by a trainee who managed to sketch an initial model of the Estelle protocol), it was
very easy to grasp the overall behavior of the system in a few thousands of Estelle lines,
see figure 2.



(FE)

Front-End

Emitter

Relay [1]

Relay [2]

Relay [3]

FR[1,1]

FR[1,2]

FR[2,1]

FR[2,2]

FR[3,2]

FR[3,1]

T[1,1]

T[1,2]

T[2,1]

T[2,2]

T[3,1]

T[3,3]

X25 PUBLIC NETWORK

appli

sat

sat

sat

sat

sat

sat

sat

sat

sat

rep-request
tpc

rec

rec

rec

rec

rec

rec

bcast-start
packet
bcast-end

name

Estelle Modules

Estelle Channels

msg Estelle Interactions

Front-end receivers (FR)

bcast-start
packet
filling
bcast-end

bcast-ok

packet
filling
bcast-end
rdimp

bcast-start

Applications

TERMINALS

Simulation

Figure 2: The Estelle model of the SDM
+ protocol

The model was then improved by interviewing the designers. We have to point out that
the description of a protocol with abstract machines using a formal language such as
Estelle implies the accurate, rigorous and comprehensive understanding of the protocol
for whatever configuration may occur during implementation. Before starting simulation
and validation procedures, it was possible to identify the protocol, to visualize its global
structure (split into modules), to display its operating modes in a simple and natural way
(automata) and to pinpoint possible faults or unexpected but likely situations. It was
possible to have a systematic preliminary approach by checking that all messages in the
system are processed in each state of the machines.

Modeling a protocol raises the problem inherent to the level of abstraction necessary
for the study. One has to strike a compromise between simplification which gives more
flexibility (rapidity of modifications) and the adequation with the real system which leads
to more accuracy and a better readability of results. A formal description method permits
to modify the level of abstraction while designing the model.

We have used this facility to smooth the rough initial model while new functionalities are
being displayed and controlled. For example, in a first phase, the selective broadcasting
aspect was discarded. The FE sent as many messages as there were receiving stations.
When the model was expanded, relays were introduced to represent the features of the
FE-FRs satellite link and the ensuing disturbances. The relays play a twofold part: error
entry and pseudo-broadcasting. The Estelle channels are point-to-point which excludes
the broadcast of a single message to several modules simultaneously. In order to avoid the
artificial overload of FE with the increasing number of receivers, relay modules take over



to send the messages to FRs. So, whatever their number may be, FE only sends three
messages: one to each relay (see figure 2 for the Estelle architecture of the protocol).

3.2 Using simulation

During the development of this procedure, we used the interactive simulation functionality
available on Echidna. This function was practical and efficient based on the principle
one window one module. It allows the user to direct the simulation running by choosing
adequate transitions while visualizing the different states, variables and messages. It can
also launch simulations within a given time limit (number of steps) according to different
strategies (synchronous, asynchronous, sequential). It is able to return to the previous
stage in order to study a scenario more precisely and to keep track of the case history of
the different transitions. To go further in this phase, the technique of probes or observers
as provided by Veda [4] for example would have been necessary.

However, using interactive and intensive simulations, we found easily some real errors
existing in the SDM+ protocol:

• the consecutive loss of the indication of broadcasting interruption or of following
broadcast disturbs largely the system.

• the reception of the following broadcast while FR retrieves errors is not specified in
the system.

• a wide gap between the FRs is to detriment of the slower ones: the same request
can only be treated once by the FE.

4 Prototyping on parallel computer

4.1 Principles

Our target machine for experimentation was the Intel/iPSC2 hypercube, located at Irisa.
This is a parallel computer whose architecture is of hypercube topology design, composed
with 64 Intel 80386 processors with 4Mbytes of memory each. It provides a really par-
allel communication network.. It was then possible to study the global behavior of our
distributed algorithm in a real and efficient parallel environment, as the relative speeds of
communication links and of processors approximate the real situation of the protocol. In
our case we had simple control means at our disposal through tests already implemented
on the SDM protocol: the reverse engineering principle permits to check whether the
implementation on the hypercube is relevant.

In our terminology, an experiment is a run of our protocol Estelle model on the parallel
machine with a given set of parameters. The results of an experience are used to display a
point on a graph representing the variation of some relevant performance feature relatively
to a parameter.



The experiments were automated by using shell script files. A first script rewrites the
Estelle source program by changing the value of a given parameter of the specification
(one of the constants defined at the beginning of the program), then compiles the obtained
file, allocates the number of necessary processors for hypercube operation and launches
the simulation and retrieves traces in the output file as often as there are values to be
attributed to the studied parameter.

Then a second script file is loaded to analyze the output file previously obtained in order
to plot the curve representing a performance parameter function of the studied parameter.
A few very simple Unix commands (awk, gnu-plot, . . . ) facilitate all these operations.

For each variable whose influence was studied, two simulation results have been chosen
as representative parameters: the proportion of lost messages and the time-lag between
first and last message sent by the application module. Figures 3 to 6 show a sample of
the kind of results we obtained.

4.2 Checking the consistency of the model

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

% of packets lost

Nb of repetitions

Group A ✸

✸ ✸ ✸ ✸ ✸ ✸

Group B +

+
+ + + + +

Group C ✷

✷

✷

✷

✷
✷

✷

Figure 3: Performance results: lost messages related to the number of repetitions

We started by model qualifications. Some curves were plotted to check the consistency of
results when referring to the influence of the selected parameters. They were reassuring
because compliant with the expected behavior. This is the case with the results on the
rate of lost messages function of the number of requests for authorized retransmissions
(see figure 3), and on the rate of losses function of error rates on the link (see figure 4).

For the first case, it drops then levels off a threshold from which an additional request
won’t improve the performance. Some errors may occur during broadcasting or retrans-
mission so that several repeats may be necessary for one message. However on the one
hand, a message is unlikely to be distorted during several successive repetitions. On the



0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000

% of packet lost

Group C error rate

Group A ✸

✸✸ ✸ ✸ ✸ ✸ ✸

Group B +

++ + + + + +

Group C ✷

✷

✷

✷

✷ ✷
✷

✷

Figure 4: Performance results: lost messages related to the error rate of the line

other hand, after a certain time lapse, the initial messages of the emitting buffer are
replaced by the new ones and the FE cannot transmit then any longer.

For the second case, the study was conducted by modifying the rate of errors in one single
group, which permits to study the independence of the three groups. The resulting curve
shows, as was expected, that the number of packets lost decreases when increasing the
mean number of packets between two streams of errors. It seems to indicate that a very
poor reception in one of the receiver groups does not disturb the behavior of the others.

4.3 Getting qualitative results

After checking the consistency of the model behavior, we can draw several qualitative
conclusions about other experimental resulting curves.

Concerning the influence of the number of broadcast packets, the two corresponding curves
are exponential; which may be accounted for by the increasing load due to repetitions
(see figure 5). In fact, the higher the number of broadcast messages, the more errors
can occur. This brings about an increase in the number of repeats, i.e. the number of
circulating messages, of errors, . . . This “avalanche” phenomenon may be a problem but
according to the exponential curve coefficient, the values are plotted in the nearly linear
portion of the curve: this should be checked on the system with true scale tests.

The second point is the influence of the number of receivers (see figure 6). The study was
conducted by gradually increasing the number of receivers in each of the three groups.
According to the results, both the simulation time and the rate of errors are linear, which
may entail an overload of the FE. Let us note that in the case of our model in which the
PFR is not represented, the situation can illustrate the two different cases where the PFR
does not play its monitoring role any longer (failure) or the PFR is in another group of
receivers (not altered by the same disturbances).



0

500

1000

1500

2000

2500

3000

3500

4000

5000 10000 15000 20000 25000 30000 35000 40000 45000

Elapsed Time (s)

Nb of packets broadcasted

Simu ✸

✸
✸

✸

✸

✸

✸

✸

✸Group A +

+
+

+

+

+

+

+

+

Group B ✷

✷
✷

✷

✷

✷

✷

✷

✷

Group C ×

×
×

×

×

×

×

×

×

Figure 5: Performance results: influence of the number of broadcast packets

We have also studied the influence of the security level on simulation time (not shown
here). The simulation time does not or hardly depend on the number of authorized
repetitions. Since the rate of errors decreases when the number of repetitions rises and
then levels off, it is not of any interest to limit this parameter unless the threshold is
reached.

5 Evaluation balance

5.1 Using formal methods

We have explained how the Estelle formal description language made it possible to
structure a protocol specification (modules), and to define it precisely in a clear and
legible way (automata).

It facilitates the variation in the level of abstraction according to the study in progress
and the aim of modeling. The same model can be used for specification, validation or
experimentation purposes.

Most problems related to the system operation were raised during the Estelle descrip-
tion phase and we were able to identify quite rapidly and in blind mode some of the
errors already identified by the designers. This first stage seems to be quite useful to
get a comprehensive and accurate reference document easy to consult (Estelle basic
knowledge can be acquired very quickly from Pascal or any other structured language
and from notions on finite state automata).



0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9

Nb of packets lost

Nb of receivers/group

Group A ✸

✸ ✸ ✸
✸

✸ ✸ ✸ ✸
✸

Group B +

+ + +
+

+

+

+

+
+

Group C ✷

✷

✷

✷
✷

✷
✷

✷
✷

✷

Figure 6: Performance results: influence of the number of receivers

5.2 Using Echidna

Concerning the Echidna tool, we found the development of the specification via inter-
active simulation and trace observation from distributed implementation is a valuable
facility. It revealed itself as a good means of communication between designers, develop-
ers, suppliers and clients. This can be attributed to:

- the use of the Estelle language (see above),

- the interactive simulation function which permits to understand how a given protocol
actually works,

- the trace recording function facilitating observation.

We found however some limitations, particularly linked to the problem of time. Delay
clauses of Estelle implemented carefully on the top of physical clocks, would have
simplified the definition of experiments.

All the potentialities of such a tool have not been used in the framework of the study, but
it may be interesting here to review them:

- all the exchanged messages can be buffered, which will permit to re-execute a distributed
trace for analysis.

- there exists a simple Estelle-C interface using the Estelle so called primitive func-
tions, written in C language and stored in libraries. This is useful to go beyond the limited
scope of Estelle.

- quasi-automated implementation on the target system: the interface with the target
system, i.e. approximately 10 percent, should be written since the generated code is
of the rather high level of the Estelle virtual machine. The difference in efficiency is
compensated by saving time and the insurance that the system matches the validated
model.



6 Conclusions

The experiment of using an FDT at Matra-Marconi-Space was very valuable and
conclusions are positive at different levels. For the designers, it offered a structured and
standardized development method, an instant identification of problems, hints for build-
ing of test scenarios, starting from the observations made during simulations and outlining
erratic situations or efficacy limitations, and a know-how transfer to any person interested
in the protocol. For developers, it provided a detailed and non ambiguous specification.
For Matra-Marconi-Space the key point is the use of homogeneous design methods
that permit to increase confidence by a thorough study before the prototyping or imple-
mentation phase and make possible testing the system during the development phase.

References

[1] M. Adam, Ph. Ingels, and M. Raynal. Algorithmes distribués synchrones et systèmes répartis

asynchrones : concepts, mises en œuvre et expérimentations. Rapport de Recherche RR-
0862, INRIA, Centre IRISA, Rennes, July 1988. 27 p.

[2] ISO 9074. Estelle: a Formal Description Technique based on an Extented State Transition

Model. ISO TC97/SC21/WG6.1, 1989.

[3] ISO 9074. Proposed draft addendum to ISO 9074:1989 — Estelle tutorial. ISO 9074:1989
ISO/IECJTC1/SC21/F60.

[4] C. Jard, R. Groz, and J.F. Monin. Development of VEDA: a prototyping tool for distributed
algorithms. In IEEE Trans. on Software Engin., pages 339–352, March 1988.

[5] C. Jard and J.-M. Jézéquel. ECHIDNA, an Estelle-compiler to prototype protocols on
distributed computers. Concurrency Practice and Experience, 4(5):377–397, August 1992.

[6] C. Jard and J.-M. Jézéquel. A multi-processor Estelle to C compiler to experiment dis-
tributed algorithms on parallel machines. In Proc. of the 9th IFIP International Workshop

on Protocol Specification, Testing and Verification, University of Twente, The Netherlands,
North Holland, 1989.


